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Résumé. 2014 Le problème du voyageur de commerce (TSP) et le modèle d’Ising d’un verre de spin sont, respective-
ment, des archétypes pour les problèmes d’optimisation combinatoire en informatique et pour les systèmes désor-
donnés frustrés en physique de la matière condensée. Il a été suggéré récemment que ces deux domaines ont beau-
coup de phénomènes en commun. Pour voir si, de fait, les problèmes d’optimisation combinatoire peuvent être
des verres de spin, nous définissons un TSP à distance aléatoire aussi semblable que possible au modèle idéalisé,
à portée infinie, des verres de spin. A la lumière des résultats récents pour les verres de spin, nous analysons les
observables thermodynamiques et les corrélations internes entre configurations localement stables. L’hypothèse
d’un gel dû à la frustration et d’une structure hiérarchique ultramétrique dans l’espace des configurations est
solidement argumentée, pour ce problème de voyageur de commerce.

Abstract 2014 The travelling salesman problem (TSP) and the Ising model of a spin glass are archetypes, respectively,
of the combinatorial optimization problems of computer science and of the frustrated disordered systems studied
in condensed matter physics. It has recently been proposed that these two fields have many phenomena in common.
To see if, in fact, combinatorial optimization problems may be spin glasses, we define a random distance TSP as
similar as possible to the idealized infinite-ranged model of spin glasses. Thermodynamic observables and internal
correlations among locally stable configurations are analysed in the light of recent results for spin glasses. Evidence
for freezing due to frustration and for a hierarchical, ultrametric structure of configuration space in this TSP is
presented.
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The travelling salesman problem (TSP) is one
classic example of a complex optimization problem.
Easy to formulate, it is yet hard to solve : it belongs
to the class of NP-complete problems [1]. Recently,
the use of simulated annealing, a stochastic algorithm
based on the Monte Carlo method (as developed in
the context of the statistical physics of disordered
systems, e.g. spin glasses), was advocated as an

appropriate algorithm for approximate solution of
complex optimization problems [2]. The application
of the simulated annealing method to TSP has already
been discussed to some extent [2, 8].

There are good reasons why spin glasses provide
a suggestive model for complex optimization pro-
blems [2]. They possess, in a clear way, the physical
ingredients of frustration and disorder, which lead
to a large number of locally minimal solutions and
to freezing phenomena. The simulated annealing
method addresses the problem of getting stuck in a
local minimum by allowing for uphill moves.

Meanwhile, new advances in the theory of spin
glasses have directed attention toward the distribu-
tion of local minima in the landscape of configuration
space. Some sharp results have been obtained for
long range Ising spin glasses : ultrametricity, non-
reproducibility, loss of self averaging [9, 10, 23].
Several new concepts and tools have thus been created.
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The notion of configuration space landscape is

obviously so general as to be of interest in many
problems. This paper is a study, largely numerical,
of the characteristics of configuration space landscapes
for a random distance version of the TSP.

Section 1 describes the problem and our analysis.
Section 2 presents the numerical data.
Section 3 surveys the recent relevant results obtained

in the theory of spin glasses, and draws some compa-
risons with our TSP data.
Some general views can be extracted from these

case studies. The analysis of configuration space
landscapes aims at finding a more detailed and more
physical categorization among complex optimization
problems. Numerical and analytical strategies for

solving such problems will thus be based on sounder
physical grounds. (Present problem classifications,
based on worst case analysis of algorithmic complexity,
are often very broad, so for instance the problem of
finding the ground state of a ferromagnet might be
considered NP-complete because it is lumped together
with the spin glass problem.)

Finally, in section 4, we discuss the impact of these
ideas on the monitoring of the change of configuration
space landscapes in memory models, under learning
and unlearning processes.

1. Introductory analysis.

The travelling salesman problem (TSP) is simply
stated. A list of N cities and a means of obtaining
the distance between any pair of cities is given. The
objective is to find a tour, or permutation, P, of the
cities such that the total length L, of travel through all
cities and returning to the first one in the order P :

is minimized. Since the starting point and direction
of the tour do not matter, there are (N - 1) !/2 distinct
tours. Heuristic strategies which search for near-

optimal tours will be able to explore only a tiny
fraction of this enormous configuration space if N
is large.

S. Lin [11] has introduced a natural rearrangement
of a given tour which permits efficient search. Two
steps on the tour are discarded, say di,i+ 1 and dj,j+ 1.
are replaced by d,,j and di+ 1,j+ 1 so that the new
patnis again a tour. There are N(N - 1)/2 such
moves from any tour.

« Iterative improvement », or exhaustive search

using this class of moves until no further improve-
ments can be found, is a powerful way of improving
upon an initial guess of a reasonable tour. Several

groups have recently [2-7] used the Metropolis
algorithm to enhance the effectiveness of search with
these moves. In general they find solutions with

annealing and Lin’s 2-bond moves which are as good

as can be found with exhaustive search using replace-
ment of 3 or more bonds.
The 2-bond moves impose a natural topology

on the configuration space, giving each tour 0(N 2 )
neighbours. A tour which is shorter than all of its

neighbours is termed « 2-optimal » or 2-opt. This is
not the only possible notion of neighbourhood. For
instance, Cemy [4], Lundy [6], and Kirkpatrick (unpu-
blished) have attempted searches using the N inter-
changes of successive cities on the tour or the N 2
interchanges of any pair of cities, but these moves
usually turn short configurations into long ones, and
do not lead to effective searches.
A fast, but more limited method of sampling the

configuration space should also be mentioned. Called
a « greedy algorithm &#x3E;&#x3E; because it has finished in

only N steps it is a useful means of obtaining trial
configurations. One picks one city at random, takes
the closest city as the second step, the closest remain-
ing city as the third, and so on until the tour is complete.
This differs from an iterative search in that at most N

configurations can be constructed (in practice, fewer
than N distinct tours are usually found).
The nature of the distances dij has a big influence

on the difficulty of the TSP. In practical problems the
dij may be calculated in an appropriate metric from
the positions of the N cities, or they may be tabulated
quantities, representing some more complicated cost.
For N points randomly distributed in a d-dimensional
Euclidean unit cube, Beardwood et al. [12] have
shown that the minimal tour length is proportional
to N times the expected nearest neighbour distance,
N - Ild In this case, all the heuristics discussed approach
the exact limit and give expected outcomes propor-
tional to N(I - Ild). The greedy algorithm gives confi-
gurations 20 percent longer than optimal in some 2-
dimensional problems [2] (KGV), while the other
heuristics are within a few percent of each other.

In this paper we shall consider a simple but arti-
ficial TSP in which the distances are symmetric
(d; = dji) random variables independently drawn
from the uniform distribution over the interval (0, 1).

This model is appealing for its simplicity and free-
dom from geometry. We hope that it may eventually
prove, as has the S. K. model of spin glasses [13],
to be analytically tractable and provide a « mean
held » limit of the statistical mechanics of a travelling
salesman. However, Vannimenus and Mézard [14]
have pointed out that the uniform distribution is not
the infinite dimensional limit of the distribution of
distances between points placed at random in a finite
d-dimensional volume. Still, there is inherent simpli-
city in the uniform distribution which explains our
choice.
The expected nearest neighbour distance is the

smallest of (N - 1) random numbers in (0, 1), hence
0 (N -1 ), in this model. Thus an N-step tour must be
at least 1 unit long, and may, as an extension of the
Beardwood result, have expected length tending to
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be constant 0(1) as N - oo, but we know of no proof
of this. The greedy algorithm for this random distance
problem gives expected length

and provides an upper bound.
In figure 1 we display tour lengths obtained for

this random distance TSP by exhaustive 2-opt and
3-opt searches, and by simulated annealing based
on 2-bond and limited 3-bond moves. This problem
is difficult enough to discriminate asymptotically
between different heuristics. As with 2-dimensional
TSP’s, it was found that simulated annealing with 2-
bond moves gave answers as good as exhaustive
search with 3-bond moves for comparable comput-
ing times. In figure 1, the annealing schedule was
adjusted so that the computing time for the annealed
runs was kept O(N 2) . Thus, exhaustive 3-opt, with
computing time aN 3, became better than 2-bond
annealing for large N. For N &#x3E; 100, it was extremely
costly to obtain good configurations by any heurisic :
for N  50, the solutions appear to be close to the
presumed optima.

I

Fig. 1. z Optimal tour length for random distance TSP’s
of up to N = 400 sites, as obtained by various algorithms.
The dashed line is the upper bound provided by the greedy
algorithm. The solid points are from iterative improvement
using exhaustive search for 2-bond rearrangements (squares)
and 3-bond rearrangements (dots). The open points for

N &#x3E; 24 are simulated annealing results using 2-bond
moves (squares) and three bond moves (circles). The open
data for N  12 are exact results.

Some simple calculations will suffice to sketch in
the important energies (i.e. lengths) and temperatures
of the random distance TSP, viewed as a statistical
mechanics problem. At high temperatures we neglect
the fact that the configuration must be a tour and
simply treat each bond as contributing with a Boltz-
mann weight. This corresponds to the « annealed »
rather than « quenched &#x3E;&#x3E; approximation used in
disordered systems. It is known to give a useful des-
cription of spin glasses above freezing, and was
applied in an independent study by Bonomi and
Lutton [5] to describe a TSP in 2D at non-zero

temperature.
The statistical mechanics of this « annealed &#x3E;&#x3E;

approximation follows simply from treating each
of the N bonds as independent. The partition func-
tion, Z, is approximated by

where

and

The path length per bond, I(fl) = L/N, is obtained by

This has limits I - 1/2 at high temperature and
I - T at low temperature, with a crossover around
P - 1. But, since I ~ N -1 is the smallest possible
for actual tours, the annealed theory will have broken
down for P ~ N.
The length per bond, I(P), plays the role of internal

energy in the TSP, so the specific heat, C(P), is obtained
by

which has limits

and

The entropy, S, can be obtained by integrating C/T,
or by defining a free energy, F,

Now the entropy per step of the tour is given by
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with the result

At high temperatures,

and at low temperatures,

This negative entropy catastrophe is familar from
classical statistical mechanics. Since negative entropy
is unacceptable for a problem with discrete states,
it gives a strong limit for the validity of the annealed
model,

We plot the predictions of the annealed model in
figures 2a-b for N = 48, and compare with Monte
Carlo data. The data are in good agreement with the
annealed theory for temperatures above - 2/N.
Below this temperature the average bond length
begins to saturate due to the frustration of being
required to complete a tour, and the simulations
exhibit all the usual phenomena of freezing. Similar
observations have been made by the groups who have
studied the TSP in 2 dimensions at finite tempera-
tures [5].

Because the total length L of a tour is of order N
at high temperature, while it is of order 1 at zero

temperature, a phase transition between these two
different scaling behaviours must occur. The data
of figure 2 and other data, not represented here, for
a number of values of N do not provide evidence
for a phase transition occurring at finite temperatures.
Therefore, in the absence of an analytical solution of
the problem, the most conservative guess is that the
phase transition occurs at zero temperature. The
deviations from the annealed approximation, on

figure 2, can be interpreted in terms of crossover
behaviour between the T = 0 regime and the high
temperature regime. But certainly it must be kept
in mind that the spin glass phase transition, in the
presence of an applied field, for the infinite range
model, is too subtle to be observed numerically :
its existence is known only from analytical calcula-
tions. Thus the question of the phase transition for
TSP remains open.
On the other hand, abundant evidence for freezing

is found and a principal goal. in this study is to see
if this freezing transition in the simplest TSP pre-
sents any of the characters which have been found
for the freezing transition in spin glass models :
self-similar structure of the configuration space land-
scape, fluctuations from valley to valley in a given

Fig. 2. - Static thermodynamic quantities for a random
distance TSP of 48 cities. Shown are expected length per
step (a), and specific heat (b), as calculated in the high tempe-
rature « annealed &#x3E;&#x3E; approximation and as found experi-
mentally by Monte Carlo simulation.

sample, fluctuations from instance to instance. Since
we do not have yet a soluble mean field theory for
TSP, we shall draw inspiration from the spin glass
theory which is built on an analysis of overlaps
between configurations. Here, we define the overlap,
q; ., between configurations i and j, to be the fraction
of bonds which are common to both tours, without
regard for the direction in which the bonds are

traversed. This definition is consistent with our choice
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of 2-bond moves to generate a topology in the confi-
guration space since it implies that two configurations
are close when only a few such moves are applied
to the first to generate the second.
Some annealed results are of interest in thinking

about the overlap of tours. Two randomly selected
tours of N cities will have, on average, 2 bonds in
common, and the distribution, P(q), of overlaps is
Poisson in the limit of large N [15].

If we include the effect of temperature as in the
previous discussion, we find the expected overlap
is given by

for pairs of tours, weighted by their equilibrium pro-
bability of occurrence.
For p tours, the comparable expression is

From (17) we see that little overlap is expected when
fl = 1.0, and significant overlap once fl = N, where
we have shown the annealed theory is inadequate.
At low temperatures, when there is significant

overlap between tours, we would like to know more
about the bonds which participate in large numbers
of tours. Questions like how frequently a given bond
appears in the sample, or how many bonds take part
in a given class of locally optimal states are of interest.
For a set { a } of M tours (for example, all of the

2-opt configurations), define

Then

is the number of occurrences of the i-th bond. Its
relative frequency f --_ NiM. The overlap between p
tours, Qal’"’’ap can be expressed as

so

Thus the frequency of bond occurrence can be used
to generate higher order overlap statistics.
Now if we introduce a frequency distribution, p( f ),

normalized such that

the identity

gives a useful sum rule on p( f ) :

We show numerical evidence in the following sec-
tion that for the set of 2-opt configurations, p( f )
consists of a nearly constant piece plus a delta func-
tion at f = 0, representing the bonds which never
participate. Introducing an ansatz, po( f ), for the

density with this two-part form :

we find from (25) that A = (2 - y) N and as a result
the number of bonds which participate in the sample

of M configurations will be N. This form for

po(f) implies that only a finite number of bonds per
city participate in the locally stable solutions of a
TSP, a hypothesis which suggests intriguing heuristics
for restricting the search for an optimal solution of
the TSP.

There are additional quantities of interest in

studying TSP, but since we have no theoretical
estimates these will be introduced below, during the
discussion of the numerical data.

2. Numerical results.

The numerical work in this paper is based upon
populations of distinct locally minimal tours which
were extracted from several samples of the random
distance TSP in each of three sizes : N = 12, 24, and
48. Exact enumeration was employed to study tours
of 12 cities. Monte Carlo methods were required for
N = 24 and above. TSP’s with N = 96 were also
studied but are not reported because the tours obtain-
ed were probably not close to optimal, as figure 1

suggests.
Eleven instances, i.e. matrices of random distances

dij, were analysed for N = 12. For each instance, all
2-opt configurations were extracted and saved in a
disk file. There are approximately 4 x 10’ distinct
tours of length 12. Generating all tours and calcu-
lating their lengths required about 4 min on an
IBM 3081. We used an algorithm due to Trotter [16] to
generate permutations by N ! successive interchanges
of adjacent elements. Trotter’s algorithm appears to be
optimal for our purposes. The 11 minimal tours

obtained ranged in length from 1.16 to 2.47, with a
mean of 1.83 and variance of 0.44. From 11 to 58 2-opt
tours were extracted; on average there were 29 per
configuration. The lengths of the 2-opt tours ranged
up to 3.3. The average spread in length of the 2-opt
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states for a given instance was 0.9, the variance, 0.4.
Since the mean length of a tour for N = 12 in this
model is 6 and the maximum length 0(12), the 2-opt
tours are a more restricted class of states than the

locally minimal spin glass configurations, which are
found at energies up to the average energy of a spin
configuration [17, 18]. A 2-opt solution is stable

against O(N 2) bond rearrangements, while a spin
configuration with all spins frozen is stable against N
individual spin reversals. Thus the narrower relative
range of lengths for the 2-opt solutions is not sur-

prising.
The 2-opt states were also tested for 3-optimality.

On average, two 3-opt tours per instance were found,
with some instances having a unique 3-opt configura-
tion and others as many as 4.

To obtain 2-opt tours with N = 24 and 48, a
simulated annealing procedure (KGV) was employed
to generate 100 2-opt configurations for each instance,
heating the system to a temperature of 2 or more
briefly between coolings to provide a random restart.
For N = 24, if the samples were cooled slowly, only
a few distinct 2-opt states resulted. Thus a relatively
rapid annealing schedule was developed, which gave
an average of 55 distinct 2-opt tours in the set of 100
retained for each instance. One or two of the shortest

2-opt tours were generated 10 or more times each,
while most of the longer 2-opt tours created were
unique. We found from 3 to 23 of these tours were
also 3-opt, for an average of 11 per instance. The

range of lengths sampled is not relevant for N = 24,
since the selection is not exhaustive or random. The
same annealing schedule was followed in generating
tours for four instances with N = 48, taking four times
as many rearrangement steps at each temperature.
Each cooling run terminated only when a 3-opt
configuration was formed, which proved to occur
frequently. The 100 3-opt tours generated for each
instance were all distinct.
Next we show the distribution of pairwise overlaps

found in the sample populations of 2-opt (or 3-opt)
tours. Figures 3a-c show similar-looking curves for
P(q) with N = 12, 24 and 48, respectively. Curves
for the different instances at each N are superimposed.
In each case the most probable values of q occur at
about 2/3. Note the differences between figures 3a-c
and the overlap distributions predicted and found for
spin glasses. There P(q) is nonzero down to q = 0;
overlaps of negative sign are meaningful between
spin configurations. The distributions in figures 3
do not include self overlap, i.e. terms qij with i = j,
and thus are normalized to slightly less than unity.
However we prefer to avoid the delta functions this
term requires and will also leave out self overlaps
in the joint distributions explored below.
With increased temperature, the tours spread fur-

ther apart in configuration space, reducing the average
overlap, but the spread in P(q) does not change much.
Figure 4a shows distributions, P(q), obtained for one

Fig. 3. - Overlap distributions, P(q), for eleven instances
of N = 12 (a), eight cases of N = 24 (b), and four cases
with N = 48 (c). In figures 3, 4, 9-13, we plot data against
the integervalued Nq for programming convenience. The
vertical scales are arbitrary ; P(q) is a normalized probability
distribution.
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Fig. 4. - P(q) for samples annealed to temperatures 1/12,
1/24, and 1/48. In (a) random restarts were employed after
each sample configuration was collected. In (b) the confi-
gurations were obtained by Monte Carlo runs at the indicat-
ed fixed temperatures, without warming up between samples.
See the caption of figure 3 for notations.

instance with N = 48 in populations of 100 tours
obtained by repeated cooling from the hot, scrambled
state to various lower temperatures.
The effect of the energy landscape which confines

the Monte Carlo search to a particular valley or to
the vicinity of a set of minima is evident in figure 4b.
Here we plot P(q) obtained at a similar set of tempera-
tures, but this time without randomizing the tour
between samples. The final set of tours obtained over-
lap more strongly, with a most probable value of
q - (7/8), than do the tours found by repeated ran-
dom restarts in figure 3c.

We have also studied the bond frequency distribu-
tions characterizing the samples of locally optimal
configurations. The well-behaved experimental quan-
tity which is closely related to p( f ) is the cumulative
distribution, D( f ) :

Figures 5a-c plot f as a function of D( f ) for the
instances with 12, 24 and 48 cities, respectively. The
abscissa and ordinate are interchanged for conve-
nience in generating these figures, which were created
by sorting the list of all bonds in each instance in
decreasing order by frequency, then plotting bond
frequency against that bond’s position in the sorted
list. If p( f ) were constant (y = 0 in the ansatz po),
then D( f ) would be a straight line, and only 2 N
bonds would participate in all 2-opt configurations.
Furthermore, a constant bond frequency distribu-

tion p(f&#x3E; implies zip&#x3E; = £ , where  Qp &#x3E; has
been defined in (21), which is in good agreement
with the estimate Q 2 &#x3E; -- 31 z obtained from the
date of figure 3. In fact, figures 5 suggest that p( f ) is
roughly constant, with some extra contributions close
to f = 0 and f = 1. About 3 N bonds in each
instance contribute to our samples of optimal confi-
gurations. The distributions shown in figures 5

sharpen up as N increases, with the case N = 48
showing little instance-to-instance scatter.

Figure 6, based on the samples used in figure 5c,
shows the effect of higher temperature in reducing
configuration overlap. In figure 6 no bond occurs in
all samples, and a larger number of bonds participate
in the configurations analysed. This is consistent with
the lower average value of q observed.

It seems of interest to ask whether other sets of

configurations, more easily calculated, would contain
the same set of useful bonds as are present in the
annealed 3-opt configurations, which are relatively
costly to compute. We consider the set of N

« greedy » solutions to a given TSP obtained by
starting at each city. (In fact, for N = 48, one or two
of the greedy solutions is duplicated, but we did not
bother to remove duplicates). The best greedy solutions
found for N = 48 are about 50 percent longer than
the best annealed solutions (see Fig. 1). The distribu-
tion of bond frequencies for the greedy set of configu-
rations, shown in figure 7 for one N = 48 instance, is
similar in shape to the curves of figure 5c, except for
a tail extending out to 4N bonds. The rather long
bonds taken at the end of a greedy tour, when a few
scattered cities remain to travel between, could account
for this tail.
There are other differences. In figure 8 we plot bond

frequencies against bond length for greedy and
annealed configurations of the same TSP. The
annealed solutions consist of bonds with a narrow
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Fig. 5. - Bond frequency plotted versus number of bonds
which occur at least that frequently, for : a) N = 12,
b) N = 24 and c) N = 48 locally optimal TSP solutions.

Fig. 6. - Cumulative distribution of bond frequencies,
as in figure 5, for an N = 48 sample annealed to T = 1/6,
then quenched.
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Fig. 7. - Cumulative distribution of bond frequencies for
all greedy solutions of the same instances of TSP with
N = 48 as in figure 5c.

range of lengths, while some of the frequently
encountered greedy bonds are quite long. Presumably,
the rigid greedy strategy for creating a tour forces the
same mistake repeatedly. Nonetheless, of the 60
shortest bonds in the annealed sample only three
are not observed in the greedy sample. However,
there are 37 bonds out of the 141 distinct bonds in the
annealed sample of 100 configurations which were
never generated by the greedy algorithm. Even if we
concentrate on the 5 shortest tours obtained by
annealing we find that these employ 76 distinct

bonds, and six of them are not obtained in the greedy
sample. Three of these six bonds occur in four or more
of the five shortest tours. A sample of 50 tours was
generated by cooling to a temperature at which freezing
begins, 1.4/N, using 50 independent random starts.
This sample contained 192 distinct bonds, including
all the bonds discovered in the 100 annealed near-opti-
mal configurations.
Next we shall analyse the data for evidence of the

ultrametric structure known to exist in spin glasses.
In a Euclidean space, the triangular inequality

says that any side of a triangle is smaller or equal to
the sum of the other two :

An ultrametric space is defined by a stronger inequa-
lity, the ultrametric inequality :

This implies that any triangle is either isosceles with
small basis, or equilateral. Obviously, the preceding
inequalities can be expressed in terms of overlaps,

Fig. 8. - Relative bond frequencies plotted against bond
length for 100 3-opt solutions (circles) and all greedy
solutions (crosses) of an N = 48 TSP.

rather than distances. The ultrametric inequality was
first put forward by M. Krasner, around 1930, in the
context of arithmetics [19]. Notions of ultrametricity
have also been used in the classification of data in
various sciences, and especially in biological taxo-
nomy [20]. There are various ways to define overlaps
or distances between two biological objects, according
to the characteristics that are under study. If the dis-
tance matrix of a collection of biological objects is
ultrametric, then there is a unique, well defined, evo-
lution tree such that the distance between two objects
is determined by the closest common ancestor (the
older the bifurcation the larger the evolved divergence,
and thus the distance). In the general case, where the
distance matrix is not purely ultrametric, biologists
still wish to reconstitute an evolution tree. The two

simplest procedures to do so are called « single linkages
clustering » and « complete linkage clustering » [21].
In both procedures, the distance matrix is modified
systematically to become ultrametric, with as few
modifications as possible. In the first procedure, all
distances are either decreased or unmodified, and the
solution is unique. In the second procedure, distances
are either increased or unmodified, and the solution
need not be unique. So, these procedures somehow
bracket the problem between ultrametric upper and
lower bounds. If the evolution trees so obtained are

analogous, this is an indication that the problem
possessed a strong underlying ultrametric structure.
If not, one has to resort to less stringent and more
Quantitative ultrametricity tests.

The triangle inequality (27) takes a slightly different
form when the variables considered are overlaps,
not distances. If we know that tours 1 and 2 differ in
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only N(1 - q12) of their bonds, and calculate overlaps
q13 and q23 to a third state, then the maximum diffe-
rence between q13 and q23 is

The most direct check for ultrametric statistics is
the distribution of the number of triangles
(q12’ q23’ q 13) as a function of the lengths of the longer
legs q23 and q13. The triangle inequality may impose
severe constraints on this plot. For example, see

figure 9a, for N = 24, Nql2 = 21, where the resulting
distribution is cut off at N q13 - q23 1 = 4. Part of
the peaking in figure 9a is due to the narrow range of
P(q). We subtract the uncorrelated background
P(q13) P(q23) from the data in figure 9a to remove this
effect, and show the result as figure 9b. While the
removal of background leaves the ridge narrower and
still rather high the negative contribution on either
side of the ridge in figure 9b is deepest at the triangle
constraint value N q13 - q23 I = 4. For this reason,
plots of the statistics of triangles are not informative
about N = 12.

Fig. 9. - Distribution of triples of overlaps qij qjk qki for
N = 24 for which the largest overlap is 21 bonds. In (a) is
shown the raw data. In (b) the uncorrelated background
is subtracted out. Vertical scales are arbitrary. The two
horizontal variables are overlaps.

The triangle data is not as compromised for the
case N = 48. Data for Nql2 = 33, the most probable
value of q, are plotted with the uncorrelated back-
ground subtracted out in figure 10a. The restriction
N I q13 - q 2 3 1 ’-- 15 does not affect the region shown.
Subtracting the background to obtain figure l0a
reduces the peak height by a factor of almost 12, and
reduces the width of the ridge from about ± 10 to
+ 3. If we choose Nql2 = 39, at the high end of the
observed distribution of overlaps, the triangle statistics
again form a ridge with steep sides at ± 3-4 bonds.
The subtracted data shown in figures lOb and 10c has

Fig. 10. - Subtracted statistics of all triangles formed
among 3-opt tours of N = 48 cities with Nqmax = 33 (a)
and 39 (b, c). Vertical scales are arbitrary.
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a peak height which represents about half of the
uncorrected data. Both front and back views (from
Nql3 - Nq23 = 39 looking to small q, and from

Nql3 - Nq23 = 21 looking to large q) are provided,
since the negative density due to subtracting the back-
ground is largest in the middle of the surface plotted.
The correlation that emerges in these plots is sensitive
evidence for an ultrametric structure, and may be used
for quantitative comparison with results in other
models.

By integrating over the length of one side, qik, we
obtain P(qip q;k) - P(qij) P(qk) and collapse all our

data onto a single plot for each value of N, eliminating
the distraction of the triangle inequality. In figures 1 la-f
are displayed the results of this compression of the
data for N = 12, 24 and 48. Both front views (down
the qij = qjk axis) and side views (both qij and z
increase to the right) are shown. The distributions in
figure 11 have a characteristic two-peaked form for all
three problem sizes, and stay roughly constant in
width as N increases. The upper peak has a greater
width transverse to the ridge line than the lower peak,
but this difference becomes less prominent as N

increases.

Fig. 11. - Subtracted statistics of pairs of bonds, for N = 12(a, b), N = 24(c, d), and N = 48(e, f). Figures lla, c and e
show the data looking along the qij = qik axis from the large q end. Figures llb, d and f show the same cases from the side.
Vertical scales are arbitrary.
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If instead of integrating over q12, the strongest over-
lap, we integrate out both q13 and q23, the function
remaining (the fraction of all triangles with a given
shortest side) can be directly compared with formulae
derived for the S.K. model. The comparison is simplest
if we consider the integrals of this function. The

integral E  (Q), which gives the fraction of triangles
with all overlaps less than q, is plotted for an N = 48
instance in figure 12. For comparison we have plotted
x3(q), the result expected if the overlaps are uncorre-
lated, and x2 ( q), the predicted value of E  (q) in the

S.K. model, using, dq for the particular

instance. The TSP results are closer to the uncorrelated
formula than they are to the S.K. form, which is
discussed in more detail in the following section.

However, the difference between our result for

E  (q) and the uncorrelated result is significant, and is
seen for all three values of N. The S.K. result for E 
depends sensitively upon a free parameter of the ultra-
metric statistics (relative weight of isosceles and

equilateral triangles), so the comparison in figure 12 is
not a clear-cut test for the presence or absence of such
correlations.

Since the width of the various distributions discussed
above is constant or very slowly increasing as N
increases, it appears that the triangle and bond pair
statistics will exhibit delta function contributions
transverse to the qij = qjk axis in the limit N - oo.
We offer no speculations on the finite size dependence
in these results, and there is as yet no theory of finite
size effects in the spin glass phase of the S.K. model.

Fig. 12. - L «q) defined as in the S.K. model, but for a
random distance TSP with N = 48. For comparison,
the S.K. result for infinite N, x’(q), is shown dashed, as is
the uncorrelated limit x3(q).

For purposes of comparison, we calculated the 100-
200 lowest energy spin configurations for S.K. models
with 24 spins, using exact enumeration of all spin
configurations. The data for P( qij’ qjk) - P(qij) P( qjk)
for 4 instances are plotted in figure 13. While different
in detail, the distribution has also two peaks, and
roughly the same spread as our results for TSP.
Some of the general questions raised by this section

are :

Is ultrametricity a generic property for random
problems with large configuration spaces ? Could it
be derived as a simple consequence of a law of large
numbers, by maximizing some entropy of the confi-
guration space landscape ?
To what extent are the various functions we used to

characterize configuration space landscapes depen-
dent on the choice of weights for the set of local minima
which are retained in the analysis ?

3. The case of spin glasses.

The configuration space analysis for TSP in the two
previous sections is natural and straight forward
enough not to require exterior justifications. However
it is historically true that some of the basic concepts
are carry-overs from spin glass physics. And even if
today the reference to spin glasses is not necessary it
still provides an interesting and suggestive background
for the general questions raised in section 2. As a

consequence, in this section, we survey some of the
basic relevant results from spin glass theory [22].
We shall only discuss long range Ising spin glasses.
The configuration space is an N-dimensional hyper-

cube, with 2 N possible configurations. In the S.K.
model [12], the Hamiltonian is

where the interactions Jij are independent random
variables. For this model, a solution has been obtained
in the large size limit (where the numbers of spins,

Fig. 13. - Overlap pair statistics, analogous to figure llc
but evaluated for an S.K. model with 24 spins. The vertical
scale is arbitrary.
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N, diverges). Some variants of the S.K. model (p-spin
interactions, Potts or quadrupolar variables instead
of spins) have also been considered.
The overlap between two spin configurations a and

fl is the scalar product in configuration space :

which takes values between - 1 and + 1. The fact
that an overlap is an algebraic quantity, which can be
positive and negative, is a noteworthy difference with
our choice for the TSP overlap. Physically, the need for
an algebraic overlap in the spin glass case comes from
time-reversal invariance. To any spin configuration
corresponds a time-reversed configuration with all

spins flipped. In the presence of a magnetic field, time
reversal invariance is broken, and it turns out that only
positive overlaps remain of importance in the thermo-
dynamic analysis. Thus the best analogy to TSP is a
spin glass with an applied magnetic field.
For the S.K. model, there exists a sharp phase

transition temperature Tg (in the large N limit) below
which the system is not ergodic. Thus for T  Tg,
the system gets trapped into one or another region of
configuration space from which it cannot escape
toward other regions with comparable energy; this is
the definition of ergodicity breaking. Configuration
space is thus divided into valleys separated by barriers
too high to be passed over. Of course, for a finite sys-
tem, there is always the possibility to climb over
barriers because they are finite. That is the reason why
sharp phase transitions can only occur in the large
size limit. Therefore the concept of valleys must be
used with some care in the context of finite systems.
Within one valley s, one can define the average

magnetization of spin Si as being :

and the overlap between two valleys s and s’ is

Now, one can define a valley overlap distribution
function by

B

where Ws is the Boltzmann weight of valley s

Note that this Boltzmann weight of a valley is a single
number which is influenced by the height, the size and
more generally the shape of the valley. It does not
exhaust all physical information one might wish to
obtain on a valley.
The number of valleys and the shape of P( q) vary

with temperature and field in the spin glass phase. In
the S.K. model, P( q) contains a continuous component.
But, there exists a simpler spin glass model, the random
energy model, where P( q) contains only 6-function
peaks, as in a standard phase transition [24]. Formulae
below pertain to both models, with the inclusion of
the appropriate P(q).
The ultrametricity property was discovered by

computing P(q,, q2, q3) which gives the statistics of
triangles formed by picking three valleys at ran-

dom [10]. Indeed, it was found that :

Formula (35) shows that the triangles are either
isosceles with small basis, or equilateral, which is the
defining property of a ultrametric space.

This ultrametricity property suggests that, as tempe-
rature is lowered, the ergodically separated valleys are
generated by a branching process, with only one valley
at T &#x3E; T g (paramagnetic phase) and more and more
valleys as T decreases (of course, the weights are
temperature dependent). Conversely, assuming the
existence of such an evolution tree and that the overlap

between two valleys is determined by the distance to
their closest common ancestor, the ultrametricity
property follows.

There are various ways to prove that the weight
and environment of a valley do vary considerably
from one to the other. An exact expression [10] has
been given for the fluctuations of P(q) over s :



1290

This imbalance between valleys is actually hidden
in the coefficients of formula (35). If all valleys were
equivalent (same weight Ws and same environment as
described by the function PS(q)), the integrated func-
tion :

would factorize into P(ql) P(q2). That is not the case
for spin glass since, using (35), one finds :

.1

The function C(q1’ q2) = P(q1’ q2) - P(qi) P(q2)
therefore deserves consideration. A word on norma-
lization is in order. The function P(q) should include
self-overlaps in order to be properly normalized to 1.
P(ql, q2, q3) should also include all triangles, including
triangles in which the same valley occurs two or three
times, in order to be conveniently normalized. With
these precautions :

In spin glasses, as in TSP, the function C(Q1’ q2)
exhibits positive values on the diagonal surrounded
by negative values. The formula for spin glasses (38)
does not distinguish between weight and environment
fluctuations. In the numerical analysis of section 2, for
the TSP, equal weight was taken for locally stable
configurations. In order to compare comparable
things, we have used similar weighting in figure 13
which is to be compared with figures 11. In both cases,
the source of imbalance comes from environment
fluctuations.
Other quantities, interesting and simple to compute,

are E  (Q) and E, (q) defined by :

which count the proportion of triangles with all three
sides larger or smaller than q. From formula (35), one
gets for S.K. spin glasses :

to be compared with the result obtained assuming no
correlation between the three triangle side lengths.

We have been considering increasingly global pro-
perties of the valley distribution. Finally, the most
global property is the statistical entropy of the distri-
bution of valleys, which is defined as usual by

In order to distinguish it from the total entropy,
which contains contributions coming from the intra-
valley entropy, one sometimes calls K the complexity
of the valley distribution [22]. In the S.K. model, the
complexity is zero in the paramagnetic phase since
there is only one valley. It rises below Tg but it is a
quantity of order 0(1) and not of order O(N), due to
the Boltzmann weighting. The interpretation is that
there are some dominant valleys of finite weight among
the O(exp N) valleys. In zero field, the complexity
jumps from 0 to In2’ at T 9,’ and then rises smoothly as
the temperature decreases. The jump at Tg is due to
the spontaneous breaking of time reversal invariance
(ferromagnetic-like transition), which somewhat acci-
dentally occurs on top of the spin glass transition. This
peculiarity of spin glasses in zero field is not relevant
for TSP which, as discussed previously, is best com-
pared with a spin glass in the presence of a magnetic
field.
As mentioned earlier, the notion of a valley is some-

what ill-defined at finite temperatures for a finite

sample. Still, some of the previous quantities can be
unambiguously defined. For instance, P(q) can be
defined from

where Wa is the Boltzmann weight of configuration a.
Numerical estimates of P(q) have been obtained with
the Monte Carlo algorithm for long range [25] and
finite range [26] spin glass.
Another approach, closer to our TSP analysis,

consists in focussing on locally stable configurations at
zero temperature, the so called TAP solutions [22] in
the context of spin glasses. Equal weight can be given
to all TAP solutions below some energy cutoff, and
zero weight above the cutoff. There are no analytical
results for such a choice of weights, but these statistics
are obviously of interest for the analysis of finite sys-
tems. Alternately the finite temperature thermo-

dynamic properties can also be reconstructed from the
numerical analysis of TAP solutions, with some

approximations. The results appear to be in good
agreement with theoretical predictions [27]. All this
suggests that a detailed analysis of the distribution of
TAP solutions in configuration space is not only
useful to check the thermodynamic predictions and the
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validity of the existing theory but would also provide
additional information of interest. One would like to
know, for instance, the statistics of the attractor basins
of locally stable solutions. The basin size is a useful
weight for the models of memory proposed by
Hopfield [28]. The lowest valley, which will eventually
dominate with Boltzmann weighting, need not have
the largest attractor basin [31]. So different weightings
may provide complementary information, as discussed
in the next section.
We end this section with two comments on the

connections between spin glass and algorithmic
complexity.

i) It has been proved that the spin glass problem
defined as an optimization problem (i.e., find the

ground state) is NP-complete in dimensions larger
than 2 [29, 30]. Though it is polynomial in dimension 2,
it becomes NP-complete for two coupled planes [29].
It is tempting to link NP-completeness with the
occurrence of a sharp phase transition at finite tempe-
ratures in the thermodynamic (large size) limit, but
growing evidence suggests to resist this temptation [32].

It does seem that NP-completeness is generally
associated with some sort of ergodicity breaking, with
a freezing transition which may be sharp or smooth,
and when smooth with a zero temperature phase
transition, as in the case of the TSP. However, these
characteristics are not exclusive to NP-complete.
problems, since the 2 D spin glass problem, which is
in P, possesses them too. All this suggests that a more
refined categorization of NP-complete problems is
needed.

ii) Some classic optimization problems, such as

min-cut partitioning, are now recognized as being
simply expressible as spin glass problems [3].

4. Perspective and questions.

In the previous sections, a number of tools for the
analysis of configuration space landscapes have been
discussed. Some arose from the study of spin glasses
(ultrametricity tests, triangle statistics...). Our

approach to the TSP has introduced different (non-
Boltzmann) weightings, which are also of physical
interest. Spin glass theory led us to put emphasis on
the overlap of two configurations. In the TSP context,
where the overlap of two configurations is the number
of common bonds, it appears natural to consider also
higher correlations [15], such as the number of bonds
common to three tours, etc. It shows that the battery
of tools relevant for the study of configuration space
landscapes is likely to expand as more optimization
problems are explored.

While the means of analysis are sharpened, it is
worth bringing this knowledge to bear on the modifica-
tion of configuration space landscapes under changes
of the parameters defining an instance. There are
several reasons to be interested in this problem of
landscape « gardening ».

Firstly, the lack of self-averaging in the mean field
theory of spin glass suggests that there may exist a
considerable amount of plasticity in configuration
space landscapes, making them sensitively dependent
on rather minor modifications.

Secondly, configuration space gardening is related
to the notions of learning and unlearning for artificial
or animal memories. Hopfield’s model of a content-
addressable memory is essentially an Ising spin model,
with spins representing neurons and interactions

representing synapses. Under suitable symmetric
assumptions Jij = iji, the neuron dynamics is a

gradient dynamics, running downhill in configuration
space. However, the outcome of Hopfield’s learning
and unlearning process is a configuration space evenly
divided into valleys of similar size. In a phase transition
language, this would correspond to an evolution tree
with one branching temperature, namely only one
relevant temperature scale. However, a hierarchical
structure of configuration space is physiologically
more appealing, because it allows for a safer and more
resourceful classification of memories. Since a purely
random distribution of connection strengths (spin
glass limit) possesses this property, it appears that
better advantage should be taken of randomness.
Thus it is tempting to explore ways of pruning the
configuration space of a spin glass from its excessive
number of valleys while keeping its hierarchical pro-
perties.
An apparent objection against this approach comes

from the theoretical suggestion that there is a small
number of dominant valleys (obsessions) in long range
spin glasses. It should be recognized however that this
dominance is due to the Boltzmann weighting which
is used in statistical physics. In the context of memories,
it is the attractor basin size which is a proper measure
of the weight of a valley. Present numerical analysis
indicates that with such weighting the obsession

problem disappears.
As a conclusion, we believe that the main contribu-

tion of this paper consists in the new questions it raises.
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