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Résumé. 2014 On introduit une famille de modèles qui interpole entre les modèles séparables et le modèle de Sher-
rington-Kirkpatrick. Ceci permet une meilleure compréhension des différences entre les modèles séparables et
non séparables en particulier en ce qui concerne l’extensivité du logarithme de la fonction caractéristique des
couplages aléatoires, la brisure de la symétrie des répliques et la nature des paramètres d’ordre. Cette famille
contient des modèles « réalistes » comportant des paramètres ajustables susceptibles de mieux rendre compte
des résultats expérimentaux que le modèle S.K.

Abstract. 2014 A family of models which interpolates between the separable models and the Sherrington-Kirkpa-
trick (S.K.) model is introduced. This allows a better understanding of the differences between separable and
non-separable models, in particular as concerns the extensivity of the logarithm of the characteristic function
of the random couplings, the breaking of the replica symmetry and the nature of the order parameters. This family
contains true spin glass models with adjustable parameters which might account for the experimental situation
better than the S.K. model.
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1. Introduction.

If one focus attention on the statistical properties of
the random coupling constants, the available solvable
mean field spin glass models can be divided in two
classes. The first class, made of the so-called separable
models [1-5] is characterized by coupling constants
Jij which are a finite sum of products over i and j
of random variables associated with each site i. These
models are exactly solvable without calling for the
replica method and possess « natural » order para-
meters ; they retain the experimental fact that the N 2
true random couplings V(Xi - xj) (V being the
interaction potential) depend on N random variables
(the positions xi of the magnetic impurities) and are

(*) Equipe de Recherche Associ6e au C.N.R.S.

therefore correlated. However they lack a major
feature of spin glasses, i.e. the existence of an infinite
number of free energy valleys [6]. From a technical
point of view, this is reflected by the fact that their
solution can be recovered by the symmetric replica
method [5, 6]. The models of the second class, on the
contrary, exhibit a rich structure of the set of equili-
brium states which is thought to be essential to account
for the experimental results (failure of ergodicity,
large spectrum of relaxation times, etc...). The most
famous model in this class is the Sherrington-Kirk-
patrick (S.K.) model [7] and the « simplest)) [8] one
is the random energy model of Derrida [9] ; both deal
with independent Gaussian random coupling cons-
tants. Their solution relies on a special hierarchical
scheme of breaking of the replica’s symmetry [10]
which induces an exotic but physically interesting
ultrametric topology in the space of pure states [11].
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It leads to a new type of order parameter whose values
are the correlations between replicas and which is

interpreted in terms of the overlaps of the pure
states [12].
From an experimental and a theoretical point of

view it is desirable to dispose of intermediate models
which retain the favourable features of both classes.
The aim of this paper is precisely to introduce a
family of models which interpolates between the

separable models and the S.K. model. These models
are obtained from separable models by allowing the
number of random variables associated with each
site i to go to infinity. One may find a motivation for
this extension by looking at the expression of the
random couplings in terms of the Fourier transform
of the interaction potential

In the separable models the coupling constants mimic
an approximation of V by a finite sum over k. The
models considered in the following amount to take
a number of terms proportional to N (N goes to
infinity in the thermodynamical limit) in the sum and
to replace Y (k) by a staircase function with a finite
number of values. (Let us recall that, for the R.K.K.Y.
potential, JÎ (k) is almost constant for k  2 kF.)

In this paper we concentrate on those general
features which allow a better understanding of true
spin glass models and enlighten the comparison
between the S.K. model and the separable ones. The
detailed study of specific new models and the discus-
sion of their ability to describe the experimental
situation will be made elsewhere. Our main results
are the following. First the S.K. model can be recovered
as a limit case in a family which also contains other
true spin glass models. For such models the logarithm
of the characteristic function of the random coupling
constants is an extensive quantity (in contrast with
the separable models). The Parisi ansatz is applicable
to any model of the family. In the case of separable
models, this scheme of breaking of the replica symme-
try leads to the symmetric solution. For all these
models two types of coupled order parameters appear,
one of them being the natural order parameter of
separable models. These two order parameters coin-
cide only for the S.K. model. Finally we argue that
all the models likely to describe true spin glasses have
a common critical behaviour but their de Almeida-
Thouless line is different from that of the S.K. model
and may lie below it in the H.T. plane.
The paper is organized as follows. In section 2 we

introduce the family of models and discuss some
examples. In section 3 we derive the coupled equations
for the order parameters within the replica method
and examine their general structure. Section 4 is
devoted to the comparison of the separable and non-
separable models. We conclude in section 5 by a
discussion on the physical interpretation of the two

types of order parameters. All along the paper the
S.K. model and the Van Hemmen (V.H.) model [4]
serve as illustrative examples.

2. Description of the models.

We consider a family of models with infinite range,
2-spins random interactions of the form

where J is a p x p symmetric matrix and 4i are N
independent identically distributed Gaussian p-vec-
tors with zero mean. Through a redefinition of the
matrix J, the components Çip of the vectors 4i may
always be made independent with variance one.

(Although some calculations could be done without
restricting ourselves to a Gaussian probability law,
this choice is essential for the obtention of the main
results of this paper.)

Hamiltonians of the form (1) have already been
considered for various kinds of random variables but

only for p finite (p = 1, 2, 3...) [1-5]. The simplest one
is the V.H. Hamiltonian whose J matrix is

As already mentioned in the introduction, such
models are not able to describe true spin glasses.
However, this is no longer the case if one allows p
to go to infinity.
As an illustrative example let us recover the S.K.

model in a limit p - oo. This is best discussed in terms
of the characteristic function 0 of the random coupling
constants. Let Jij (4i, J4j) for any i and j ; then 0
is a function of 2-1 N(N + 1) independent variables
uij (the elements of a symmetric matrix !tJ) :

For independent Gaussian variables ’Çip, 4&#x3E;(u) reads
[13] :

where up and JU are the eigenvalues of U and J.
0(u) has to be compared with the characteristic

function 4&#x3E;S.K.(U) of the S.K. coupling constants which
are independent Gaussian variables with zero mean
and variance NJ 2 :

It is easy to verify that the equality
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is satisfied in the limit No oo for J matrices of
dimension N 2 +£ whose eigenvalues are alternately

- 1 (1 +8)
± JN - 2 (1 +E) . In full rigor, E must be strictly positive
in order to obtain formula (5). However it will become
clear further (formula (8) and section 3) that the
condition 8 &#x3E; - 1 is sufficient to recover the S.K.
model in the thermodynamical limit.
More generally the above calculation suggests

that the logarithm of the characteristic function 0 of
the random coupling constants is an extensive quan-
tity for true spin glass models. For future convenience
let us introduce the functions

and

For the S.K. model f (or cp) is a well defined function
in the thermodynamical limit :

But this is also true for a large number of models.
A sufficient condition is that all distinct eigenvalues
J (1 of J have a multiplicity proportional to N and
that the sum E In (1 - J (1 z) be convergent. In

particular, the S.K. model appears as an extremal
case (a = b goes to zero) in a two-parameter family
of models whose J matrices have dimension b-1 N
and alternate finite eigenvalues ± all2 J :

On the contrary, for p finite, f (or cp) tends to zero
for N large. This is the case for the V.H. model :

which also appears as a limiting case (a = 1,
b = 2-1 N goes to infinity) in the above two para-
meters family.

3. Determination of the gap equations.
The free energy F of a spin glass is a non-symmetric
double expectation value Es, over the spins (sum on
the spin configurations) and E4, over the random
coupling constants (quenched average over the disor-
der also denoted by ) :

In the replica method, based on the identity In Z =
lim n-’ (Z" - 1), one introduces n copies a (replicas)
n-0

of the system and calculates :

with the hope that the limit n - 0 can be properly
defined. The replica Hamiltonian HR = Y H (J, sa)

a

being quadratic

and the 4i’s Gaussian, Z n can be obtained by applying
twice the wellknown Gaussian transform :

(In this expression E, denotes an expectation value
with respect to the Gaussian random variable v with
mean zero and variance one.) Introducing n Gaussian
p-vectors v,, one gets successively :

At this stage of the calculation it is important to
note that Z" only depends on the replica variables
and that the vectors va only appear in (17) through
the quantities :

Since the random vectors va and 4i have the same
probability law, the J afJ’s obey the same statistics as

the original coupling constants J (Jii included) and
contain all the information on the disorder. There-
fore it will not be surprising that the characteristic
function 0 already introduced in section 2 emerges
from (17).
The expectation values over S" and va can be

disentangled by constraining N -1 P Jap to equal
Åap ,with the aid of 2-1 n(n + 1) Lagrange multi-
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pliers qap. The average over the spins yields the

generating function of the correlations between repli-
cas :

whereas the average over the random vectors v., as

expected, leads to :

Finally one gets

with

For N large, the integral (21) is calculated by the
steepest descent method. At the saddle point Åap and
qap (a &#x3E; jS) satisfy the gap equations :

In the particular case of Ising spins ((Sa)2 - 1) one
should not introduce the variables Åaa and q.;
however the correct result is still given by (23), its
solution qaa = 1 ensuring that Åaa disappears from
(22).

In order to see how formulae (22) and (23) work,
let us verify that expression (8) effectively corresponds
to the original S.K. model. The function cp(pq) then
reads :

and the first equation (23) yields :

Putting this expression for Åap in (22) one recovers
the familiar expression :

where only the quantities qap appear.
For the S.K. model, Parisi [10] has proposed to

solve the gap equations, in the limit n going to zero,
by an artful parametrization of the matrix 0 (whose
elements are q,,,). Recently the Parisi’s ansatz has

been shown to lead to the exact results for the random

energy model where both variables qap and A«o
appear [8]. It is a noticeable feature of equations (23)
to be also compatible with this ansatz. Indeed, it is
known that the qap given by the second equation (23)
are the elements of a Parisi matrix 0 if the Åap’s are
the elements of a Parisi matrix ; in turn, if Q is
of Parisi’s type, the first equation (23) tells us that
this is also true fbr_A. because the matrix A = pcp’(pa)
is a function of the 0 matrix and the Parisi matrices
form an algebra. This ansatz ensures that the value
of G(A, q) at the saddle point is proportional to n,
which allows us to obtain the free energy per spin
N -1 F through the limit p-1 lim n-1 G.

n-0

4. Comparison of the models.

In order to compare the models with p finite and
those with p infinite, it is useful to have at one’s dis-
posal the expressions of the free energy, of the order
parameters, and of the entropy at zero temperature
for symmetric replicas. (We discuss further the validity
of the replica symmetry in the different cases.) With
this hypothesis, equations (22) and (23) read :

and 
1

The critical temperature PC ’ which corresponds to
the departure of q and A from zero is given by :

Finally, the value of the entropy at zero temperature
is :

When the dimension of J is finite, one might be
tempted to set f = 0 (or T = 0) in the thermodyna-
mical limit. However, one must realize that the
function f is a finite sum of logarithmic functions
which may be singular. Therefore, although f " is

proportional to N -1, a finite value of A, in the low
temperature phase, can be obtained from (28) by
fixing the quantity #(I - q) to a value which cor-
responds to a singularity of f ; this fixed value is

nothing but the inverse critical temperature Pc.
The fact that, in the low temperature phase, #(I - q)

is frozen and f is singular has several consequences.
The freezing of #(I - q) implies that the magnetic
susceptibility remains constant. More important is
the remark that, f and f ’ being less singular than f ",
their singular behaviour is not sufficient to compen-
sate (in contradistinction to f ") the factor N -1 to
which they are proportional. It follows that the
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function f, which carries the information on the
random coupling constants and is responsible for
the existence of a phase transition, does not contri-
bute to the free energy in the thermodynamical limit.
The same remark ensures that the entropy at zero

temperature So given by (30) is zero. It also explains
the validity of the hypothesis of symmetric replicas,
as shown in the appendix.
For the special case of the V.H. model the singu-

larity of f occurs when pJ(1 - q) = 1. Below the
critical temperature J = 1) the actual solution of
(28) is such that

and the free energy reads

(up to terms of order N -1/2) . Equations (31) and (32)
are those obtained in references [4] and [6] for the
special case of Gaussian variables Çip. The constancy
of the magnetic susceptibility in this case has already
been noticed [14].
When the dimension of J is infinite, one expects

the hypothesis of symmetric replicas to be invalid
since, in the « replica philosophy », the breakdown of
this symmetry is considered to be the signature of
true spin glasses. For the S.K. model, de Almeida
and Thouless [15] have shown that the symmetric
solution is indeed unstable. Such an instability is
difficult to prove directly for a general function f
but is strongly suggested by the fact that the entropy
at zero temperature So given by (30) can take an
unphysical negative value. One can show that it is
indeed the case for the two parameter family of
models specified by the expression (9) of fa,b. (For
a = b going to zero one recovers the S.K. value

So = - (2 n) - 1.) The same is true for models whose
J matrix has a dimension proportional to N and
constant (non alternate) eigenvalues J,, = J. There-
fore, the class of models considered in section 2
contains several candidates for the description of
true spin glasses.
The detailed study of the relevance of such models

to account for the experimental results lies beyond
the scope of this paper. Let us simply mention some
of their expected properties. Near the critical tempe-
rature (qap small) the expansion of cp(pq) begins with
a term proportional to Tr (p2 for all these models.
Their critical behaviour is, therefore, similar to that
of the S.K. model. However, the presence of cubic
and quartic terms in this expansion will change the
de Almeida-Thouless line which for the S.K. model

disagrees with the experimental curve [16]. Qualita-
tively one expects that, for models with a singular
function f and an inverse critical temperature j8c
located near a singularity, this line lies below the
S.K. one in the (H - T) plane; the reason is that,
loosely speaking, such models lie between the S.K.

model (fS.K. not singular) and the V.H. model ( f,,,H.
singular with Pc on the singularity) for which there is
no replica symmetry breaking.

5. Interpretation of the order parameters qap and Àap.
For the models with p finite, q and A play different
roles. In the (symmetrical) replica approach q is
determined first, through the singularity of f, and
the ensuing equation for A is the one that would be
obtained by conventional mean field theory. So, A
may appear as the « natural &#x3E;&#x3E; order parameter. (For
example the original V.H. order parameter is (A/2 p2
J 2)1/2), On the contrary, for the S.K. model the

parameters qap and Àap are physically equivalent
since they are proportional. Let us now look at the
general case.
At a formal level, one is struck by the symmetrical

role played by the functions T(pq) (formulae (7) and
(20)) and g(A) (formula (19)) in the expression of the
free energy and by the duality relation between the
parameters qap and A«o. As a function of the q’s,
T contains all the information on the randomness
of the coupling constants while, as a function of the
A’s, g contains all the information on the statistics
of the spins. The gap equations (23) couple the q’s
and the A’s ; they show that qap is the mean value of
S" S-’ with respect to the Boltzmann factor

exp and that p-1 A«o is the mean

value of N -1 J ap with respect to the Boltzmann

factor exp This duality also appears

in the exprlssion £ Àp qap of the internal energy.
«ag

At the level of the replica Hamiltonian HR, one
can interprete qap and Àap in terms of quenched ther-
modynamical averages. The interpretation of qap is
well known : by adding to HR the quantity
N -1 Y L St Sf one easily verifies that qap describes

i

the correlation between replicas :

One can obtain the equivalent expression for Àap by
adding to HR the quantity X (u) = N -1 L St(i’ JJua)

t0t

which depends on arbitrary vectors Ua. It is clear
from formula (15) that, for the calculation of Z"(u), vap
must now be replaced by v’,u a = Vap + (N J p)lf2 u«u
in the expression (20) of 0(#q). The measure on the
V, ,%/I being of the form
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l/J(pq) can be rewritten as an expectation value on centred Gaussian vectors (which we again note va) :

Applying the differential operator E lu«p ðupp to the
11

above expression (34) and to Zn(u) and setting u = 0
one gets :

I I

For the models with p finite the vector W =

N -1 L Si(J4i) is self-averaging and is the natural
i

order parameter; A is simply the norm of this vector
and the fact that only the norm of W appears in the
gap equation is due to the Gaussian character of the
4i’s. For the S.K. model one remarks that the quenched
average factorizes since, according to formula (25) :

In the limit n - 0, qap and Àap become functions q(x) and A(x) on the interval [0, 1]. In the same way as
for the S.K. model, and under the same assumptions (clustering property of the pure states), the derivative dx/dq
can be identified with the probability distribution P(q) = Pj(q) of the overlaps q between the-pure equilibrium
states of the system. We do not know whether the function A(x) has a similar interpretation, for instance in
terms of the mean probability distribution of the scalar products W,,,.W, of the vectors Wa associated with
pure states a.

Appendix.
Let us show that the replica symmetry breaking scheme of Parisi applied to models with p finite leads to the
symmetrical solution. Due to the hierarchical structure of this scheme it is sufficient to establish this result
for the first step (one breaking); at this stage, with conventional notations, expression (22) reads :

Its extremalization with respect to qo and ql 1 yields :

Setting apart the possibilities m = 0 and m = 1 which correspond to the symmetrical situation as a direct
inspection of (A. 1) shows, it is clear from (A. 2, 3) that the A’s can remain finite in the thermodynamical limit
only if f " is singular. However since f " is more singular than f’, the leading contribution in (A. 3) comes from
f " and one gets the symmetrical solution A, = Ao in the limit N going to infinity.
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