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Résumé. 2014 On montre que les ondulations thermiques des couches fluides, dont la résistance dépend de la rigidité
de la couche, réduisent la rigidité effective. Cette diminution est calculée dans une approximation du premier
ordre pour de faibles ondulations. Les modes d’ondulation sont définis comme des ondes de directeur de telle
sorte que les courbures satisfassent le principe de superposition.
Abstract. 2014 Thermal undulations of fluid layers, whose strength depends on layer rigidity, are shown to reduce
the effective rigidity. The decrease is calculated in a first-order approximation for weak rippling. The undulation
modes are defined as director waves so that the curvatures satisfy the superposition principle.
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1. Introduction.

Curvature elasticity is a useful concept to understand
some of the properties of fluid layers. It permits the
theoretical treatment of vesicle shapes [1], in particular
the analysis of bserved contours [2]. It also provides
criteria for the stability of the various structures form-
ed by fluid bilayers and monolayers [3]. A striking

. property of such layers is their tendency to perform
-pronounced out-of-plane fluctuations. The strength
of these thermal undulations or ripples is mostly
controlled by curvature elasticity and lateral ten-

sion [4-8]. The shape fluctuations of giant vesicles.
which may be regarded as long-wavelength undula-
tions, are visible in optical microscopy. The thermal
undulations have been shown, at first theoretically [9-
11 ], to induce a repulsive steric interaction or, to use
another name, undulation forces between fluid bi-

layers. A review of curvature elasticity and out-of-
plane fluctuations of fluid membranes has been
written by Petrov and Bivas [12].
The bending rigidity K, which is one of the elastic

moduli of fluid membranes, was measured for egg
lecithin [13-15] and three synthetic lecithins’ [16] by
means of vesicular shape fluctuations. The rigidities
(K ;-- 2 x 10-12 erg) seem just small enough to let
steric repulsion overcome van der Waals attraction.
The close competition between the two interactions
may explain a number of otherwise contradictory
findings : Lecithin in plenty of water forms giant

vesicles which do not stick to each other [13, 17, 18].
Similarly, well-ordered egg-lecithin multilayer systems
take up water without limit [19]. On the other hand,
disordered lecithin-water dispersions display a so-

called equilibrium spacing of the membranes [20, 21 ].
Unilamellar lecithin vesicles do cohere if one [8] or
both [18] of the membranes are slightly stretched or if
they form very thin tubes, which first adhere to a glass
slide [22]. We may infer that cohesion is absent when
the undulations are fully developed, but is easily
turned on by any factor limiting their amplitude, such
as lateral tension or finite size.

The notion of curvature elasticity has also been
applied to the surfactant layer forming the oil/water
interface in microemulsions [23-28]. Bicontinuous

systems with a critical point of phase separation are
of special interest because of their relationship to the
Ising model of ferromagnetism. In a pioneering paper,
de Gennes and Taupin [23] predicted the very low
rigidity which the surfactant layer must have to pro-
duce a bicontinuous microemulsion. For this purpose
they calculated a persistence length of layer orienta-
tion, identifying it with the typical droplet size of
100 A in such systems.

In the following we wish to show that thermal
undulations are not only controlled by layer rigidity,
but reduce it for long-wavelength ripples. The effective
rigidity as well as the effective spontaneous curvature
are calculated for a square piece of layer. The correc-
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tions of the local (or bare) values are considered only
in the lowest possible order. Their validity is, therefore,
limited to the weakly rippled membrane. After the
presentation of some basic formulae (Sect 2) and
the calculation of the effective quantities (Sect. 3),
we will briefly discuss some possible applications of
the results (Sect. 4).

2. Basic formulae.

The bending elastic energy per unit area of fluid

bilayer or monolayer may be written as [29]

Here Cl’ c2 are the principal curvatures and c.0 is the
spontaneous curvature. Ko and x are curvature-elastic
moduli; the first one is also called rigidity. The sub-
script zero indicates the local (or bare) values which
would hold in the absence of undulations. The Gaus-
sian curvature c ’c2 does not affect undulations as its

integral is known to depend only on the genus of the
(closed) surface. Accordingly, it will be ignored in the
present context Equation (1) is complete up to qua-
dratic terms in the curvatures.
The undeformed flat layer is thought to coincide

with the xy plane. Ripples may then be described by
the displacement u(x, y) parallel to the z axis. Alterna-
tively, one may use the director n(x, y), i.e. the layer

normal, which apart from I n I = 1 must satisfy the
surface condition

Director and displacement fields are related by

We demand nz &#x3E; 0 to ensure that u(x, y) and n(x, y)
are unique functions.

In a local coordinate system ç, ’1, (, also Cartesian,
with the C axis parallel to n and arbitrary orientation
of the il cross one has

where n,,, = ðn,/ð(, etc. Supposing for a moment the
director field n(x, y) to fill all space defines in addition
n", which, of course, vanishes because of I n I = 1.
This permits the invariant representation

div n being in principle the three-dimensional diver-
gence. Since n_,,,. = 0 the equation reduces to

Note that the curvature of a sine wave is positive in our
notation. Insertion of (3) yields

The relationship between the true area of a piece of
layer and its projection on the xy base may be express-
ed by

We will in general assume a square base and periodic
boundary conditions. Undulation modes of amplitude
uq are commonly defined by the Fourier expansion

with M = M* The positions r = (x, y) and the wave
vectors q refer to the base. The use of displacement
modes implies, because of (7), that the curvatures
which determine the elastic energies do not strictly
obey the superposition principle. We will therefore
employ the displacement only where this undesirable
property has no consequences.

A representation of the undulation modes in terms
of the director avoids the defect. Its Fourier expansion
is

with n-q = n:. We are primarily interested in the
longitudinal components of the mode amplitudes nq

At least for small I we can freely choose

The transverse components are then fixed. To eva-
luate them we use
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and, upon eliminating nz by means of I n I = 1, write
the surface condition (2) in the form

By definition I obeys (curl 1)z = 0. However, the two
other components of the curl do not generally vanish.
To maintain the surface condition we adopt (curl n)z
as given by the r.h.s. of (14) which is of the order of
(n2 + n2y) x (nx,x + ny,y). Incorporating the compo-
nents of the resulting vortex field into the r.h.s. will
cause new violations of (2) which are equally corrected
The infinite series of corrections making n curl n
zero for a fixed set of k should converge rapidly,
provided

This is the limit of the weakly rippled membrane
which shall be studied here. As the ratio of curl n to
div n is of the order of n2+ n2 we will disregard curl n
and the corrections required by the surface condition.
The total elastic energy of a rippled layer is

where, according to (10),

The two equations are exact. Only the longitudinal
component of nq enters the sum of curvatures div n.
The fact that we are dealing with a surface is taken
account of by nz alone.

3. Effective quantities.

The effective rigidity is calculated for vanishing spon-
taneous curvature. From now on, the ripples are

thought to be thermal undulations. We take the statis-
tical averages over the base separately, writing for the
elastic (or internal) energy

The separation is valid in the limit of weak rippling
where the correlation of mode amplitudes is negligible,
provided the contribution of each single mode to
 (nfl + ny) &#x3E; is insignificant. We have

because of (8) and

because of (17). In the last equation we have dropped
the distinction between nq and its longitudinal com-
ponent, exploiting that the transverse part is negli-
gible. For the weakly rippled membrane we may also
write

Inserting (20) and (21) into (18) yields

Although not correlated, the modes are coupled in this
formula by the factor in parentheses.
We briefly recall some earlier calculations in which

coupling was ignored, i.e. the factor was unity. The
equipartition theorem gives the mean-square ampli-
tudes

where k is Boltzmann’s constant and T temperature.
If the sum over the modes is replaced by an integral,

between lower and upper cutoff wave numbers, one
obtains with (19) and (21 )

The well-known formula describes a first effect of
undulations in the limit of the weakly rippled mem-
brane.

Let us now take coupling into account. The natural
way of writing the equipartition theorem is then

Only this form satisfies  nq 12 &#x3E; ’" 1 /q2 which may be
expected to hold at least for long-wavelength modes
(q near qmin). The validity is confirmed by examining
the free energy of the undulating layer. We start by
introducing the renormalized mode amplitude

It describes a particular long-wavelength mode if all
other undulations are smeared out. The interpretation
is more difficult for short-wavelength modes (q near
qm.). However, inspection shows that in both cases
- iq tlq 2represents the z component of the mate-
rial displacement amplitude in the limit of the weakly
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rippled layer. Accordingly, the total entropy of the
modes is

apart from additive constants. Upon inserting (27)
into (28), one obtains (26) from the set of equilibrium
conditions OFIO  I nq 12 &#x3E; = 0 for the free energy
F = U - TS. (The whole set is needed because of the
coupling term.)
The concept of an effective rigidity makes sense

only for the long-wavelength modes with q near qmin ’
In other words, the effective rigidity felt by a given
mode is reduced only by the undulations of shorter
wavelength. The effective rigidity is the curvature-
elastic modulus acting on the renormalized deforma-
tion tq. To find it we rewrite the equipartition theo-
rem (26). Substituting four ( I nq 12 &#x3E;on the left-hand
side by means of (27) leads to

Comparison with (23) gives the effective rigidity

In analogy to the derivation of (25) the result can be
cast into the form

It is interesting to note that the decrement of x is

independent of K0.
For calculating the effective spontaneous curvature

of a rippled membrane it is advantageous to give up
the notion of a flat base. We adopt a cylindrical cur-
vature with radius R of a suitably chosen midplane of
the rippled layer. For R - oo the undulations should
be like those of the flat base, apart from minor modifi-
cations. The base curvature is taken along the x direc-
tion and xyz are kept as local or cylindrical coordi-
nates. If, e.g., the function u(r) is thought to be unchang-
ed in the new coordinates, the functions n(r) and div x
n(r) must be slightly different. The relationships.

are readily seen to hold in the new coordinates. Toge-
ther they lead to

The central term in the brackets of (34) does not
contribute as the average of nx,x + ny,y over Abase
must vanish again if the undulations on the bent base
obey periodic boundary conditions in the cylindrical
coordinates. The last term in the brackets may be
replaced, to a first approximation, with - (u/R) x
02U/ay2 and transformed by partial integration,

The second integral is exchanged for the symmetric
expression

where it is safe, for R -&#x3E; oo, to employ the average of
the flat base.
As a consequence, equation (34) takes the form

The effective spontaneous curvature c. may be defined
by the equation

Inserting (37) and using (21), one obtains

Recalling (30) and (31), one arrives at

Clearly, there are two equal contributions to the
relative increment of Cg, one originating from K/Ko
and the other from the sum in (37).

4. Discussion

Two special cases of an undulation superimposed on a
uniform bend can be studied rigorously and in detail.
The wave vector of a single sinusoidal ripple is parallel
to the bend in one case and perpendicular to it in the
other. In the first example the bend is taken to be
uniform on the rippled layer, not with respect to a
curved base. Checking the two cases (in straight-
forward but cumbersome calculations), we found
parallel and perpendicular ripples to have, in first

order, the same effect on the rigidity K. However, the
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perpendicular ripple alone is responsible for the second
increment of the spontaneous curvature c., mentioned
below equation (40). If the model is generalized (at the
expense of rigor) by permitting all wave vectors and
taking c. to be the average over the two « principal »
directions, one obtains the formulae for K and c. which
were derived above.
We emphasize again that displacement modes uq are

ill suited to calculate the effective rigidity. The asso-
ciated curvatures (c, + C2), i.e. the elastic strains, are
not additive in such a representation. There are similar
problems with director modes on a bent base if (10)
is used with local coordinates. Whenever the super-
position principle for the curvatures was violated the
calculations showed that the modes including a

uniform curvature « feel » on each other, thus simulat-
ing an additional coupling which should not be there.
(It would increase xo - x by a numerical factor.)
The cutoff wave numbers qmax and qm;n remain to be

specified. The former is defined by a molecular cross
section Ao,

The latter may be determined by the size of the square
piece of layer,

Lateral tension or steric hindrance of undulations

provide lower cutoffs for infinite layers as well. These
external factors were omitted in the present treatment.

It does not matter whether Abase or Areal is kept
constant in the above calculations which are exact

only for small relative corrections. There is a slight
variation of the number of molecules and, thus, modes
if Abuse is fixed. The situation is reversed in the other
case. Higher-order terms of the relative corrections
of area, rigidity, and spontaneous curvature as func-
tions Of K0, qmin, and qmax seem very difficult to obtain.
In addition, a theory considering undulations only
may be too simple at very small rigidities, as is discuss-
ed below.
The effective rigidity is of particular interest if it

differs markedly from the local one. Let us ask for the
base area Abase at which K reaches zero. This limit may
be expected to characterize, if only approximately,
the transition of a layer (or layers) to a microemul-
sion in suitable systems. From equation (31) one
obtains

The equation suggests that the typical microemulsion
droplet size of 100 A (A ma,, - 104 A2, A0 25 A2)
requires the local rigidity to be less than kT = 4 x
1 O-14 erg. Equation (43) differs only by a factor in the
exponent (8 n instead of 4 n) from the corresponding
relationship of de Gennes and Taupin [23], if A:::

is equated with the square of their persistence length
of membrane orientation. The good agreement of the
two formulae may surprise as the persistence length
was calculated with constant rigidity.
However, all models confined to an undulating layer
must fail near the microemulsion limit for several
reasons. A very flexible interface will tend to break up,
forming coated droplets of each phase in the other.
Also, the layer should become multiply self-connected,
thus changing its topology. An intact layer would be
hindered in its undulations by self-collisions. Generally
speaking, there is a vast gap between the single
undulating monolayer and the bicontinuous micro-
emulsion which remains to be filled
The concept of an effective rigidity may also be

convenient in studies of vesicles and multilayer sys-
tems. There are probably many fluid bilayers with a
rigidity smaller than that of lecithin. If stable enough
vesicles are formed, their shape fluctuations could be
governed by a size dependent effective rigidity. In
multilayer systems, where either bilayers alternate
with water or monolayers with oil and water, the layer
undulations are hindered by the steric interaction of
the layers. The lower cutoff is not abrupt, but the equi-
valent of qm;n decreases with increasing spacing of the
layers [9-11]. The effective rigidity controlling the
undulation forces between layers should diminish
correspondingly. The result would be an enhancement
of the undulation forces at large layer spacings.

Conclusion.

The present calculations show that the thermal undu-
lations of fluid layers affect not only the real area as
compared to that of a flat base, but also the rigidity
and spontaneous curvature. The relative changes
(Areal - A base)/Abase. (K - k0)/x0 arid (cs - Csp)/Cs0
are all proportional to (kT/4 nKO) In (qmax/qmin). The
theory is a first approximation and valid only if this
function, and in particular kT/4 nKo, is much smaller
than unity. The logarithmic dependence of physical
quantities on upper and lower cutoff wave numbers or,
instead, on size is frequent in the statistical mechanics
of two-dimensional systems. A special feature of

planar fluid layers is their freedom to escape into the
third dimension, e.g. by thermal undulations. It is this
escape that underlies all three effects.

In our theory the undulation modes are coupled
to each other by the tilt or gradient of the layer which
they produce, as is shown most clearly by equa-
tion (22). The tilt associated with long-wavelength
modes does, of course, not change the physics of short-
wavelength ripples, but their description. For instance,
their angular amplitudes become smaller and their
wavevectors larger when referring to the base. The
tilt due to short-wavelength ripples was shown to
lower the effective rigidity of the layer for long-wave-
length undulations. The interpretation of coupling
thus depends on whether the ratio of the wave numbers
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is larger or smaller than unity. The situation appears the region of ambiguity does not matter in a broad
ambiguous if the two wave numbers are similar, but enough spectrum.

Note added in proof. In a letter published in the meantime, L. Peliti and
The entropy seems most appropriately defined in terms S. Leibler (Phys. Rev. Lett. 54 (1985) 1960) found Ko - K

of strain ( = curvature) amplitudes. Accordingly, one may to be three times larger than our value, referring to a power-
write the equipartition theorem in the form ful renormalization method On the basis of correspondence
Ko q2  Inq 12 &#x3E; Areal = kT, thus avoiding the delicate use with L. Peliti, who kindly sent a reprint, we suspect that they
of displacements. Insertion of (19) leads to (26). dealt with Uq modes indiscriminately.
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