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Résumé. 2014 Certains appareils acoustiques utilisent des cavités remplies de gaz, dont les dimensions sont du même
ordre de grandeur que la longueur d’onde et dont les parois sont parfaitement rigides. La connaissance de la
réponse acoustique de telles cavités, excitées par des sources mécaniques ou thermiques, nécessite de tenir compte
des phénomènes d’amortissement qui, en l’occurrence, sont essentiellement dus aux effets d’absorption visqueux et
thermiques dans les couches limites, effets décrits par une impédance acoustique apparente finie dépendant des
modes. Dans ce travail, le champ sonore est étudié pour un espace clos parallélépipédique excité par une source
ponctuelle, dans le cadre d’une théorie modale. Le facteur de qualité est calculé et ses propriétés sont discutées et
comparées aux résultats expérimentaux. L’accord est convenable.

Abstract. 2014 Some acoustic devices make use of closed cavities, filled with gas, the dimensions of which are of the
same order of magnitude as the acoustic wavelength and the walls of which are perfectly rigid. To know the acoustic
response of such small cavities, driven by a mechanical or a thermodynamical source, one needs to take into account
the damping processes. In this case they are essentially due to viscous and thermal effects in the boundary layers
and are described as a finite apparent acoustic impedance depending on the modes. In this paper, the sound field is
determined in a « rectangular » enclosure excited by a point source and is described by a modal theory. The Q-
factor is calculated and its properties are discussed and compared with experimental results. The agreement is
quite good.
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Introduction.

In the past, a few works have been devoted to the
problem of determining the boundary layer attenua-
tion of acoustic modes in tubes with rigid walls by
using the conservation of energy law (see for exam-
ple [1]) or, more recently, by solving the boundary
problem for the first lower modes [2] ; at the same time,
the determination of the field distribution inside

cavities, filled with gas, assuming classical Neumann
or mixed boundary conditions, has received conside-
rable attention (see for example [3]). But some acoustic
devices make use of small cavities, driven by a mecha-
nical or a thermodynamical source, the dimensions of
which are of the same order of magnitude as the
acoustic wavelength and the walls of which are

assumed to be perfectly rigid. So, to know the acoustic
response of such cavities, one needs to take into
account the boundary layer attenuation which may
depend on the field distribution over the wall surfaces
according to the mode. Here, the sound field is deter-
mined in a three dimensional rectangular enclosure

excited by a point source (a loudspeaker coupled to
the cavity through a thin hole), and the viscous and
thermal effects in the boundary layers are adequately
modelled by a finite apparent acoustic impedance
depending on the incidence angle of the wave on the
wall. The solution appears as a sum of modal terms.
The Q-factor is calculated and its properties are
discussed (its values are much higher than those
which usually occur in acoustic tubes for example).
The beginning of the paper is concerned with the

analysis of the stationary acoustic motion in terms of
normal modes of the cavity, assuming a very small
damping. The quality factor Q is expanded in a series
of these normal modes, and the amplitude of each
resonance, in response to a periodic driving source,
is given as a function depending on Q. Then, we still
consider cavities with rigid walls, but the damping
of modes is specifically due to the viscosity and the
thermal conductivity in the boundary layers. The
viscothermal quality factor corresponding to each
mode is expressed as a function of several parameters
of the system : the serial numbers of the modes, the
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dimensions of the cavity, the static pressure and the
absolute temperature in the cavity, the coefficient

y = CPIC,, the thermal conductivity coefficient, the
viscosity coefficient and the molecular mass of the
gas. For axial modes, the theoretical and the experi-
mental results are compared.

1. Normal modes in cavities with small damping.

The cavities considered here are rectangular paralle-
lepipeds and they are of the same order of size as
the wavelength, so the modal analysis turns out to
be the most fruitful. The walls are assumed locally
reacting; we assign a specific acoustic admittance
for each frequency of the sound and possibly for each
mode (in the cases where the admittance depends on
the angle of incidence). The admittance is assumed
very small and constant over each wall, consistent
with many real situations. In order to make the equa-
tions simpler, without restricting the generality of the
study, each of the three pairs of walls is assumed to
have the same admittance. Let t/Jnt(Xl) t/Jn2(x2) t/Jn3(x3)
be the eigenfunctions, corresponding to the eigenvalues
kntn2n3. They satisfy the homogeneous problem :

where
k = colc is the wavenumber (co is the angular fre-

quency of the sound)
8j = pclzj the specific acoustic admittance of the two

walls xj = 0 and xj = Ij (p is the mass density
of the gas and c the speed of sound)

an is the normal derivative pointing out of the cavity.
Let us notice that this problem is slightly different

from a self-adjoint problem in which the 8j are equal
to zero. Nevertheless it can be solved approximately
because here the ej are assumed to be very small.
Especially, the eigenfunctions and the eigenvalues
of the two problems are close.
The well-known approximate solution can be

written as follows (see for example [3]) :

The effects of the wall admittances si are to make
the resonant frequencies (the real part of k2ni) slightly
different from those corresponding to Neumann

boundary conditions, and to introduce the wall losses
(the imaginary part of k2nj). Note that the orthogonality
property of the eigenfunctions can be used as a first-
order approximation (see for example [4], p. 475).
Throughout the paper, equation (5) is written :

2. The quality factor of the cavities.

If w is the angular frequency of excitation, Q is defined
as w times the ratio of the time average stored energy
to the time average of energy dissipated per time unit :

From this definition it is a simple matter to link
the Q-factor to the decay constant of the damped
oscillations. If the sound is shut off suddenly at

t = 0 for instance, the stored energy drops off conti-
nuously in such a way that its rate of change is equal
to the power absorbed by the walls ( P &#x3E; =
- d ( E &#x3E;/dt. The solution of this equation can be
written ( E &#x3E; =  E &#x3E;0 exp( - wt/Q) or, for the acous-
tic pressure, p = po exp(- cvti2 Q). This result shows
that the time T for the amplitude to drop to l/e of its
original value can be used as a measure of Q :

For each mode (nl n2 n3), a relationship between
the Q-factor Qn1n2n3 and the properties of the sta-
tionary field inside a cavity is derived by substituting
in equation (8) the expression for the total outflow
of energy per second through the six surfaces Sj
of the walls

where Pnln2n3 is the acoustic pressure corresponding
to the mode (n, n2 n3), and the expression of the
time average of the total stored energy. in the whole
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volume V of the cavity

where vnln2n3 is the acoustic particle velocity obtained
from the Euler equation. After some algebraic jug-
gling, this substitution and the use of equations (2)
to (5) give, to the second order in B j :

where we assumed that k - knlnZn3 which is the reso-
nant frequency of the mode (nl n2 n3).

Inserting this expression in the equation (6), we
obtain :

3. Standing waves and forced motion.

The amplitude of the resonances inside a cavity
can be determined in terms of the Q-factor Qnln2n3. In
order to carry out this analysis, we study the behaviour
of a steady-state situation representing the spatial dis-
tribution of the radiation from a point source of angu-
lar frequency co at a point ro inside the cavity or on
its walls. A common procedure for solving this pro-
blem is the classical method of eigenfunction expan-
sion. The velocity potential at a point r produced by
a point source of unit strength is the Green function
(see [3] for example) :

Substituting the expression (11) for the eigenvalues
knln2n3, this equation yields :

In this paper, we discuss the response of small

cavities, where the resonance peaks are separated
from each other. The field has a resonance when-
ever the wavenumber k is equal to the real part
k21n2n3 of one of the eigenvalues. At a resonance
(k02 "" - k2 = 0) the corresponding standing-wave
t/Jnln2n3 predominates, having an amplitude propor-
tional to Qn,n,n,llko’ . The ratio of the amplitude of
the resonant mode to another mode (labelled ni n2 n’)
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is given by the following approximate expression :

This result shows that the modes whose eigenvalues
do not correspond to the frequency of the source are
roughly Qnln2n3 times lower in amplitude than the
resonant mode (nl n2 n3) ; assuming a very small

damping, the value of Qnln2n3 is much greater than
one, and the only term we need to consider in the
series (12) is the one corresponding to the triplet
ni n2 n3l neglecting all others (except on the nodal
surfaces). Consequently, another well known method
(besides the one discussed earlier in this paper) allows
us to measure the Q-factor at a resonance. The Q-
factor is equal to the ratio of the resonance frequency
to the difference between the two driving frequencies
for which the square of the amplitude is half that at
the maximum (at the resonance frequency). It is a

simple matter to show from equation (13) that :

4. Viscous and thermal damping in rigid cavities : the
basic equations.

For cavities, whose walls are considered as perfectly
rigid, a finite Q-factor cannot be explained from the
ideal fluid-dynamic equations. The processes we
have to take into account involve viscosity, thermal
conductivity and possibly relaxation. Only the contri-
butions to the Q-factor from losses due to viscosity
and heat conduction at the cavity walls are considered
here, because the dissipation of acoustic energy
outside the boundary layers is usually negligible.
Nevertheless, for quite large cavities, the damping
effect inside the medium due to relaxation effects
must be taken into account in the theoretical studies [5].
In this case, we only have to modify the expression
of the specific-heat ratio (y) in the results given
below [4].
The variables describing the dynamical and ther-

modynamical state of the fluid are the acoustic pres-
sure (p), the particle velocity (v), the fluctuating part
of the density (p’), the entropy variation (s) and the
temperature variation (T). The parameters which

specify the properties and the nature of the fluid are
the ambiant values of the pressure (P), of the tempe-
rature (T) and of the density (p), and the viscosity
(,u), the bulk viscosity (?I), the coefficient of thermal
conductivity (A), the specific heat coefficients at

constant pressure and constant volume (Cp, CJ, the
specific heat ratio (y = CPIC,), the increase in pres-
sure per unit increase in temperature at constant

density (fl), the fractional decrease in volume per unit
increase in pressure at constant temperature (xT).
A complete set of linear equations governing small

amplitude disturbances includes the Stokes-Navier
70
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equations, the conservation of mass equation, the

Fourier equation (heat conduction), and the equations
showing that the entropy variations and the acoustic
part of the density can be expressed as total differen-
tials (regarded as functions of the two independent
variables p and T). Thus, assuming that the acoustic
power is radiated by a point source set on a wall, we
insert its effects in the boundary layer conditions,
and write the equations as follows [3] :

Any disturbances governed by this system of linear
equations can be considered as a superposition of
acoustic, vorticity and entropy modes. The corres-
ponding acoustic pressure p, rotational velocity v,
(due to viscosity effects) and entropic temperature The
(due to heat conduction effects) satisfy respectively
the « wave » equations :

where the characteristic lengths 1,, lv’ and lh are defined
as follows (c is the velocity of sound) :

The complex wave numbers

obtained from the two last equations (17) for a simple
harmonic motion with an angular frequency cv, show
that the diffusion velocities, given by the real part of
the wave numbers, are dispersive and much lower than
the velocity of sound, and that the diffusion damping
coefficients, given by the opposite of the imaginary
part of the wave numbers are also dispersive but
much stronger than the acoustic damping. This sug-
gests that the vorticity mode and the entropy mode
fields created at the boundaries (see next section)
die out rapidly with increasing distance from the
boundaries. On the other hand, it is well known

[3, 4, 6] that the greatest part of the power loss through
viscosity and thermal conductivity occurs within the
boundary layers, and since these layers are very thin,
we can consider the acoustic behaviour of the medium

everywhere outside the boundary layers as being

adequately described as a propagational mode, and,
consequently, the factor c-l[lv + (y - 1) lh] AO, in
the first equation (17) can be cancelled. In other

words, outside the boundary layers, the behaviour
of the acoustic mode is the same as in a perfect gas.

5. The boundary conditions at a rigid wall,.

The variables of the problem for each mode mentioned
in the previous section may be written in the following
form (we set the subscripts a, v and h for the acoustic,
vorticity and entropy modes respectively) :

With the requirements that the thermal conductivity
of the boundary material is much greater than that
of the medium, and that the boundaries are perfectly
rigid, we can expect the temperature fluctuation and
the particle velocity v to be nearly equal to zero on
the walls. Therefore, the acoustic particle velocity
and the acoustical temperature are not equal to

zero at the boundaries :

This result suggests that one can define a finite
apparent acoustic impedance of a rigid wall when
viscous and thermal effects are taken into account [6].
The properties of plane-wave reflexion on a plane
surface with an angle of incidence 0, assuming the
prescriptions described just above, are given by the
following expression for the ratio of the normal

component val. pointing outside the cavity of the
acoustic particle velocity to the acoustic pressure p
at the boundary :

where sh is the « apparent » specific admittance

This result shows the effect of the thermal and
shear modes on the boundary conditions for the
propagational mode. The viscous part of the apparent
specific admittance depends on the angle of incidence
because the viscous effects depend on the tangential
motion only. Consequently, we have to assign specific
acoustic admittances for each mode in a cavity,
whereas a usual admittance of the boundary is a

property of the wall material which fixes the local
acoustic field.
Note that the real and the imaginary parts of Bvh

are equal.
For air at atmospheric pressure and room tempe-

rature, we have 1§ = 4.5 x 10-8 m and lh  6.1 x
10-8 m which means that at a frequency of about
4 300 Hz (corresponding to the experimental study
that we carried out) we obtain (for 0 = n/2) :
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6. The viscothermal quality factor of cavities with

perfectly rigid walls.

Insofar as the boundary conditions and the wave
propagation can be adequately approximated by the

previous considerations, the quality factor is derived
from substituting expression (23) in equation (10). This
substitution combined with the expression for the
incidence angle for the mode (ni n2 n3) on the wall
(Sj)

with (i, j, k) circular permutation (1, 2, 3) leads to

In the special case of an axial mode (0, 0, n), which can be monitored properly, taking into account that
k =, nir/13, we accordingly obtain

For air at atmospheric pressure and room temperature, in a cavity having dimensions 2.7 x 3 x 4 cm, one
has :

Making use of the Prandtl number Pr = ,uCp/À.M, which is nearly equal to 4 y/(9 y - 5) (see [7] for exam-
ple), and assuming the well-known properties of perfect gases,

the expression (25) yields :

The quality factor corresponding to an axial mode
(00n) is expressed as a function of several parameters
of the system : the serial numbers of the modes n, the
dimensions of the cavity lJ, the static pressure P and the
absolute temperature T in the cavity, the thermal
conductivity coeiticient A, the coefficient y (on which
P, depends) and the molecular mass M of the gas. The
next section is devoted to the study of the influence of
each parameter.

7. Experimental results versus theoretical predictions.

Some experiments were carried out with a cavity
having dimensions 1, = 2.7 cm, 12 = 3.0 cm and
13 = 4.0 cm, with a length tolerance approximately
equal to 0.01 cm. The thickness of the walls was equal
to 1 cm. A piezoelectric loudspeaker and two electret
microphone cartridges were coupled to the cavity
through very thin holes (the diameter of the holes

was equal to 1 mm). The acoustic source was set at the
centre of the wall z = 0 in order to excite only an
axial mode (0, 0, n) in the oz direction (Fig. 1). A
microphone was set at the centre of the opposite wall

Fig. l. - The cavity.
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z = /3; it supplied the signal to be analysed. The other
microphone was set in the middle of the wall y = 0
or y = 12 to make sure that the only mode generated
was the one of interest
Two classical methods were used to measure the

Q-factor, one making use of equation (9) which con-
nects Q with the characteristic decay time T, and the
other one making use of equation (15) where Q is
equal to the resonance frequency divided by band-
width between half power points. Experimentally,
these two methods give nearly the same results, but
these were always lower than the theoretical predic-
tions ; the magnitude of the discrepancies is typically of
the order of twenty per cent. (These discrepancies can
be explained basically by the presence of the holes in
the walls of the cavity.) For example, with the cavity
afore-mentioned, filled up with air at atmospheric
pressure and room temperature, one has :

where QOOI)th and Qool),,. are respectively the theore-
tical and experimental results for the mode (001)
(nearly 4 300 Hz).
Now, let us compare the measured Q-factor with

the results predicted by equation (27); the effects of
each parameter on the behaviour of Q are successively
studied

7.1 NORMAL MODE (00n). - From the equation (28)
we deduce directly 6ooJ6oon =.JWïjn.
The ratio was evaluated for the three values of the

frequency, corresponding to the modes (001), (002) and
(003) : the results are given in table I.

Table I. - Ratio of quality factors for several modes.

The theoretical (straightline) and experimental
(points) results are shown in figure 2.

7.2 DIMENSIONS OF THE CAVITY. - We observe that
formula (27) is a rather complicated function of the
dimensions of the cavity. However, if h, 12 and 13 are
nearly equal, Q is roughly proportional to the square
root of the length of the edges. We have evaluated the
ratio of Qool for a cavity which dimensions are

10 x 10 x 12 (cm) to Qool for the cavity aforemen-
tioned ; the theoretical and experimental results are
respectively 2.10 and 2.03.

7.3 TEMPERATURE AND STATIC PRESSURE. - The

quality factor is inversely proportional to the fourth
root of the absolute temperature. Its influence is

Fig. 2. - The quality factor versus the frequency of the first
three modes. Theoretical predictions : straight line. Experi-
mental results : points.

rather weak, even if the effect of temperature is taken
into account in determining the thermal conductivity.
Therefore, an extensive experimental study of this
effect is not given here.
On the other hand, the quality factor is proportional

to the square root of the static pressure P. The cavity
was set in an airtight cell. The curves of the quality
factor as a function of the square root of the static

pressure are shown in figure 3. Measurements were

Fig. 3. - Q-factor versus the square root of the static pressure
(millibars). Theoretical predictions : dotted line. Experi-
mental results : points (on a straight line).
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performed from 200 to 1 000 mb (the atmospheric
pressure PO). The discrepancy vanishes as the pressure
decreases and the experimental points are on a straight
line as predicted by the theory.

7.4 PARAMETERS OF THE GAS. - The effect of the gas
inside the cavity depends on three parameters : the heat
ratio y, the coefficient of thermal conductivity A and
the molar mass M. The Q-factor is mainly proportional
to [(y - 1) A_ / M ] -112 Experiments were carried out
with the small cavity set in the airtight cell at atmosphe-
ric pressure and room temperature, for the mode

(0, 0, 1), with two gases :

Freon (CF2CI2) :

The results are given in table II :

Table II. - The quality factor for two different gases
(mode 001).

One may note marked discrepancies between
theoretical and experimental results. The reason why
the experimental value of Q is somewhat lower than
the theoretical value for freon is probably because the
values of the parameters y and A are not very reliable,
especially at atmospheric pressure which is not so far
from the liquefaction pressure of this gas (5 atm). At
the same time, the effect of parasitic losses becomes
increasingly more important as the Q-factor increases.
For the other cavity (10 x 10 x 12 cml), with

freon at a pressure of one atmosphere, for the mode
(001) (630 Hz), the measured magnitude of the Q-factor
reaches a quite high value : it is equal to 750.

7.5 CONCLUDING REMARKS. - Although the agree-
ment does not always appear to be perfect, essentially
because the experimental results suffer from the effects
of parasitic losses, the theory, however, seems accurate,
especially in predictives the effect of different kinds of
parameters on the variation of the quality factor.

In a subsequent paper, some results will be presented
about a rate gyro based on the acoustic response of a
small cavity, which makes use of the results given here.

Acknowledgments.

This work was supported by the « Ministere de l’In-
dustrie et de la Recherche » (Contract 83 T 0426).
A U.S. Patent was taken out by the Badin-Crouzet
Company.

References

[1] LAMBERT, R. F., Wall viscosity and heat conduction
losses in rigid tubes, J.A.S.A. 23 (1951) 480-481.

[2] ONDET, A. M., Propagation du son dans les fluides réels
à l’interieur d’un guide cylindrique. Etude des

modes d’ordre supérieur. Thèse, Université de

Clermont II, 1980.

[3] MORSE, P. M., INGARD, K. U., Theoretical acoustics

(McGraw Hill, New York) 1968.

[4] BRUNEAU, M., Introduction aux theories de l’acoustique,

(Université du Maine éditeur, Le Mans France),
1983.

[5] KERGOMARD, J., Internal Report, Université du Maine
(to be published).

[6] PIERCE, A. D., Acoustics : An introduction to its physical
principles and applications (McGraw Hill, New
York) 1981.

[7] VINCENTI, W. G., KRUGER, C. H., Introduction to phy-
cal gas dynamics (John Wiley, New York) 1965.


