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Résumé. 2014 La méthode de la matrice de transfert à une dimension est étendue à une large classe de problèmes.
Nous présentons des solutions pour les équations de Schrödinger et Dirac, ainsi que pour le modèle à deux bandes
de Kane. Dans le cas d’un potentiel périodique, E(k) est obtenue par diagonalisation de la matrice de transfert,
et les solutions des équations décrites plus haut peuvent alors être mises sous la forme cos (kd) = d(E).

Abstract 2014 The transfer matrix in one dimension is generalized in order to treat a wide class of problems. Solutions
involving the Schrödinger and Dirac equations as well as the Kane two band model are presented. In the case
of a periodic potential E(k) is obtained by diagonalizing the transfer matrix and solutions of the above equations
yield a dispersion relation which can be written as cos (kd) = f(E).
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1. Introduction.

In this article we attempt to set up in a rigourous
manner the transfer matrix in order to treat a wide class
of one-dimensional problems. We refer the reader to
the book of one-dimensional physics by Lieb and
Mattis [1] for a general introduction to this subject.
Examples of one-dimensional problems that can

be easily solved using t4 transfer matrix are ;
A) solutions of the Schrodinger equation for a one

band model [2] ;
B) solutions of the Kane two band model dealing

with a coupled system of two first order equations [3] ;
C) solutions of the Dirac equation involving two

coupled first order equations as in case B [4];
D) solutions of a three band model dealing with

3 second order equations [5];
E) solutions of graded structures with variable

effective mass using a second order Schrodinger
equation [6].

In part one of this paper we present a general mathe-
matical description of the transfer matrix. In part two
we treat the problem of two different but contiguous

intervals, while part three deals with periodic potentials
where the dispersion relation for cases A, B and C
takes on the form cos (kd) = f(E). Lastly we give
specific examples of this theory as applied to cases A, B
and C.

2. Transfer matrix.

Let us examine the system of ordinary linear homoge-
neous differential equations :

where the superscript indicates the order of differen-
tiation. Using the restriction

allows us to always reduce our equations to 1 st order
without much loss of generality.

Let w(z) be a column vector with N = nm compo-
nents representing the functions cpY-l)(Z). This defi-
nition allows us to rewrite (1) in the form of a system

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:019850046070102100

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphys:019850046070102100


1022

of N first order differential equations

where P is an N x N matrix which may be written
in a block form :

If { hv(z),v = 1, 2, ..., N } is a set of linearly indepen-
dent solutions of (3), then :

Moreover if { hv } is a canonical basis in zo, i.e. :

where u represents a particular component, and v
represents a particular vector in the basis, we obtain

and

where we have introduced the transfer matrix M(z, zo)
which connects the values of t/J at zo and z, i.e. :

In general using a basis { fv(z)}, and defining

it is not difficult to show that :

In the particular case of constant coefficients Aijl, P will
be a constant matrix having an explicit solution [11] ]
of the form :

3. Complex structures.

Usually the analytical properties of the coefficients
Aij, assures us of the continuity of any solution ql(z).
Knowing the transfer matrix in two contiguous inter-
vals allows us to determine the complete transfer
matrix. In other words, if

and

then

where

and likewise for any other contiguous intervals. This is an interesting situation that arises frequently in the ana-
lysis of complex structures composed of different layers [7].

In other cases [6,12] some components of O(z) have a steplike behaviour at a point, say zi, where the limiting
values to the left and right sides of this point are connected by a linear expression

If this is the case, we write :

4. Periodic potentials.

If the coefficients Aijl are periodic, with periodicity d, then the P matrix is periodic. Floquet [13] has demonstrated
that in this case there are solutions that satisfy the condition

where A is a complex number called the Floquet multiplier. Writing :
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and imposing the periodic boundary condition, we get - 7r/d  k  x/4 and 0,,(z) may be written as :

uk(z) being periodic :

Rewriting (18) in terms of the transfer matrix we have :

In other words : The Floquet solutions in z are the eigenfunctions of the transfer matrix that connects the two
ends of the unit cell (z, z + d). Furthermore, since M(z + d, z) depends on all the parameters in the original sys-
tem (1), in particular the energy, the diagonalization procedure gives us the dispersion relation E = E(k). This
simplifies the results for the cases A, B, C, where N = 2. The eigenvalues À.1 = eikld, À.2 = eik2d are the solutions of

or, alternatively,

In these three cases the det M(z + d, z) = det M(z, z) = 1 (due to the absence of certain terms in (1)). Then
A2 = 1/ À.1 and, from (24a),

This is the general form that the dispersion relation takes in cases A, B, C, for any one dimensional periodic
potential. This result is well known for the Schrodinger equation (14) and has been obtained for several other
particular cases [3, 4, 6, 7, 8, 9].

5. Examples.

(A) SCHRODINGER EQUATION. - Here we have n = 1, m = 2, N = 2 and equation (1) becomes

Repeating the general procedure

and

Let gl(z) and g2(z) be two linearly independent solutions of (26). Then

where
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In the interval where the potential is constant we get using equation (30) or equation (12)

where

(B) KANE’S TWO BAND MODEL [3]. - The wave function satisfies equation (3) with

and where

and

Eg is the energy gap; kx, k, are transverse momenta; and p is a parameter of the order of 10-8 eV-cm.
This example is similar to the previous one. However we note that the second component of t/J, t/J2 is not

obtained from the first component by derivation, but in a more complex manner as given by equation (3) and
equations (32a-c). For a constant potential the transfer matrix M(z, zo) is exactly the same as (31 a), but now

(C) DmAc EQUATION. - From a mathematical point of view the stationary one dimensional Dirac equation
is a system of four differential equations which can be reduced by the unitary transformation

where

and

and

to a system of two coupled equations :

where
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and

If we make the transformation

with

and

and

the system of equations takes the form (3) with

where

It is evident that cases B and C are equivalent if we make the association p -+ 1ic and Eeff -+ EM. The transfer
matrix for a constant potential has the form (31 a), p and 0 being

6. Conclusioa

We have attempted to show the power and generality
of the transfer matrix method for solving a wide class
of one dimensional problems. In particular formulae (9)
and (11) demonstrate this generality. The method is
exceptionnally useful when the coefficients Aijl have
different analytical expressions in different intervals.
This is the situation for graded structures (15). Equa-

tions (16) and (17) are ’useful when we wish to treat
problems of variable mass, the simplest example of
which is (see Ref. [6])
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where m(Zl-) and m(zl+) are the effective masses to
the left and right of zi.
We have shown that the three important cases (A, B

and C) have many common properties; in particular
the transfer matrix for a constant potential has the
same form (Eq. (31a)). In addition for a periodic
potential the dispersion relation cos (kid) = f(E) where
f(E) is equal to half of the trace of the transfer matrix

for the unit cell, is the same. The method is particu-
larly applicable to other problems such as bound
states in quantum wells, transmission through barriers
and evanescent states.

From a computational point of view, complicated
potentials can be approximated stepwise in small
intervals allowing for a simple algorithm.
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