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Résumé. 2014 En utilisant l’approximation de tension superficielle forte, nous déterminons une équation asympto-
tique décrivant l’évolution non linéaire d’une interface perturbée dans un écoulement de Poiseuille stratifié en vis-
cosité 03A603C4 + 03A603A603BE + 03A603BE03BE + 03A603BE03BE03BE03BE = 0. Bien que pleinement déterministe, cette équation possède des solutions en
forme d’ondes quasi-périodiques fluctuant de façon irrégulière.

Abstract. 2014 By use of the strong surface-tension approximation, an asymptotic equation is derived to describe the
nonlinear evolution of the disturbed interface in viscosity stratified-Poiseuille flow : 03A603C4 + 03A603A603BE + 03A603BE03BE + 03A603BE03BE03BE03BE = 0.
While fully deterministic, this equation is capable of generating solutions in the form of irregularly self-fluctuating
quasi-periodic waves.
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1. Introduction.

As shown by Yih [ 1 j, the plane interface of viscosity-
stratified Poiseuille flow is unstable to long-wave
perturbation (see also [2-4]). A similar effect of long-
wave instability occurs when a film of viscous liquid
flows down a vertical (or inclined) wall [5]. As a result
of this instability, irregularly self-fluctuating waves
develop on the surface of the film [6, 7].

In the strong surface-tension approximation, the
equation of the film surface is

where 0 is a suitably scaled perturbation. Equation (1)
though fully deterministic, turns out to be capable of
generating solutions in the form of irregularly fluctuat-
ing quasi-periodic waves [8-14]. This behaviour of the
solution is in good agreement with well-known expe-
rimental observations of film flow [15-17].

The aim of this communication is to show that a
similar phenomenon of interface turbulence should
also take place in viscosity-stratified flows.

2. Fundamental equations and basic solutions.

Consider two layers of liquid flowing between two
parallel plates (Fig. 1). In order to capture the effect
of instability in its simplest and purest form, we shall
assume that the two layers are of equal thickness d
and equal density p, differing only in their viscosities
III and 92. An example of a system of these specifica-
tions is motor oil and water, which have similar den-
sities (PI,2 = 0.9; 1 g/cml), significantly different
viscosities (PI,2 = 0.4; 0.01 poise) and fairly strong
surface tension (r = 40 dyne/cm).

In terms of suitably chosen nondimensional
variables, the flow equations can be written as follo,ws :

for
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Fig. 1. - Diagram of two-layer Poiseuille flow. The dashed
line represents the disturbed interface.

Here ui’ vi are the nondimensional components of the liquid velocity in units of Uo - the velocity of the undis-
turbed flow interface (Fig.1) ; x, y are nondimensional space coordinates in units of d ; t is non-dimensional time,
in units of diU 0; Pi - is the nondimensional pressure, in units of p U 0 ’; h(x, t) is the non-dimensional perturba-
tion of the interface, in units of d ; m = 1l2/IlI;R = p Uo dly 1 is the Reynolds number.

At the plates (y = ± 1) we have the non-slip conditions :

At the interface ( y = h(x, t)) the following conditions hold :
Continuity of velocity :

Impermeability of the interface :

Continuity of shearing stress :

Discontinuity of normal stress due to surface tension y :

where y = alpdu 0 I is the nondimensional surface tension.
The solution corresponding to undisturbed unidirectional flow is

where

We shall assume below that the flow rate Q is constant, i.e.,
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3. Strong surface-tension approximation.

If the parameter y is large,

then the structure of the perturbation h, by analogy with the situation in thin film flow [7], is expected to be as
follows :

The phase velocity is determined in the course of the solution process.
On the basis of ( 12) we introduce new scaled variables :

The solution of problem (2-8) is sought in the form of an asymptotic expansion

In the course of the calculations, which are largely similar to those done in [7], it is found that

If m N 1, the relationship (15) and equation (16) simplify to

Hence, the dispersion relation corresponding to linear analysis of the stability of the trivial solution H(1) = 0 is

The fact that the coefficient of the third term in equa-
tion (19) is positive implies long-wave instability of the
interface due to viscous stratification (m # 1). The
positive coefficient of the fourth term ensures relaxa-
tion of the short-wave perturbations due to surface
tension. Elementary rescaling brings equations (16),
(18) to the parameter-free form (1).

Thus, it is indeed true that viscous stratification can
generate an effect of interface turbulence similar to
that observed in thin-film flow. It would be interesting

to set up an experiment demonstrating this phenome-
non under laboratory conditions.

In conclusion, we would like to mention the recent
paper of Michelson [18] on the time-independent
solutions of equation (1). The analytical and numerical
investigation undertaken in that paper shows that the
set of time-independent solutions of this equation is
remarkably rich. Along with periodic solutions, one
has an infinite set of quasi-periodic and chaotic solu-
tions corresponding to a disturbed interface. It was
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previously thought that the turbulence in equation (1)
is non-steady in nature and is generated by the interac-
tion of several space modes. In the light of Michelson’s
results, it is quite possible that this turbulence is
related to the set of steady chaotic solutions of equa-
tion (1) which is an attractor for the time-dependent
problem.
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