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Résumé. 2014 Nous présentons dans cet article une comparaison directe entre la méthode OEDM (One-Electron
Diatomic Molecule) et une approche moléculaire classique, basée sur la méthode d’interaction de configuration
(CI) utilisant une base construite à partir de produits anti-symétrisés d’orbitales gaussiennes (GTO), pour le
traitement d’une collision atomique à deux électrons. La quasi-molécule LiH2+ a été choisie comme exemple.
Nous étudions les avantages de l’emploi d’un hamiltonien écranté pour définir les orbitales OEDM. Le diagramme
de corrélation énergétique pour les sous-systèmes singulet et triplet est discuté ainsi que le caractère des états
moléculaires intervenant dans la collision Li2+(1s) + H(1s). Nous montrons que la comparaison entre les deux
méthodes permet d’interpréter le comportement des couplages obtenus dans la méthode d’interaction de confi-
guration et d’attribuer sans équivoque les symboles moléculaires au diagramme de corrélation. Bien que l’image
intuitive « d’un électron actif» soit utile pour l’étude du système collisionnel considéré, l’interaction entre les
orbitales internes et externes joue un rôle non négligeable pour déterminer tant les couplages que le diagramme
d’énergie.

Abstract. 2014 We present a direct comparison of the One-Electron Diatomic Molecule (OEDM) method with the
conventional molecular approach, based on a full-configuration-interaction (CI) method using a basis set made
up of symmetry adapted anti-symmetrized products of Gaussian type orbitals (GTO), for the treatment of atomic
collisions involving two-electrons. The quasimolecule LiH2+ has been chosen as an example. We have studied
the advantage of a screened Hamiltonian to define the OEDM orbitals. The energy correlation diagrams for the
singlet and triplet subsystems are discussed, and also the physical character of the molecular states involved in
the Li2+(1s) + H(1s) collision. We show that the comparison between both methods permits to interpret the
detailed behaviour of the couplings obtained in the full configuration interaction method and to assign unambi-
guously molecular symbols in the correlation diagrams. Even though the intuitive « one active electron » picture
is useful for the present collision system, the inner-outer orbital interaction is shown to be significant for both
the energy diagram and couplings.

J. Physique 46 (1985) 709-718 MAl 1985, 

Classification

Physics Abstracts
34.20

1. Introduction.

In previous work [1, 2] we have shown that antisym-
metrized products of One-Electron Diatomic Orbitals
(OEDM) are very convenient for the expansion of the
wave function that describes the evolution of the
electronic state in an ion-atom collision. This « OEDM

(*) Equipe de Recherche C.N.R.S. n° 260.

expansion » has been successfully applied to treat

He22+, HeH+ and OHe8+ quasimolecular systems.
The OEDM orbitals corresponding to an electronic
state in the field of two Coulomb charges, one may
think a priori that the method would be more appro-
priate when transitions between Rydberg-type mole-
cular orbitals are responsible for the collision dynamics
[3] - or equivalently, using a quantum chemistry
language, when correlation effects are unimportant
in those dynamics. Still the results obtained for the
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collisions He" + He(ls2) and H+ + He(ls2) show
that the validity of the method is not restricted to
such cases. Before going into the task of generalizing
the method for an N electron problem, we propose in
the present paper a more thorough evaluation of the
method for the two electron system Li2+-H. We have
therefore carried out a direct comparison between
expansions onto OEDM and symmetry adapted
products of Gaussian Type Orbitals (GTO).

Obviously the type of expansion used to define
configurations for a Configuration Interaction method
may seem at first sight more a technical than a basic
problem. For example we could have used as well
Slater type orbitals or elliptic orbitals in the present
study. Furthermore, the OEDM orbitals can be
considered as a particular type of contracted elliptical
orbitals (as for atoms, hydrogenic orbitals are

contracted Slater type orbitals). However the OEDM
expansions have some specific features which make
them quite useful both from a practical point of view
and for a better understanding of the intuitive physics
of an ion-atom collision and we summarize these

briefly.
The qualitative description of atomic collisions has

often been based on correlation diagrams build along
the rules put forward by Lichten [14] and Barat and
Lichten [15]. Even if these rules must be modified or
extended in some cases (e.g. [20]), they are still a very
good starting point to define the set of states that one
has to take into account for a quantitative evaluation.
As these correlation diagrams are based on OEDM
correlation rules, their realization in terms of an
OEDM expansion for actual calculations is par-
ticularly simple. In fact, the quantitative usefulness
of OEDM expansions is at the root of the adequacy
of qualitative correlation diagrams such as are often
employed in conventional CI expansions. This fact
in itself makes a comparison between the OEDM and
full CI expansions with GTO, STO, etc. interesting.
Furthermore we also show in the present work that the
detailed structure of the radial and rotational coupling
matrix elements in the GTO-CI expansion can be
understood by using their relation with those evaluated
in the OEDM expansion whereas this can usually
be done only in a qualitative manner by inspection
of the expansion coefficients [5-8].
The LiH2 + molecule has been chosen as an example.

This system is well suited to an application of the
OEDM method : in the states involved in the Li2 +-
H(ls) collision, the distinction can be made between
an inner and outer orbital (Fig. 1). Hence the advantage
of employing a screened Hamiltonian to define the
OEDM orbitals can be explored Furthermore, we
avoid the complications due to autoionization that
appear for systems with larger charges (see e.g.
08 + -He in [3]).
The study of the collision process itself will be the

subject of a further paper.
Atomic units are used throughout.

Fig. 1. - Qualitative correlation diagrams for LiH2 + :
a) Singlet subsystem; b) Triplet subsystem; c) Qualitative
correlation diagram for HeH2 +.

2. Theory.

2.1 DEFINITION OF THE OEDM AND GTO-CI ME-
THODS. - The application of Quantum Chemical

techniques to the molecular approach to atomic col-
lisions is well known (see e.g. recent reports in [10]
and [4]). Likewise, the characteristics of the OEDM
method have been exposed in [1] and [2] and will not
be repeated here in detail. Basically in the latter

method, the wave function that represents the colliding
system is expanded onto the basis functions Oj of the
form (the spin functions are factored out) :

where Nj is a normalization factor and 0 the symme-
trizer (for singlet states) or the antisymmetrizer (for
triplets) operator. The OEDM orbitals, Ok of equation
(2) are exact solutions of a one-electron Schrodinger
Hamiltonian :

where rA,B stands for the distance of the electron from
nucleus A, B and ÇA’ ÇB are effective - or screened -
nuclear charges. Various one-electron Hamiltonians
Ho may be used to define the set of OEDM orbitals
[11,12]. It is worth noting that, in the OEDM expan-
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sion, the collision problem can be solved by expand-
ing directly the wave function describing the elec-
tronic state evolution onto {t/J j } :

where S and Hel are the overlap and Hamiltonian
matrices. As the { oj I set is made up of non-ortho-
gonal basis functions which are not eigenstates of Heh
transitions occur through electronic, radial and rota-
tional couplings between the basis states qlj. On the
other hand, in the usual molecular approach, one uses
a basis { Xn } of (usually approximate) eigenfunctions
of Hel of energy En. In the { Xn } representation, transi-
tions take place through mechanisms involving only
radial and rotational couplings. Since electrostatic
interactions are fully taken into account in this

representation, the number of molecular channels
that are closely coupled is usually expected to be
smaller than in the OEDM approach (apparent
exceptions to this rule are found, e.g., when infinite
series of avoided crossings are present, but then the
conventional CI approach must be abandoned and
diabatic wave functions employed [14]). The price to
pay for that is the irregular behaviour of the couplings
as a function of internuclear distance (the more often
in relation with pseudo-crossings of potential curves).
Of course, one could think of expanding directly the
collision wave function onto the configurations built
from the GTO as done with the OEDM orbitals in (1)
and (3). This would also yield smooth coupling matrix
elements. However the number of terms in the expan-
sion would be extremely large by comparison with the
{ Xn } expansion of (1). In the LiH2+ case, we use more
than 100 configurations (a small number for a quantum
chemistry calculation) whereas from functions xn will
be kept for the collision problem. One of our objectives
is to show that the OEDM are, in a number of pro-
blems, a good compromise between these two desi-
rable constraints : keep the basis in (3) small with
matrix elements as smooth as possible as a function
of internuclear distance. The radial couplings are
smoother and generally smaller in the { qlj } basis
than in the { Xn } basis because of both the separability
of the effective Hamiltonian (2) in confocal elliptic
coordinates and the constant coefficients in the linear
combinations (1). Then the wave functions t/Jj have a
«character that varies more smoothly with the
internuclear distance than that of the adiabatic wave
functions xn. For instance, the diagonal matrix
elements (Hel)ii usually present less (or almost the
same) number of avoided crossings than the molecular
energies E..
An important advantage of the OEDM expansion

is that Stark mixing (whose representation requires a
careful selection of the atomic basis used to

approximate the adiabatic wave functions) is auto-

matically taken into account because the asymptotic
form of the OEDM orbitals corresponds precisely to
the Stark components. A similar comment applies
to excited adiabatic states involving orbitals with a
large number of modes [3].

2.2 CORRELATION DIAGRAM. - When one uses the
adiabatic expansion in the molecular model of atomic
collisions, the first step is to draw and study the
corresponding qualitative energy correlation diagram.
Inspection of this diagram usually permits a selection
of the (finite) molecular basis { Xn } to be employed
in the calculation of the transition probabilities. In the
OEDM expansion, however, the signification of a
correlation diagram based on the diagonal matrix
elements of He, is less straightforward because of
overlap effects and because of the existence of non-
diagonal matrix elements of Hel which can be relatively
large and do not necessarily vanish as the internuclear
distance goes to infinity. The selection of the basis
{ Pj } has then been based [2], [3] on the Barat-Lichten
[15] correlation diagram. Obviously the solution of the
secular equation for He, will bring further information
on the adequacy of the basis set, particularly when CI
calculations are available. However the latter step is
not necessarily meaningful in particular for the des-
cription of states imbedded in the continuum [3].
The adiabatic energy correlation diagram for the

LiH 2+ quasimolecule is drawn schematically in

figure 1 for the singlet and triplet subsystems, respec-
tively. In a following article we shall treat the reactions :

The entrance channel for reactions (4) corresponds
to a statistical mixture of the 2 1 E and 3 3E states.
For R -+ oo, the system Li2 I (IS) + H(ls) is quasi-
degenerate with Li+(’,3S Is 2s) and Li+(1,3p Is 2p)
(they would be degenerate if the inner Is orbital would
completely screen the nucleus). The ordering of the
asymptotic quasimolecular states in figure 1 is then
due to the (small) 1 s-2s and 1 s-2p orbital interactions
which are different for the singlet and triplet systems.
For the singlet subsystem, the energy of Li2+(ls) +

H(ls) lies between those of Li+(lS Is 2s) and

Li + (’P I s 2p). Consequently (see Fig. 1 a), the 2 ’Z
energy has a sharp avoided crossing at R - 20 a.u.
with the 1 1 E state, that tends to Li+(lS Is 2s) + H +
as R - oo.
For the triplet subsystem, the energy of

Li2+(ls) + H(ls) lies above those of Li +(3S ls 2s)
and Li+(3P ls 2p). Consequently (see Fig. lb), the
3 3 E state has an energy that presents a very sharp
avoided crossing at R - 33 a.u. with the 2 3E energy,
and the latter energy pseudo-crosses at R - 9 a.u.
that of the 1 3 E state. Each of the avoided crossings
mentioned corresponds to a complete interchange of
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character between the wave functions. For the energy 
°

range considered in the treatment of reactions (4)
the very sharp pseudo-crossings at R - 20 and 33 a.u.
are traversed diabatically and are, therefore, of little
practical interest; on the contrary, partial transitions
take place at the pseudo-crossing occurring for the
triplet subsystem for R N 9 a.u., which is of utmost
importance in the dynamics of (4). In this paper we
shall, therefore, concentrate our attention on the

region of internuclear distances R  15 a.u. for the
discussion of the couplings.
We have just seen that in the asymptotic region

R -+ oo, the states of interest of the LiH 2+ quasi-
molecule can be described, to a reasonable approxi-
mation, by an independent particle model in which
one electron occupies the Is orbital of Li2+(ls) while
the other electron occupies an orbital of either the
hydrogen atom or the screened Li2 + - i.e. He + - ion.
A comparison of the correlation diagrams of LiH2 +
(Figs. la, b) with that of HeH2 + (Fig. lc) indicates
that this description is still a reasonable one for finite R.
As in reference [8] the states of the LiH2+ quasi-
molecule can be described by assuming that one
electron occupies an inner 1 s6 orbital of LiH3+ ,
while the state of the 3dn’ other electron is represented
by a 2pa’, 2sa’, 3dO", 2pn’ or 3drc’ orbital of HeH2+ .
Interaction between « inner and « outer shell
orbitals causes the energy orderings of Figs. la, b.

Also, the crossing between the 2sO" and 3dO" orbital
energies of HeH2+ appears as an avoided crossing
between the energies of the 2 1,3E and 3 1,3E states,
because of the non-separability of the full electronic
Hamiltonian He, in parabolic coordinates (1).
The previous analysis of a molecular correlation

diagram is based on the early work of Hund and
Mulliken (for a review, see [9]) and appears in appli-
cations of the molecular model to atomic collisions

by Lichten ([13, 14]).

3. Energies.

According to the reasoning of the previous section,
we should set up an OEDM model with two effective
Hamiltonians Ho of (2) : one with ’A,B = ZA,B, the
bare nuclear charges, defines the « inner » Is OEDM
orbital; the other Hamiltonian with ’A = 2, ’B = 1.
the nuclear charges of HeH2 +, define the « outer »
1 sO", 2pO", 2sO", 3d 0", 2pn’, 3dn’ OEDM orbitals.
Inserting these OEDM orbitals in (1), with cPj the
«inner » and cP j2 an « outer orbital, we obtain a
representation {t/lj}. Diagonalization of He, in the
representation {t/I j} yields approximate molecular
energies En, which are compared in table II with the
results of a full CI calculation using the atomic basis
set of table I, which has been approximately optimized

(1) We omit a discussion on the avoided crossings
occurring at very small R that are of minor importance in
the dynamics of reaction (4).

for the range of internuclear distances involved. The
excellent agreement between both sets of energy data,
calculated in such different ways, confirms the correct-
ness of the analysis presented in the previous section,
and of our choice of OEDM basis to describe the
collisions (4).
The comparison between molecular energies cal-

culated in an OEDM basis and in a CI treatment also
allows us to draw some conclusions on the OEDM
method. Suppose that, instead of two effective
Hamiltonians Ho, we employ a simple unscreened Ho,
with ’A,B = ZA,B in equation (2), to define all OEDM
orbitals. Then the corresponding set of wave functions
{ t/I j} of equation (1) has the desirable property of
being an orthonormal set. On the other hand, its

inferiority, in the description of the static properties
of the LiH 21 quasimolecule, can be easily shown.
We present in table II the results of diagonalizing
Hel in this new basis set {t/lj} with Plj = IsO’,
P2j = l s J, 2p J, 3d a, 4fJ, 2pn, 3dn ; the corresponding
molecular energies are clearly poorer than those for
the screened OEDM basis. We conclude that screening
permits the description of the LiH 2’ quasimolecule
- hence the treatment of the collision process (4) -
with a small number of basis wave functions { t/I j }
in equation (3). This fact more than compensates for
the difficulties caused by the non-orthogonality of
these basis functions. Table II also shows that a more

sophisticated optimization of the effective charges
’A,B of the one electron Hamiltonians Ho of (2) is

unnecessary since the results are already better than
those of our GTO-CI calculation.

Finally, it may be remarked that, in order to

obtain accurate values for the molecular energies,
one has to introduce in the basis { t/I j} an « extra »
1 sO’l s a’ configuration, for both the singlet and triplet
subsystem [2]. Omission of this configuration yields
results which are too low for the singlet states -
since, then, all the approximate eigenfunctions obtain-
ed by the diagonalization of Hel contain a contri-
bution of the exact 0 ’.E wave function. For triplet
states, the results obtained when the IsO’ IsO" confi-

guration is omitted are too high - because in this
case the contribution corresponds to a mixture of
excited states, which is eliminated when IsO’ IsO"
is included in the basis.

4. Couplings.
To avoid complicating unnecessarily this article by
presenting a large amount of data, we shall simply
state from the start that the dynamical couplings
obtained from solving the secular equation in the
representation of the screened OEDM and GTO-CI
basis are practically identical. This re-inforces our

previous conclusion on the correctness of our choice
of OEDM orbitals. Furthermore, it allows us to

bet on insight into the physical origin of each coupling.
Such an analysis of dynamical couplings is very
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Table I. - Exponents of the atomic Gaussian basis set employed in the CI calculation of the adiabatic wave func-
tions I Xj } .

Table II. - Electronic molecular energies (in a.u.) of the LiH2 + states as a function of internuclear distance R
(in a.u.). A) GTO-CI calculation ; B) Screened OEDM-CI calculation ; C) Unscreened OEDM-CI calculation.

a) Singlet states

b) Triplet states

instructive per se and from the point of view of under-
standing the relationship between the OEDM and
GTO-CI method in detail.
As stated above, we restrict our study to the physical

origin of the couplings to R  15 a.u.

The radial couplings, which are presented in the
next section, have been calculated with the methods
of Harel and Salin [2] for the OEDM approach,
and of Macias and Riera [16] in the GTO-CI forma-
lism.
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The discussion below will be restricted to radial
and rotational couplings, though our conclusions
are not specific to these matrix elements alone. It is
well known that they depend on the origin of elec-
tronic coordinates (as shown in Fig. 2 for radial

couplings between 1 E states) and that they do not
necessarily go to zero at infinity. This conspicuous
feature of the matrix elements causes difficulties in
the treatment of the collision which we eliminate

by the introduction of translation factors into the
molecular basis set. Therefore we shall not discuss this

point further.

4.1 RADIAL COUPLINGS. - The radial couplings

9)ii = oi a Oj between the OEDM basis func-
tions and between the adiabatic wave functions

D m ( x a 
xm ) obtained in the CI methodnm = xn OR obtained in the CI method,

are presented in figures 3 and 4 respectively. To
understand their physical origin and their inter-

relation, we first establish the formal connection
between them. Solving the secular equation for Het
in the { qfj I representation yields approximate adia-
batic wave functions :

where Yn is the coefhcient matrix of the secular equa-

Fig. 2. - Radial couplings between the singlet adiabatic
wave functions { Xi} obtained in the CI method, for two
origins of electronic coordinates : Nuclear centre of
charges; - - - H nucleus. a) Singlet subsystem; b) Triplet
subsystem.

tion. Then, one can write [16] :

Fig. 3. - Radial couplings for the singlet subsystems :
- - - Radial coupling U)ij between OEDM configurations;
Radial coupli’ng Dij between adiabatic states.

Fig. 4. - Same as figure 3 for the triplet subsystem.
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The radial coupling between the molecular wave
functions is thus written as the sum of two contri-
butions. The first term is only important when the
{ t/J j} basis functions interact via non-constant elec-
trostatic or overlap effects; more explicitly, we can
write this first term of (6) as [16]

where S and Hel are the overlap and Hamiltonian
matrix in the { oj } representation. The second term
in equation (6) is due to radial couplings between the
OEDM basis functions {.pj}. We shall start by
studying the physical origin of the latter and see how
they are mixed by electrostatic (or overlap) effects to
yield the full radial coupling (6).
For the singlet and triplet case :

The Ðij coupling matrix elements are thus written
as the sum of a contribution due to d/dR matrix
elements between the OEDM orbitals, and a contri-
bution due to « inner »-« outer » shell effects.
For our purposes, the most important coupling

matrix elements presented in figures 3 and 4 are Ð13
and Ð23’ The former is entirely due to the 2pO"-3dO"
radial coupling (see e.g. Ref. [17]). The latter is made
up of two contributions : one is ,the (relatively small
and unimportant) 2s0"-3d0" radial coupling, the
other, stemming from the second and third terms
of equations (8) varies little with R

First consider the singlet case for large internuclear
distances, the most obvious feature in figure 3 is the
large value of D13 compared to 02’3. Hence the slow
decrease of D13 comes entirely from the first term
in (6) and originates in the Stark effect. The 2s 0"
and 3dO" orbitals are Stark hybrids, hence the Stark
coupling is absent from D123. Instead, the basis func-
tions 412 (1 s 0’ 2sa’) and 03 (1 sO’ 3da’) interact for
R  20 a.u. via H,,, and the variation of this interaction
with R is responsible for the Stark coupling D13
between the adiabatic wave functions X2 and X3’
We can confirm this by comparing D13 with the
asymptotic value evaluated in the appendix :

Our values of p and AE give a = 66.4 a.u. which
fits closely the results of figure 3.

For R  6 a.u., the diagonal matrix elements

(8 -1 H)22 and (S-1 H)33 cross for R = 3.75 a.u.

Hence, apart from a « background » contribution
D123 varying smoothly with R, D123 shows a peak
around R = 3.75 a.u. because the adiabatic energies
do not cross. The reason why the contribution to
D123 of the Stark effect and that of the crossing bet-
ween OEDM are of opposite signs has been explained
in reference [5] and [6]. In short, for large R the Stark
effect stabilizes (yields a lower energy for) the « bond-
ing » hybrid wave function 12 ’L &#x3E; which correlates
smoothly for R - 0 to the united atom limit 1 s 3d,
with respect to the « anti-bonding » hybrid wave
function 3 IE&#x3E; that correlates to 1 s 2s. In the
avoided crossing region smooth correlation is violated
[5], and for smaller internuclear distance the « bond-
ing » hybrid corresponds to the wave function

I 3 1 E). Since the adiabatic wave functions 2 ’Z &#x3E;
and I 3 IE&#x3E; change continuously from a « bonding »
to an « antibonding » character and vice-versa, the
corresponding 2 1 E-3 1 E radial coupling must reflect
this undoing of the Stark hybridization and changes
sign accordingly. As a result, for R  6 a.u., the

2 ’Z a 13 11; ) matrix element is the differenceTR 
between two contributions : a Lorentzian peak of
area - n/2 due to the avoided crossing between the
2 1 E and 3 1 E energy curves (linear model [19])
and the Stark coupling (9).
The strongest coupling between OEDM configu-

ration is D113 for R &#x3E; 2 a.u. and D112 below R = 2 a.u.
For R &#x3E; 10 a.u., this value of 9)1 13 contributes to
both Dl2 and 13 because of the Stark hybridation
phenomenon discussed earlier. For 3.75  R  10,
however, it contributes mostly to Dl2 because, in
this region, the overlap Of 413 is much larger with X2
than with x3. Below Rc = 3.75, the states X2 and X3
exchange their character. This produces the following
transformation : 

Clearly D 1 Z N - i 2 for R  2.5 atomic units.
However, both D12 and D13 are perturbed at small
internuclear distances by pseudo-crossings that are of
no importance for the collision process.
The above discussion completely explains the

values of the matrix elements D4 in terms of the
simpler D1ij. matrix elements and OEDM properties.
A similar discussion can be carried out for the triplet
case. The similarity between the Db and D3ij matrix
elements in the singlet and triplet case is obvious
from a comparison of figure 3 with figure 4. However
the D1ij and D4 are quite different It is an interesting
consequence of the OEDM method that the strongly
different Dij in the singlet and triplet case can be
easily interpreted from the very similar behaviour
of the OEDM properties. In addition to the pseudo-
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crossing between X2 and X3 around R/ = 3.75 a.u.,
there is a pseudo-crossing between xl and X2 around
R; = 9 a.u. Therefore the Stark coupling appears
in D 13 for R &#x3E; R;.
We get the following correlations :

For distances smaller than R’, the triplet and
singlet Dij are qualitatively identical.

4.2 ROTATIONAL COUPLINGS. - The rotational

couplings Ci = ( oi I iLy 1414 &#x3E; between the OEDM
configurations and Li =  Xi I iLy I X4 &#x3E; between the
adiabatic functions are given in figures 5 and 6.
Let us first establish the relation between Li and ti.
If we admit that X4 -- lk4 :

Furthermore, from the form of the configurations
considered in the present work :

Again the variation of £},3 with internuclear
distance is quite simple but the difference between
singlet and triplet states is appreciable. This difference
is due to the second term in (13) which shows the
importance of overlap effects between the inner and
outer orbitals in our OEDM basis.

Let us first consider the singlet case (Fig. 5). For
R -+ 0, L i and El tend to one because they both
tend to a matrix element between a 2po and 2p,
state. Similarly both L i and ci tend exponentially
to zero for R -+ oo.

Fig. 5. - Rotational couplings for the singlet subsystem :
- - - Rotational coupling Cij between OEDM configura-
tions ; Rotational coupling Lij between adiabatic
states.

For distances of the order of 7-10 a.u., one has

L2 = C2 and L’ - £§. However, for large distances,
as the OEDM orbitals correspond to Stark hybrides
L12 -&#x3E; 1/.,/2-(E 2 1- t 3 1) and L 3 ’ ’/Vf2(E2l + £§).
Around Rr = 3.75 a.u., a complete change of

character from X2 to X3 and vice-versa would give
the same correlation rules on L2 and L3 between
R &#x3E; Rc and R  R, as for the radial couplings
namely L 2 1 (R, - åR) = - L 3 1 (R,,: + AR) and L 3 1 (Rr - DR)
=+L’(R,,+AR). This is less obvious, however, in
figure 5 since the x can no longer be expressed as a
good approximation by a single V/.
A similar interpretation can be done for the triplet

case (Fig. 6). For R &#x3E;&#x3E; R c 2 = 9 a.u., we get :

and Ll decreases exponentially. Around Rj = 9 a.u.,
the states X, and x2 exchange their characters so
that, for R  R 2, L31 = El. The variation of L2
is less simple because this region is also that where
the adiabatic x states evolve toward Stark states as R
decreases - see above. The situation around

Rei = 3.75 a.u. is similar to that of the singlet case.

5. Conclusions.

In the present article we have performed a detailed
analysis of the properties of the wave functions

{ t/J j } and { Xn } in the OEDM and CI representations
of the LiH2 + quasimolecule, and we have established
the close relationship between the coupling matrix
elements in both representations. From our analysis,
the correctness of the assignation of molecular
orbital symbols in correlation with energy diagrams
(see examples [4] and [18]) describes the molecular
states which becomes apparent, as shown by an
explicit comparison between energies and couplings.

Fig. 6. - Same as figure 5 for the triplet subsystem.
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We stress the fact that intuitive « one-active electron »
pictures, when only one molecular orbital differs for
all molecular states involved in a given process, as in
the present case, do not mean that one can neglect
the interaction between the« outer » orbital describing
this electron, and the « inner » orbital describing the
« passive » electron. In the present example, it is

precisely this « inner-outer » orbital interaction that
is responsible for the energy ordering of figure 4,
and for couplings which will be shown in the following
paper to be very important in the description of the
dynamics of reactions (4) : the peak in

(see Fig. 4) and the part of matrix elements

which is not cancelled out when translation factors
are introduced into the basis. Even in the OEDM

picture it should be remarked that « inner-outer »
interaction gives rise to a non-negligible contribution
to the dynamical couplings (see e.g. Eqs. (8) and (13)).

Appendix.

To explain the form of the radial coupling due to
Stark mixing it is useful to set up a simple model
which only takes into account the formation of
Stark hybrids from a set of quasi-degenerate molecular
states. We shall restrict ourselves here to a two-state
model which is directly relevant to the cases presented

where Z is the charge of the approaching ion that
Stark couples two states of an ion of charge Z’;
p is the transition dipole moment between these
two states. Diagonalization of (A. 1) :

yields the adiabatic energies E, and E2.
From the condition :

with AE = E2(oo) - El(oo), one has :

with a = 2 AZ:. Then, the Stark mixing gives rise
DE n’ g g

to a radial coupling between the adiabatic wave
functions :

We notice that the area below this coupling is

IX) cI a c dR = , independently of the value
0 

1 dR 2 - p Y

of AE and t.
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