
HAL Id: jpa-00210010
https://hal.science/jpa-00210010

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High amplitude wave propagation in collapsible tube. I.
- Relation between rheological properties and wave

propagation
P. Flaud, C. Oddou, D. Geiger

To cite this version:
P. Flaud, C. Oddou, D. Geiger. High amplitude wave propagation in collapsible tube. I. - Relation
between rheological properties and wave propagation. Journal de Physique, 1985, 46 (5), pp.691-698.
�10.1051/jphys:01985004605069100�. �jpa-00210010�

https://hal.science/jpa-00210010
https://hal.archives-ouvertes.fr


691

High amplitude wave propagation in collapsible tube.
I. 2014 Relation between rheological properties and wave propagation

P. Flaud

L.B.H.P.-Université Paris VII, 2, Place Jussieu, 75251 Paris Cedex 05, France

C. Oddou and D. Geiger

L.M.P.-Université Paris XII, 94010 Créteil Cedex, France

(Reçu le 26 juillet 1983, révisé le 3 décembre 1984, accepté le 25 janvier 1985)

Résumé. 2014 La mécanique des tuyaux collabables à parois viscoélastiques prétendues longitudinalement est étudiée
à la fois théoriquement et expérimentalement. Le comportement statique du tube est caractérisé par une loi reliant
la pression transmurale et l’aire d’une section droite du tube. Cette loi, vérifiée expérimentalement grâce à des
mesures effectuées sur un banc hydrodynamique de simulation, est généralisée au cas de phénomènes instation-
naires en introduisant le module dynamique mesuré directement sur des échantillons de matériau pariétal. On
montre alors que l’on peut déduire de cette loi de comportement dynamique, la vitesse des ondes de pression de
petite amplitude. Ces résultats sont alors confrontés aux mesures directes de vitesse de propagation des ondelettes
de pressions, en imposant différentes valeurs de la pression moyenne, que le tube soit alors gonflé ou partiellement
collabé.

Abstract. 2014 The mechanical behaviour of collapsible tubes is theoretically and experimentally studied when the
viscoelastic wall is longitudinally stretched. The dynamic rheological law is deduced from the static law by intro-
ducing the dynamic Young’s modulus as experimentally obtained. It is then shown that the speed of small amplitude
pressure waves is well predicted using this dynamic rheological law.
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1. Introduction.

Unsteady flow of an incompressible fluid inside a
duct with deformable walls has been extensively
studied during the past decades in order to understand
the dynamics of the arterial circulatory system [1-4].
The effects of the non-linearities of the governing
equations for both fluid dynamics and wall mechanics
have been investigated when considering wave propa-
gation in such a system [4-6].

It has been shown that the rheological law of the
tube wall mainly controls the behaviour of both small
and large amplitude waves [7, 8]. Moreover, under
specific conditions a shock-like transition has been
observed [9-11 ].
When it is applied to collapsible tubes modelling

venous circulation and clinical devices of fundamental

importance such as heart-lung apparatus, large ampli-
tude wave propagation is more difficult to study and
has hitherto been studied on purely elastic tubes [12,
13]. Using the method of characteristics to solve the

basic equations for the dynamics of the system requires
a good knowledge of the phase velocity of small
amplitude waves as a function of the pressure.

Therefore, after a brief review of the viscoelastic

rheological behaviour of the tube wall, experimental
and theoretical results concerning propagation of small
amplitude waves on collapsible tubes will be presented
(Part I). Large amplitude wave propagation shall then
be studied when the tube is either collapsed or inflated
(Part II). This study shows experimental evidence of
forerunning waves [14,15], whose dispersion equation
will be theoretically and experimentally studied.

2. Mechanical properties of collapsible tube.

Z .1 THEORETICAL BASIS.

2.1.1 Static behaviour with positive transmural pres-
sure. - In order to characterize mechanical properties
of collapsible tubes, a relation between the transmural
pressure P, applied on soft tube walls and the related
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wall strain, will be established. The variation of longi-
tudinal strain will not be taken into account, since it is
limited in arterial hemodynamics to 1 % to 2 % by
connective tissues [16]. On the other hand, tangential
wall strain variations cannot be overlooked since they
come up to about 10 % [17], and thus play a basic role
in the dynamics of the system.

Theoretical relationships which enable one to

connect the transmural pressure P with the tube
radius R have been recently reviewed by Taylor and
Gerrard [18]. The most significant results they have
come up with, show the fundamental role of wall
thickness in tube mechanical behaviour. However, they
proposed a simple approach based upon a shell theory
with an adjustment coefficient, i.e., the so-called
thickness factor 00 which depends upon wall thickness
h and initial strainless tube radius Rn and thickness hoe
Such a theoretical approach, which agrees with

experimental data, enables us to write the P(R)
relationship for rubber tubes as :

with

In the expressions above, Eo is the static Young’s
modulus of the wall material, which is presumed to be
linear isotropic and incompressible, and p the specific
mass of the fluid within the tube.
The classical theory of elasticity [19, 20] enables us

to write the azimuthal stress (18 as (18 = PR/h =
G(Al - Â.;), where G is the elastic shear modulus,
À8 = RIRO, Ar = h/ho and (since the material is

incompressible) A,, = 1/ Â-r Ao. Eliminating Ar, and

introducing 00 and Co this relation can be rewritten
as :

2.1.2 Static behaviour with negative transmural pres-
sure. - In this alternative, the relationship between
pressure and section area S is made dependent on
collapse pattern. So far, several relations have been
put forth as far as initial collapse conditions are
concerned [21]; we shall only concentrate on the
collapse process which originates from a critical

pressure, i.e., the lateral buckling pressure.
Such a process induces, first, a quasi-elliptical tube

shape, then it gives way to a two-lobe mode, up to a
stage where those lobes meet at a contact point when
contact pressure is achieved; finally, with lower trans-
mural pressure, a contact line develops, making the
main duct branch off into two distinct ducts.

The time sequence of the section shape seen as
above vs. pressure, has already been dealt with by
several authors [22-24]; different relationships have
been established in order to relate negative transmural
pressure to the section area. Among those we may
single out [22] :

if

and

if

In this expression a is the Poisson’s ratio of the wall
whereas hi, R;, Six, stand for wall thickness, tube radius
and section area respectively, at zero-transmural pres-
sure and at a given longitudinal extension A_,.

If an explicit expression for pressure vs. Az is sought
for an incompressible material, relationships identical
to (3) can be formulated by substituting SolAz for Si,
where So is the section area at zero stress level.

2.1.3 An approach to the dynamic rheological beha-
viour. - When considering biological materials such
as those constituting blood vessels and many other
bioelastomers, viscoelastic rheological properties must
be taken into account. The principal characteristics
of these properties are revealed by a frequency-
dependent and complex Young’s modulus. However,
in the particular case of blood vessel walls, within a
low and narrow frequency range between 1 and
15 Hz, the imaginary part Im (E) of the complex
elasticity coefficient is of at least one order of magni-
tude smaller than Re (E) its real part [25, 26]. For
describing the law of the mechanical tube behaviour
in such a case (Im (E)  Re (E)) a method could be
found by using relationships (1) to (3) where the Eo-
modulus is replaced by En’ the modulus of the complex
elasticity coefficient. Moreover, it will be assumed

that, with a static longitudinal extension and periodic
time variation of the positive transmural pressure
such as :

the generated strains induce a time variation of the
radius which can be written as [27] :

- - - 
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In (5), Eo and En are the values of the modulus of the
complex elasticity coefficient at co = 0 and co = nwo
respectively, whereas 4&#x3E;n stands for its phase value at
m = ncoo.

This quasi-heuristic relation has been obtained in
order to have a simple expression for R(t) in the case
of periodic pressure excitation with large amplitude.
It gives an accurate relationship whenever either a
small amplitude oscillating pressure excitation or

static stresses of large amplitude are applied.
In the particular case of negative transmural pres-

sure a similar relationship would be :

and

when

2.2 EXPERIMENTAL STUDIES.

2.2.1 Direct measurements on a material sample. -
With a view to comparing various approaches as far
as mechanical properties of duct walls are concerned,
a rheological testing apparatus had to be devised
whereby direct measurement of the characteristics
of a non-linear viscoelastic material could be carried
out. The apparatus we use (as shown in Fig. 1) includes
a vibration electromagnetic excitor which generates
sinusoidal stresses at one end of the sample, for which
measurements are made by means of a strain gauge
load cell. Furthermore, related extensions are moni-
tored through an optical device.
Analog signals are digitized and stored on a data

processing system which enables one to compute
strains, stresses, phase and amplitude of the incre-
mental dynamic Young’s modulus within a frequency
range from 10 - 4 to 102, as well as the static modulus.
To achieve model experiments an elastomeric sili-

cone tube was selected; it is 10 m long and takes a
cylindrical shape when inflated at slightly positive
transmural pressure, with a 10 - 2 m internal radius
and a 5 x 10 - 4 m thickness. Tests which we have
performed on both azimuthal and longitudinal
excised samples, have shown a quasi-linear and iso-
tropic static behaviour up to 30 % elongation, while

Fig. 1. - Schematic diagram of the experimental set-up.
G : low frequency signal generator; A : power amplifier;
Ex : vibration excitor ; temperature control device (tank) :
TH; SAT : signal processor; F : force transducer; D : dis-
placement transducer; Imp : Impression of results; S :
sample under- test.

Fig. 2. - Rheological behaviour of the elastomeric silicone
sample : experimental results.

a) Non-linear behaviour ( f = 10 Hz). The non-linear
effects mainly affect the phase and the amplitude of the
incremental dynamic complex Young’s modulus.
b) Viscoelastic behaviour (uniaxial extension strain 8 =

A - 1 = 0.1 ).
This viscoelastic behaviour is correlated with a quasi-linear
dependency of the Young’s modulus vs. the logarithm of the
frequency.

viscoelastic effects were observed throughout every
dynamic test (See Fig. 2).
From the knowledge of the Young’s modulus, thus

derived, and of geometrical characteristics of the
tube we can theoretically infer correlations between
pressure and diameter on one hand, and between
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pressure and tube section area, on the other. We shall
now proceed to compare such deductions with experi-
mental data obtained as follows.

2.2.2 Measurements of rheological static behaviour
of the tube wall. - In order to achieve experimental
results of static relationships between pressure vs.

section area or apparent diameter, under the same
conditions as those required for propagation experi-
ments (Part II), the tube is placed on a horizontal
plane in a given longitudinal strained state. The
inside of the tube, initially empty of fluid, is then filled
with predetermined volume increments of water.
We can then proceed to infer the internal section

area S of the wall assuming a uniform cross section,
provided we have negligible end effects. Such a condi-
tion has been verified by direct measurements on a
tube of identical section but different length.
Both transmural pressure P (at the lower level inside

the lumen), and the apparent external duct diame-
ter H, are measured by means of a cathetometer.
The results establish relationships of the type P(S)
and P(H) as shown in figure 3 (a, b), H being a pre-
vailing parameter easily obtainable during expe-
riments with hydrodynamic models.

Fig. 3. - Mechanical behaviour of the collapsiblc tube.
a) Pressure-area relationship, compared with the results of a
theoretical model.

b) Pressure-apparent diameter : under the same experi-
mental conditions.

c) Area vs. apparent diameter, and theoretical relationship
taking into account the shape of the section.

Experimental data concerning relation S(H) are
also presented (see Fig. 3c). In such diagrams it is

necessary to define chiefly three ranges :
- A part I where the tube is circular, the relation

S(H) being almost parabolic :

and the thickness being arbitrarily fixed at its initial
value, hi (hi = ho if Âz = 1). Besides, the P(S) rela-
tionship can be approached by the analytic relation (2)

n4 S2
... Rri S20with - = -R4 - S2 .
- A second part where the lumen of the duct is

reduced to a pair of cylindrical beams, both being
parallel and quasi-circular. In this part II, thus deli-
mited, the relation S(H) is again nearly parabolic and
can be written as :

A third area can be ascertained where the duct is
also collapsed, although no contact line materialized
as yet. In this part III the experimental relation p(H)
is noticeably linear. Such a linear variation does not
derive from the hydrostatic pressure effect but its

slope can be attributed essentially to the azimuthal
bending effect of the tube wall. Moreover, for the
lower values of the absolute value of P, the section of
the tube is quasi-elliptic and the S(H) relation can be
approximated by :

Agreement between experimental results, on one
hand, and theoretical curves, on the other, is outstand-
ing (Fig. 3a). It must be remembered that in order to
draw such theoretical curves, the Young’s modulus
value used has been selected in accordance with
results of direct rheological measurements on a wall
material sample. Also, it will be noted that the rela-
tion (3) has been modified, by introducing a Pg cons-
tant factor which takes into account the location of
the pressure measurements on the lower part of the
tube section. It must be pointed out that analytic
relations account inaccurately (or very little) for the
part that connects the previous ones; for instance the
part corresponding to the critical lateral buckling
pressure (the value of which has been shown [26]
to be - Eh/(4 R 3(1 - U2)) in disagreement with the
previous relationship (3)).

2.2.3 Measurements of dynamic rheological beha-
viour. - It has been emphasized that the dynamical
behaviour of such a structure is, to a large extent,
dependent on frequency insofar as Young’s modulus
is frequency dependenx. This dependence, similar to
that of arterial wall material, must not be overlooked.
Therefore, it is worth trying to experimentally assess
how such dependence can be translated to dynamical
pressure-radius relationships.
The experimental apparatus that was set up included

a harmonic pressure generator linked to a sufficiently
small length section (with regard to the wavelengths
of the pressure wave) of the distensible tested tube, so
that propagation effects are negligible. Simultaneous
measurements of pressure and diameters were made,
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for different positive values of mean transmural

pressure. The experiments were carried out with a
harmonic small pressure signal of 1 Hz. One can

verify the validity of equation (5) by computing the
derived dynamic Young’s modulus of the material as
follows :

and

Experimental values thus obtained have been

compared with those directly derived from rheological
tests on material samples (see Fig. 4). We can point
out the quite fair agreement between the results of
both methods, which indirectly validates the above-
mentioned expression (5).

Fig. 4. - Example of data for direct z) or indirect (*)
measurements of dynamic Young’s modulus (1 Hz) as a
function of the uniaxial extension strain E = Â - 1 (rubber-
like silicone tube, cf. characteristic Fig. 3).

In conclusion, the dynamic behaviour of a visco-
elastic tube with reasonably small viscous effect can
be approximately described with an equation similar
to that applied to static behaviour, provided that the
static Young’s modulus Eo is to be superseded by the
dynamic quantity El.

3. Propagation of small amplitude waves.

3.1 THEORETICAL CONSIDERATIONS. - Since a num-
ber of authors have already extensively studied low
amplitude pressure wave propagation in distensible
tubes, we shall only briefly review the subject here.
Whenever the transmural pressure is positive, the

simple geometry of the system enables us to obtain
precise analytical solutions in the case of a thin wall,
and wavelength large compared with the tube radius
[29, 30].
Moreover, theories have been put forth in the case

of thick wall tubes, for which longitudinal bending
resistance and shearing effects can be neglected [31].

A significant result emerging from these diverse
theories can be written as follows : for a given small
amplitude pressure wave (oscillation frequency to,
fluid kinematic viscosity v) associated with a frequency

1/2
parameter value a = R v &#x3E; 10, the thickness

v

v 
i/2 

of the oscillating viscous boundary layer
co

becomes negligible with respect to the tube radius R,
so that the induced flow can be described as a unidi-
mensional potential flow of an inviscid fluid.
With a partially collapsed tube, the complex geo-

metry of the lumen no longer yields simple analytic
answers. However, if the hypotheses of unidimensional
flow and an inviscid fluid are made, and longitudinal
tapering effects neglected, then the phase velocity C
of the pressure wave can be deduced from knowledge
of the pressure section P(S) relationship, through the
classical equation of wave phenomena in continuum
media (of specific mass) :

Such an equation, valid whether with positive or
negative transmural pressures, raises issues that hinge
on the use of the P(S) relationship when considering

dynamic effects. Indeed, in (8) the dynamic US- expres-y ( ) y Qj p

sion rather than the static one should be used. In the
case of positive transmural pressure, that leads to the
classical Moens-Korteweg expression for the wave
velocity i.e. :

where Ed is the dynamic Young’s modulus value for
the wave frequency m considered, while h stands for
the thickness of the wall. In other words, we assume
that for small dissipative viscoelastic effects (imaginary
part of the viscoelastic Young’s modulus negligible
compared with its real part) one may write :

Therefore, the relationship (8) will be written as :

Eventually a further point should be raised concern-
ing the previously-mentioned analytical relationship
used to represent static P(S) relationships. Taking into
account the remarks concerning dynamic effects (11)
it is possible from such relations (2, 3) to infer the phase
velocity C of pressure waves :
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where

It will be noted that, on the diagram representing
C S

C 1 versus S as drawn on figure 5 (for À,z = 1, thereC 
( Z )

is a theoretical discontinuity corresponding to a

change of the tube law : in the vicinity of so - 1. Ing y 
S0

particular, noticeable in this domain is the inadequate
fit of the analytical relations (2, 4) with experimental
P(S) data. It is hence necessary in this case around
P = 0 to calculate C (S) from ( 11) using an experimen-
tal polynomial expression for P(S) obtained by
fitting a curve to the data.

Fig. 5. - C(S) curve inferred from theoretical relationships
(12) for Àz = 1.

3.2 EXPERIMENTAL RESULTS. - When studying wave
propagation along distensible tubes with positive
transmural pressures where the lumen presents a cir-
cular section, the experimental methods that are used
are generally straightforward. They usually gave accu-
rate data which were easy to interpret and a fair agree-
ment was generally found between such data and theo-
ries previously mentioned [32-35]. On the contrary, as
far as partially collapsed tubes are concerned, expe-
rimental processes are far more difficult to put into
effect, since the highly non-linear properties of the
system force the experimenter to characterize propa-
gation phenomena of pressure waves using extremely
low amplitude ( 102 Pa). For instance Bonis and
Ribreau [36] have measured wave speed in initially
elliptical collapsible tubes. The method they have
used (fluid anemometry techniques), the material
properties (purely elastic) of the tube they have tested
and the geometry of the apparatus (annular external

duct) make difficult a comparison between the results
they have obtained and the results obtained in the
present work. Three different experimental methods
we used will be now reviewed.

3.2.1 Propagation of sinusoidal pressure waves of low
amplitude. - An electromagnetically driven pump
was used to generate pressure waves of small enough
amplitude that the unsteady induced stress in the wall
can be assumed as resulting from a locally linear
P(R) relation. If the system can be considered as free
from reflection, wavelengths of the one-way propa-
gating pressure waves can be measured by taking
photographs of the instantaneous apparent profiles
of the tube. Knowing the frequency co of the wave, the
phase velocity is easily obtained for such a medium
of sufficiently slight dispersion.

Nevertheless, it is necessary in such a method to get
rid of reflected waves by a large increase of the test
section length and the addition of a matched section
downstream (with characteristic impedance). More-
over, the wall displacements (mostly radial due to the
longitudinal friction between the tube and the support)
being extremely small, they cannot be accurately
measured, since the static profile of the tube is not
exactly uniform.

3.2.2 Propagation of a pressure impulse of low ampli-
tude. - Two displacement transducers (optical ones,
for instance) were located on either side of an arbi-
trary position where the impulse wave was generated
(Fig. 6a), at the respective distances of 1 and 2 L Assum-
ing a non (or a slightly) dispersive medium, and no
fluid motion initially, it is then possible to compute
the wave speed knowing the time delay i between the
responses Ht(t), H2(t) of the two transducers. How-
ever i can be small compared to the time duration
of the impulses, and can be difficult to evaluate since

Fig. 6. - Principle of the experimental set-up used to

measure the wave velocities.
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H2(t - T) is different from Hl(t), depending on the
nature of the impulse (symmetry) and the dispersive
properties of the medium. It may then be necessary
to correlate H, and H2 in order to evaluate t. Such
a method means that we do not need to know exactly
the initial time of the impulse.
3.2.3 Finite amplitude wave propagation as a super-
position of small amplitude wavelets. - When consi-
dering a finite amplitude pressure wave propagating
and passing through two points A and B, with AB = I,
(Fig. 6b) and assuming this wave to be a super-
position of small amplitude waves, the velocity of
each wavelet can be computed as :

The related experimental results are shown figure 7.
From the experimental data (Fig. 3b), we have com-
puted with (11) the wave speed as a function of the
pressure and hence of H. The best agreement is found
for positive transmural pressures. For lower values
of the pressure, the inhomogeneity of the shape of the
tube makes it difficult to obtain a very precise mea-
surement of H and hence of the wave speed. The lack
of data for the lowest values is related to the experi-
mental inaccuracy of the wave speed measurements
in this range of pressure where the tube is collapsed
in two separate ducts. Due to the relatively large
ratio between the thickness and the radius of the tube,
and the scale of the inhomogeneities, and due to the
damping of the waves, the inaccuracy of the measu-
rement of the wavelengths is too large to allow any
interpretation of the results in this range of pressure.

4. Conclusion.

In the past, a great deal of progress had been made in
the quantitative modelling and understanding of
wave phenomena with fluid inside inflated elastic
tubes. However, a generalization of such studies to
the case of collapsed viscoelastic tubes was missing.

Fig. 7. - Wave speed as a function of apparent diameter H.
9 Values obtained using the theoretical relationship

S E (OJ) AP..C 2 = - + AS; ’* experimental results (small ampli-
p 0 AS

tude wave propagation); 0 experimental results (finite
amplitude wave propagation).

In order to take into account the viscoelastic pro-
perties of the tube wall material, and to give an inter-
pretation to the mechanical behaviour of the vessel,
a dynamic Young’s modulus had to be introduced in
place of the static modulus. Moreover when dealing
with a tube in its collapsed state, we can suggest using
such a treatment, which is based on the notion of

dynamic distensibility of the tube and its relation to
the speed of propagation of pressure waves. Never-
theless, the basic hypothesis all along the development
of such a theory is the linearization of the incremental
dynamic rheological behaviour which implies appli-
cation to the wall material of small, time-dependent
strains and stresses. In other words, we were necessa-
rily placed under the conditions of small amplitude
wavelet propagation. We have experimentally shown
then that a fairly good agreement arises from direct
rheological tests, and indirect wave propagation
velocity measurements.
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