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Mean-field and spin-rotation phenomena in Fermi systems :
the relation between the Leggett-Rice and Lhuillier-Laloë effects

K. Miyake (*), W. J. Mullin and P. C. E. Stamp (~)

Laboratory for Low Temperature Physics, Hasbrouck Laboratory, University of Massachusetts, Amherst,
MA 01003, U.S.A.

(Reçu le 5 novembre 1984, accepté le 24 janvier 1985)

Résumé. 2014 On montre que le terme responsable des effets de rotation des spins identiques dans l’intégrale de colli-
sion de la théorie de Lhuillier et Laloë (LL) d’un gaz quantique non dégénéré est équivalent, dans la limite des sys-
tèmes dilués, au terme de précession dans le « champ moléculaire » qui donne lieu à l’effet Leggett-Rice (LR) dans un
système de Fermi dégénéré. Cette équivalence est établie (a) en considérant le terme de rotation des spins à basses
températures et (b) en obtenant des équations hydrodynamiques valides à toute température à partir de l’équation
de Landau-Silin dans l’approximation de l’onde 1. Le facteur 03BC de rotation des spins obtenu par (b) est en accord
avec la valeur de LR à basse température et de LL à hautes températures. La constante de diffusion Do ainsi obtenue
possède le comportement correct à basse température, y compris le facteur standard de correction de champ
moyen; à hautes températures, Do à la forme donnée par LL, multipliée par un facteur de correction de champ
moyen. L’importance de ce facteur est mise en lumière par le fait qu’il donne le deuxième coefficient du viriel pour la
pression.

Abstract 2014 The term in the Boltzmann equation collision integral causing identical-particle spin rotation in the
Lhuillier-Laloë (LL) theory of a non-degenerate quantum gas is shown to be equivalent in the dilute limit to the
molecular field precessional term giving rise to the Leggett-Rice (LR) effect in a degenerate Fermi system. This equi-
valence is shown (a) by considering the spin-rotation term at low temperatures and (b) by deriving hydrodynamic
equations valid for all temperatures from the Landau-Silin equation in the s-wave approximation. The spin-rotation
factor 03BC resulting from (b) is found to agree with the LR value at low temperatures and with the LL value at high
temperatures. The diffusion constant Do that results has the proper low temperature behaviour, including the
standard mean-field correction factor ; at high temperatures Do has the LL form times a the mean-field correction
factor. The importance of the missing mean-field term is illustrated by showing that it gives rise to second virial
corrections to the pressure.
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1. Introduction

Considerable study of polarized hydrogen and helium
systems has been stimulated by the description by
Lhuillier and Laloe [1] (LL) of spin-rotation pheno-
mena in Boltzmann gases. Such effects, which are the
result of two-particle exchange scattering events,
provide a theoretical background for recent observa-
tions of spin waves [2] in Hi, relaxation times [3] in
gaseous ’HeT, and spin diffusion [4] in 3HeT-liquid
4He mixtures.

(*) Present address : Department of Physics, Nagoya
University, Nagoya 464, Japan.

(t) Present address : Department of Physics, Univ. of
Lancaster, Lancaster LA 1 4YB, U.K.

Around 1970, Leggett and Rice [5, 6] (LR) predicted
that spin-echo measurements of diffusion would show
molecular-field effects. The hydrodynamic equations
derived by LL for the magnetization and spin currents
of Boltzmann gases are- identical in form to those
derived from Landau theory by LR for strongly
interacting degenerate Fermi fluids.

The relationship between spin-rotation and mole-
cular-field effects has remained somewhat nebulous

although the analogies between them have led to a
widespread feeling that they must be closely related
Here we attempt to make explicit the relationship.
We find that in dilute systems the two effects do
indeed have the same origin. For dense systems such a
clear statement cannot be made. Before discussing
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how we approach this problem, we review some of
the details of the two phenomena.

Lhuillier and Laloe [1 ] investigated the scattering
of two quantum particles and the implications that
their results have on the collision integral in the
Boltzmann equation. After a particle of polarization S
has been scattered by a target S’, the polarization of the
transmitted wave is found to have precessed about the
constant direction of S + S’. This phenomenon occurs
even when the interaction potential is spin indepen-
dent ; it is a purely quantum effect arising mainly
from the interference of the transmitted wave and the

exchange portion of the scattered wave in the forward
direction.

If the s-wave scattering length is a and the de Broglie
wavelength of the particles is A, then the cross section
for this interference scattering is T - Aa. For T to be
important relative to the other scattering processes of
cross section a - a2, one must have T/ a - Ala &#x3E; 1.
This condition implies having low temperature. How-
ever, since these results are used in conjunction with an
analysis of transport via the kinetic equation for a
Boltzmann gas, the average density n must be small
enough for the validity of that description. It turns out
that there is a fairly wide experimental window such
that these conditions a  A  n - ’ /3 are satisfied.
The transport properties of a non-degenerate gas

depend crucially on two-body scattering which enters
into the collision integral of the Boltzmann kinetic
equation. One can see intuitively that, in a spin-echo
or spin-wave experiment, spin-rotation scattering is

important .because spins will approach each other
while polarized along different axes. In the spin-echo
experiment magnetization in the z-direction is tipped
by an angle 4&#x3E;. A field gradient along z causes a helical
spin pattern. Spins from different regions diffuse

together and collide while canted with respect to one
another. Spin rotation then affects the rate at which
magnetization is transported through the gas. Spin
waves can be set up by the spin-echo procedure with
a small tipping angle. They propagate via the spin-
rotation process.

Hydrodynamic equations describing the evolution
of the spin current J and the magnetization density M
of the gas have been derived by LL from the kinetic
equation. Spin rotation introduces a term pJ x M
into the equation for OJIOT. In a spin-echo experiment
this term results in a precession of the spin current
about the magnetization leading to a diminution of the
effective diffusion constant and a phase shift of the
echo. These effects have been observed [4] in experi-
ments on dilute solutions of 3He in superfluid 4He
above the degeneracy temperature of the 3 He system.
The term pJ x M also leads to the coherent spin

oscillations originally predicted by Bashkin [7] and
then by LL and further examined theoretically by
Levy and Ruckenstein [8]. These spin waves have been
detected [2] in polarized atomic hydrogen by observ-
ing the free induction decay. In another experiment

a coupling of the spin waves to the transverse magneti-
zation leads to a frequency shift of the spin-spin relaxa-
tion time. This latter phenomena has been observ-
ed [3] in 3He gas polarized by optical pumping tech-
niques.
Note that LL have predicted that spin-rotation can

occur in either Fermi or Bose systems; the effect has
now been observed in both of these.
The coupled hydrodynamic equations for J and M

derived by LL have exactly the same form as those
derived by LR for a degenerate Fermi fluid. This latter
derivation was based on the Landau-Silin (LS) equa-
tion [9-11 ] for Fermi liquids. The implications of this
theory for a spin-echo experiment included, of course,
the impeded diffusion and the spin-echo phase shift
mentioned above. Spin waves had been predicted
earlier by Silin [9]. The basic physics of these processes
in degenerate fluids involves the precession of a spin
about the « molecular fields created by the back-
ground fluid through which the spin moves. The
molecular field effects appear in the drift term of the LS

equation in contrast to the non-degenerate case dis-
cussed above in which spin rotation terms originate
from the collision integral.
The change in diffusion constant predicted by LR

was observed [12] in experiments on liquid 3He well
below the Fermi temperature. The molecular field

parameter to which the p of LL is analogous depends
on the Landau parameters Fo and Fa1. That experiment
provided the first determination of F1. Spin waves in
the degenerate regime have been observed in electron
systems [13] and more recently in liquid ’He [14]
and in 3He-4He mixtures [15].
The problem of sorting out the relationship between

spin-rotation and molecular-field effects is approached
here in two ways. First, in section 2, we consider the
low-temperature limit of the spin-rotation term in the
LL collision integral and compare it with the appro-
priate term in the Landau-Silin drift term. These are
found to be identical in the dilute limit.

The second approach (Sect. 3) is to consider the

applicability of the Landau-Silin kinetic equation, in
the dilute or s-wave limit, at arbitrary temperatures.
By use of variational and relaxation-time approxima-
tions we are able to derive hydrodynamic equations for
J and M valid for all temperature ranges. The equa-
tions and the expressions derived from them

for p and for the longitudinal diffusion constant Do
are found to agree with those of LR in the degenerate
regime and with those of LL in the Boltzmann statistics
limit This result verifies the correspondence, in the s-
wave limit, of the physical origins of the two limits. We
find, however, that there is a numerically small cor-
rection to Do that occurs as expected in the degenerate
limit, but that persists unexpectedly into the Boltzmann
limit. This effect arises from a mean-field term in the
Landau-Silin equation other than the spin-precession
terms. An analogous term is missing in the LL forma-
lism.
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For temperatures below the Boltzmann limit we
find statistical corrections to Do that appear in the
form of a virial expansion. This result suggests that we
study the pressure as it can be derived from the Lan-
dau-Silin kinetic equation. This investigation allows
us to see the importance of the « other » molecular-
field term - without it the second virial coefficient
would be incorrect. This work is reported in the

Appendix.
Some of the points we make in this paper seem

somewhat implicit in the work of Levy and Rucken-
stein [8]. Meyerovich [16], on the other hand, expli-
citly applies the Landau-Silin equation to the dilute
Boltzmann limit. However, our work goes a bit beyond
either of those applications in its point of view and
in deriving results valid for all temperatures.

Before launching into the details of our discussion
it is useful to make some clarifications relative to three
of the length scales occurring in the discussion. These
are the average interparticle spacing ro = n-l/3; the
thermal wavelength A; and the potential range, a.
The non-degenerate state is described by Boltzmann

statistics and occurs when A  ro. This state can be
further subdivided depending on whether A is larger
or smaller than a. In the first case pair scatterings of
identical particles must be described quantum mecha-
nically and exchange effects (leading to spin-rotation,
for example) are important. This is the situation
studied by LL. If A  a then the gas is completely
classical.

In the degenerate regime /t &#x3E; ro and the de Broglie
wavelength becomes, for Fermions, the inverse Fermi
wave vector kF ro. Within this state we can distin-
guish dilute and dense Fermi systems depending on
the size of kF a.

It is easy to become confused by these length scales
when considering partial wave expansions. Such

expansions are generally series in ka. For the Boltz-
mann gas k - Â. - 1 and many partial waves may be
needed to describe a simple two-body interaction.
In this limit the importance of many-body effects

depends on other parameters, namely Alro or a/ro.
By contrast, in a degenerate Fermi system the partial
wave expansion is a series in kF a - alro. If a dilute
system is under consideration so that many-body
effects are negligible then it makes no sense to go

beyond s-wave scattering terms because many-body
effects would be as important as the higher-order par-
tial waves.

2. Low-temperature limit of the spin-rotation term.

As an introduction to the subject of spin-rotation we
consider here both the LL and LR formalisms and
show how the precessional terms of each correspond
at the kinetic equation level. We do this by consider-
ing the low-temperature limit of the LL term.
The Boltzmann equation satisfied by the operator

p(r, p) (the Wigner transform of the one-atom density
operator - a 2 x 2 matrix in the spin - 1/2 case)
has been shown by LL [1 J ] to be

The parameters r, p are position and momentum
variables, respectively, throughout the gas; n(r, p) =
Trsp;n p(r, p); e = ± 1 for Bosons and Fermions,
respectively. We refer the reader to reference [1 ] for the
definitions of the various momenta and the cross
sections.

If we consider the case where p can be diagonalized
in the same spin basis for all r, then the only terms
surviving in (1) are those containing the standard cross
sections ak and a". k However, the term we are most
concerned with here is the last, containing ’r’wd(k).
This cross section, in which

can be expressed in terms of phase shifts 6, as shown
by LL : 

-

In the low-energy (low-temperature) limit

where a is the s-wave scattering length.
To see the relationship between (1) and the equations

of Leggett [6], we multiply (1) by a Pauli matrix a
and take the spin trace to get an equation for up =
Trs(ap(r, p)). This calculation has been carried out by
LL who find

where Ip is the trace of a times all the terms in the
collision integral other than the one in Tf"w’d which has
now been transferred to the left side of equation (5).
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The LS equation for the same quantity, but in the
degenerate limit, and as written by Leggett [6], is

where the effective magnetic field is

with y the gyromagnetic ratio and H the external
magnetic field. The second term involving fpp,, which
is the coefficient of a · a’ in Landau’s interaction

function, is the « molecular field ». If we take H = 0
as in LL, then the last term on the left side of equa-
tion (6) is

This is seen to have the same form as the spin-rotation
term of equation (5) and will be identical to it if

where we have taken 8 = - 1 for Fermions. In the
dilute low-temperature limit, with equations (2) and
(4), equation (9) becomes

Expression (10) is indeed the appropriate relation for
the antisymmetric part of the Landau interaction
function in the dilute limit [17]. Note that, even if
the polarization is not small, the function fpp,, defined
by equation (7) will remain the coefficient of 6 0"
in the Landau Fermi liquid interaction function j18].
These results make it reasonable to suppose that,

in the dilute limit, the spin-rotation effect of LL and the
molecular-field precession term in the Leggett-Rice
effect arise from precisely the same physical principles.

3. The Landau-Silin equation at arbitrary temperature.

In order to further investigate the relationship between
the LR formalism for degenerate systems and the LL
relations for Boltzmann gases, we develop analogous
relations valid, in the s-wave limit, for all temperatures.
Our approach is based on the Landau-Silin kinetic
equation. In the dilute case there is no reason to
believe that this kinetic equation should be restricted
in validity to the degenerate regime [16]. Using this
fact we are able to see how the degenerate treatment
goes continuously over into the non-degenerate limit

and how completely or not the results agree with those
of the LL Boltzmann equation.
Three points are relevant here :

(a) If we go beyond low T, Fermi liquid theory in
general and the Landau-Silin equation in particular
are not valid for an arbitrarily dense fluid. For the
dilute system, however, particles and quasiparticles
are identical and finite lifetime effects are not a pro-
blem. Dilution in the degenerate regime limits us to
considering only s-wave interactions as mentioned
in the introduction.

(b) If a transverse (spin-echo) experiment is carried
out on a highly polarized system, even at very low
temperature, quasiparticles will find themselves far
from the Fermi surface and Fermi liquid theory will
not provide a valid description except, again, in the
dilute case [19]. (As an example, think of the situation
in a system having a large up-spin Fermi sphere and
a small down-spin sphere when a few of the up spins
are tipped over.)

(c) It follows that a continuous connection between
the spin-rotation phenomena of LL and the mean-
field effects of LR cannot be made at any level beyond
the s-wave interaction approximation. To go beyond
the s-wave approximation to the interaction function
f pp- in the degenerate state is to include many-body
effects [17] as discussed in section 1. But the Boltzmann
equation approach of LL is by nature a strictly two-
body theory. Although at high temperatures two-body
scatterings may be described properly by many partial
waves, keeping any beyond the s-wave in making a
continuous transition of the theory to very low T
would be inconsistent.
To proceed we take equation (6) to be valid at all

temperatures in the dilute limit. The basic assumption
involved in deriving equation (6) is that third or

higher order terms in bn, Or, or up are negligible [b,11 ].
The discussion is limited by this assumption to low
polarization. To go beyond such a restriction coupled
equations for the distribution function np and up
would have to be solved [6, 9]. As equation (6) stands,
the distribution function n p is the equilibrium Fermi
function.

Upon assumption of the s-wave relationship, equa-
tion (10), for fpap, we find for the effective field equa-
tion (7)

where n is the density, f is the interaction constant
given by

and
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is the polarization. M is defined to range from - 1

to + 1. In general, we have

with Vpi = OsplOpi, the particle velocity. Putting these
results in equation (6), and neglecting the small effect
of the field gradient [6], we find

The last term on the left side of (15) is the molecular
field precessional term which, as we have seen in
section 2, is the same as the spin-rotation term of LL.
The remaining drift terms in equation (15) do not
exactly correspond to those of LL. The difference is
the other molecular field effect (the second term in
square brackets of Eq. (15)). We will follow this term
through the derivation of the spin-hydrodynamic
equations.

First integrate equation (15) over momentum to
find

where

is the i th component of the spin current carrying pola-
rization M (the notation is such that, for example,
JZ(Mx) is that part of the current of x-polarization,
travelling in the z-direction). Equation (16) is just the
equation of continuity for a spin current and is
identical with the LL and LR results.
To find an equation for the time dependence of J

we make a variational approximation. We take

where ii are the Cartesian unit vectors X, y, and z
and the C,. are variational parameters. If V is the

volume, the constant a is given by

For the degenerate limit a = (2/3) 6p; in the Boltz-
mann case a = kT. With this form the magnetization
is properly located at the Fermi surface for the dege-
nerate system and the form reduces to that of LL [1] in
the Boltzmann case because then OnplOEP -+ pn".

Using equation (18) it is easily verified that equation
(13) is satisfied and that, by equation (17),

where Cli is the ith component of the vector Cl.
Multiplication of equation (15) by vpi and integra-

tion over p, together with use of equations (17)-(20),
leads to the result

in which

Since the form of l, and hence ai(M), are not actually
known, we follow Leggett’s procedure [6] and make
the assumption

where ip is a diffusive relaxation time. The quantity
Ip which appears in equations (6) and (15) and which
determined lh(M) arises from the density matrix
form of the collision integral which would be the
appropriate generalization of the LL collision integral.
Such a generalization does not yet exist (1) and so we
are unable to justify the form of equation (23) or to
give a rigorous expression for iD(T). If we assume is
is the same relaxation time that occurs in longitudinal
spin diffusion then we can identify it in special cases
from the general form of the diffusion constant. In
the classical limit we know that

Use of this form and the results for Do of reference [1]
give i p in the s-wave limit as

Similarly, in the degenerate case, an expression for ip

(1) A form for a collision integral [20], applicable to the
degenerate case, and based on results of Wolfle, has been
used by Pal and Bhattacharyya to study the Leggett-Rice
effect. It is not obvious that all effects due to the non-diagonal
character of the distribution function have been included,
and it would be interesting to compare this form with one
arrived at by a derivation analogous to that of reference [1].
Unfortunately such a derivation is not at all straightfor-
ward [21].
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could be found from the work of Hone [22]. We do not
need this form explicitly and do not quote it.

Equation (17) has the steady state solution [6]

where

Equation (26) is the form for the spin current that
arises in both the degenerate [6] and Boltzmann cases.
Our result spans both those regimes. We can now
compare our results for p and Do with those of refe-
rences [1] and [6]. In the degenerate limit Leggett
shows

and

In the s-wave case fo = - f, fl = 0 and FalB = N(o),a
where the density of states at the Fermi surface is given
by

With these equalities and a = 2/3 SF it is easily seen
that the results of equations (27) and (28) are identical
with those of equations (29) and (30), respectively, for
the dilute degenerate case. This is no surprise, of course,
because our result is just a special case of Leggett’s
derived in a somewhat different way. Note that the
mean-field correction factor (1 + F0a) of equation (30)
appears as (1 - 3/2 nflBF) in equation (28).

In the Boltzmann gas limit substitution of equa-
tion (25) into equation (27) yields

This expression agrees with the s-wave approximation
for p of LL [1]. Using a = kT we also find

This expression differs from the usual high temperature

result, equation (24), by the factor (1 - flnf ). This
correction, which is numerically very close to one,
arises from the other mean-field term mentioned in
the paragraph after equation (15). It is this term which
also gives rise to the (1 + Fo) factor in the degenerate
case. While numerically close to one this mean-field
correction ought, in principle, to be present in a

complete two-body analysis such as that given by
LL. Laloe has suggested [21] ] that the LL analysis
might indeed give rise to such a term if collisional
retardation was taken into account in an LL-type
analysis.
A small digression concerning the presence of such

molecular-field terms in a microscopic derivation of
the Boltzmann equation is perhaps appropriate here.
Kadanoff and Baym [23] have shown that usual forms
of the Boltzmann equation result if self-energy terms
on the left side of their Green’s function equation of
motion are treated differently than those on the right
side. While both of these sets of self-energy terms arose
from a group of collisional integrals they were segre-
gated onto separate sides of the equation because the
authors saw their roles as falling into two classes.
Terms on the left side were said to describe « kinetic
effects of the potential, i.e., how the potential changes
the energy-momentum relation from that of free

particles... », while those on the right describe «the
dynamical effects of collisions, i.e., how the collisions
transfer particles from one energy-momentum confi-
guration to another ». The kinetic terms give rise to
the mean-field terms of the Landau equation.

It is interesting then that the LL formalism simi-
larly results in two types of collision terms : those
giving rise to entropy production and those that do
not [1]. All of the latter are introduced by particle
indistinguishability. The analogy with the findings of
reference [22] are quite striking and suggest strongly
that further investigation may show that the
« missing » mean-field term can result from the LL
formalism.

In this regard it is also noteworthy that the LL
treatment gives rise to spin-rotation terms [1, 24]
which do not appear in the high temperature limit of
the Landau-Silin equation. Among these are contri-
butions to p from lateral scattering. These extra terms
are of order (aj À)3 at low temperatures.

Returning to our discussion of equation (33), we
note that the term fInfis of the order of magnitude of a
virial coefficient correction. Of the same order or

larger are statistical corrections to the high tempera-
ture value of a of equation (19). The next order cor-
rection in nÀ 3 can be shown to give the result

Obviously we could provide exact results for a valid
through all temperatures including those intermediate
between degenerate and Boltzmann states. However,
this is not very useful without having a comparable
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expression for LD(T) valid for all T. If such a general
TD were available it might provide a theoretical basis
on which to evaluate the results of the above-men-
tioned experimental measurements [4] of tt and Do
in dilute solutions of 3He in 4He. In those experiments
deviations from the LL predictions were observed as
the temperature was lowered from the Boltzmann
region to just above the Fermi temperature.
We note that in the s-wave case there are no statis-

tical corrections contained in the expression for tt,

equation (27). The only temperature dependence is
that contained in LD(T).
The virial expansion form of equation (34) suggests

that we attempt to derive virial corrections to the
pressure from the kinetic equation. This is done in
the Appendix where we find the mean-field term to
play an important role.
We could derive more elaborate expressions

containing many partial waves for p and Do in the
Boltzmann limit by substituting a more complete
expression (See Appendix, Eq. (A 16)) into the Landau-
Silin equation. This procedure would not be inconsis-
tent with the claims of paragraph (c) at the beginning
of this section. The resulting forms for p and Do
would be valid only for the Boltzmann limit and no
connection could be made for the partial wave expres-
sion with degenerate results beyond just the s-wave
term. We have not derived such expressions four p
and Do ; however the derivation for the pressure in the
Appendix illustrates this procedure.

4. Summary and discussion.

By comparing the low-temperature limit of the spin-
rotation term of the LL kinetic equation to the mean-
field spin precession term of the Landau-Silin equation
we have shown that these two terms are identical in
form for a dilute system. This result indicates that they
arise from the same physical effect. From the detailed
derivation of the effect given by LL it is known that
spin-rotation arises from the interference of the

exchange part of the scattered wave with the trans-
mitted beam, or with the scattered wave itself, in the
interaction of two spins polarized along different
axes. The mean-field spin precession term of the LS
equation arises in the drift term while the corres-
ponding spin-rotation term of LL arises from the
collision integral terms which contain commutators
of the distribution matrix. These terms have time-
reversal behaviour opposite to the usual collision
terms, and as LL have shown [1], have nothing to do
with entropy production. Thus it is not surprising that
they can be transformed into drift terms _as they
appear in the LS equation.
By considering the extension of the LS equation for

the dilute Fermi system to arbitrary temperatures we
have been able to derive hydrodynamic equations for
J and M and expressions for p and Do that encompass
both the LL and LR results, at least in s-wave approxi-

mation. That the results agree with those of both
formalism proves that, in this limited situation at
least, the physics involved in each is identical.
The Boltzmann limit for the diffusion constant

found from the LS equation shows the effects of mean-
field terms not contained in the LL expressions. We
have shown that such a term is important in giving
rise to the correct second virial term in the pressure.
Our work has shown how it might be possible to

construct a theory of spin-rotation valid for arbitrary
temperature if certain advances were made. The
first of these involves finding zp at all temperatures
including those intermediate between degenerate and
Boltzmann limits. An analytic expression for TD seems
unlikely but a numerical one might be feasible. The
second improvement necessary would be the exten-
sion of the LS equation to arbitrarily large polariza-
tions. This involves not only solving coupled equa-
tions for np and orp as explained in section 3, but also
generalizing the interactions as discussed by
Meyerovich [16].

Appendix.

Here we show how an expression for the gas pressure
may be derived from the Landau kinetic equation
applied at arbitrary temperature. We find many-body
statistical corrections to the pressure but a second
virial potential correction. The latter correction is seen
to be a result of the mean-field term present in the
Landau equation and illustrates that such terms can
be important in the Boltzmann limit as well as in the
degenerate case. Many-body potential corrections are,
of course, not found because we must make dilute case

assumptions for the Landau equation to be valid out
of the degenerate region.
The Landau kinetic equation, for the case of dia-

gonal density matrix p (with elements np(1) is

Within Landau theory we write

The momentum conservation hydrodynamic equation
can be derived [ 11 from (A .1 ) by multiplying by p,
integrating over p, and summing on (1. The result is

where the momentum density is
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and the stress tensor is

In (A. 5), we have

S,,p arises directly from the molecular-field effect,
namely, the last term on the left side of equation (A .1 }.

Equation (A. 6) is easily seen to give

where 7 is the average single-particle kinetic energy.
At high temperatures if we keep the first two terms

in the expansion of E in nÀ 3, we find

In the same limit we can replace npa in equation (A. 7)
by the Boltzmann distribution

where

Then we find

with

Since flaP is diagonal the hydrostatic pressure at
high temperatures is just

where

Vetrovec and Carneiro [24] have shown that, in the
dilute limit fpp- can be written in terms of scattering
phase shifts 61 as

from which, as they indicate, it follows that (A. 15)
agrees with the standard phase shift expression [25]
for the second virial coefficient.

If we are able to make an s-wave approximation we
can develop an expression for P valid for all tempe-
ratures. Write

Then

for low polarization. Thus

For high T this result is an s-wave version of equa-
tion (A. 14). On the other hand for low T, using
E = 3/5 BF, we get

The first term is the Pauli pressure. The last is the
second virial potential correction. We could get
many-body potential corrections valid at low T by
considering more general forms of f;;’.
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