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(Reçu le 24 juillet 1984, accepté le 15 novembre 1984)

Résumé. 2014 Nous étudions l’effet du couplage entre déformation du front solide-liquide et convection solutale sur
la position de la bifurcation à partir de l’etat plan quiescent pour un alliage binaire dilué soumis à un processus de
solidification directionnelle. Nous développons un traitement de perturbation du couplage entre les bifurcations
« nues » 2014 correspondant aux instabilités de Mullins-Sekerka et de convection solutale classiques. Nous montrons
que le déplacement de la bifurcation de Mullins-Sekerka est extrêmement faible aux valeurs usuelles du gradient
thermique appliqué, et calculable à partir de l’expression de perturbation du 1er ordre. Le déplacement de la
bifurcation convective, quoique plus important, peut aussi s’obtenir, dans ce domaine de gradients thermiques,
avec une bonne précision, par le calcul au premier ordre. Nous donnons une interprétation qualitative de ces
résultats en termes d’un nombre de Rayleigh effectif et de l’écart entre les vecteurs d’onde critiques en l’absence de
couplage.

Abstract 2014 We study the effect of the coupling between front deformation and solutal convection on the position
of the bifurcation from the planar quiescent state of a dilute binary alloy submitted to directional solidification.
We set up a perturbation treatment of the coupling between the « bare » (Mullins-Sekerka and solutal convective)
bifurcations. We show that the shift of the Mullins-Sekerka bifurcation is extremely small at usual values of the
applied thermal gradient, and is accurately predicted by the first order perturbation expression. The shift of the
convective bifurcation, though much larger, can also be calculated with very good accuracy in the same range of
values of the thermal gradient with the help of the first order approximation. We give a qualitative interpretation
of these results in terms of an effective Rayleigh number and of the mismatch between the critical wavevectors
of the uncoupled system.
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1. Introduction.

Binary mixtures submitted to directional solidifica-
tion (a growth mode in which the solid phase is pulled
at an imposed constant velocity V in an external
thermal gradient) are well known to exhibit a morpho-
logical instability which was first analysed, in the
absence of gravity, by Mullins and Sekerka [1] :
beyond a threshold velocity, the (previously planar)
solid-liquid front develops a periodic « cellular »
deformation.

In such a setup, the system is submitted to an
external thermal gradient. Moreover, solidification

produces, at the interface, an excess (or defect) of
solute concentration, the diffusive evacuation of
which induces a concentration gradient ahead of the
front in the liquid phase. As is well known, in the
presence of gravity, each of these gradients induces
buoyancy forces which may give rise to a convective
instability.
We will only consider the simplest geometry, where

the solid is pulled vertically and the melt is not stirred.
The three above-mentioned instabilities then give rise
to horizontal temperature and concentration gradients
which couple the velocity field and the surface defor-
mation. One therefore expects the corresponding
bifurcations to feel the influence of this coupling : the
Mullins-Sekerka (MS) bifurcation must be shifted

by the presence of gravity, while the convective ones
must depend on the deformability of the interface.

This question was first raised by Coriell et al. [2],
then reconsidered by Hurle et al. [3] who neglected
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thermally-induced convection. This assumption is

obviously useful : indeed, the theoretical formulation
then becomes much less heavy, which helps to dis-
tinguish and analyse the main physical features of
the problem. Coriell et al. [2] have shown that it is

justified, except at very small pulling velocities, if one
assumes that the temperature gradient is stabilizing :
this means, for most materials - for which OPIOT  0
at the melting temperature - pulling the solid down-
wards. We will from now on follow Hurle et al. [3],
and assume that ap/aT = 0; i.e., we only consider
solutal convective effects, assuming that the solutal-
induced buoyancy force is destabilizing.
The complexity of the problem led both Coriell

et al. [2] and Hurle et al. [3] to calculate the position
of the coupled bifurcations numerically. It appears
that their results exhibit a simple physical feature :
they find that the shift of the MS bifurcation due to
gravity is very small, except for extremely small
values ( 10-2 K/cm) of the external temperature
gradient.

This naturally leads one to think that the relevant
associated physical coupling is weak. Thus, in the
present article, we try to develop further the analytic
approach to this problem, our aim being to extract
the relevant physical parameters in the various

regimes, which will enable us to define regions of
the parameter space where the effective couplings are
small enough for appropriate perturbation expan-
sions to be valid.

In particular, we will prove that, as can be expected,
the convective bifurcation is shifted by the coupling
- as well as the MS one - contrary to what is

implied by the analysis of reference [3].
The physical reason for the weakness of the effective

coupling is rather simple. Let us assume that the
external thermal gradient is fixed. For mixtures of
two given materials, the remaining external parame-
ters are the pulling velocity V and the initial concen-
tration Coo. One can define, for such systems, two
« uncoupled » bifurcations :

(i) the «pure morphological » one, ie. the MS
bifurcation at zero gravity;

(ii) the « pure convective » one, i.e. the convective
bifurcation in the liquid phase ahead of a growing
solid with a planar non-deformable surface.

These bifurcations correspond, in the (Coo, V)
plane, to two curves (see Fig. 1) which have a single
intersection at a « crossing point » (VO, Coo,0). It is
only the regions labelled (1) on figure 1 of these
curves which give rise to the curve describing the
bifurcation of the real (coupled) system from the
planar quiescent state.
At the crossing point, to zeroth order in the coupling,

the system has two marginal modes, a convective and
a MS one, at wavevectors a*0 and ams which are diffe-
rent (except for one single value of the thermal gra-
dient). At the instability threshold, which is (exactly)
obtained from a linear development in the mode

Fig. 1. - Pure Mullins-Sekerka (full line) and pure convec-
tive (dashed line) bifurcation curves in the (Coo, V) plane
for a fixed thermal gradient. The regions labelled (1) of these
curves (below the crossing point (Cooo, V o)) define the
zeroth-order approximation of the bifurcation curve of the
real system.

amplitudes, only modes with the same wavevector
can couple : for example, the zeroth order marginal
convective mode only couples with the MS (front
deformation) mode of wavevector a*. Since a*0 #= aol,
this MS mode is relaxing, its relaxation rate increasing
with the mismatch between ao and a0MS . That is, the
larger this mismatch, the more the MS mode is
« slaved » by the convective one, and the smaller the
effect of the coupling on the convective mode. We
will see that it is only for very small thermal gradients
that a*0 and a0MS approach each other. For larger, more
realistic, thermal gradients, aomsla* &#x3E; 1, which reduces
the effective coupling.
When V and Coo move away from the crossing

point along parts (1) of the zeroth-order bifurcation
curves, this reduction should become stronger : let

us, for example, consider a point on the convective
branch. At this point, the zeroth-order system has a
single marginal (convective) mode at wavevector a*.
The MS modes are all stable, their relaxation rates
must increase, for a given wavevector, with the dis-
tance from (V, CcxJ to the crossing point. Therefore,
moving away from the crossing point should increase
the efficiency of the slaving of the MS mode coupled
with the marginal convective one.
In § 2, following reference [3], we rederive the

condition of existence of marginal modes in the

coupled system. In § 3, the results concerning the
uncoupled bifurcations are briefly recalled and ana-
lysed. In § 4, we set up the perturbation expansions
appropriate to the weak coupling regimes, and
calculate explicitly, to first order, the shifts of the
bifurcation curves. We show that the first order

approximation is justified for not too small thermal
gradients. In this regime, which corresponds to

commonly realized experimental conditions, it gives
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very accurate predictions for the shift values. It is
found that the coupling effect is much smaller for
the MS than for the convective branch, and that, in
this weak coupling regime, the coupling always
stabilizes the planar quiescent state. These results are
discussed qualitatively in § 4 and 5.

2. The planar quiescent solution and the linearized

problem.

We consider the following situation (Fig 2) : a dilute
binary mixture is pulled in the (- z) direction at
velocity V ; the system is quasi-infinite (on the scale
of all the wavelengths of interest) in the (X, y) horizontal
directions.

Fig. 2. - Vertical directional solidification setup.

Following references [2, 3], we neglect intrinsic

advection, i.e. neglect the difference between the

equilibrium densities of the two phases (1).
We use the following dimensionless variables :

where the tilted variables are the physical ones. T,
u, Us are respectively the temperature, liquid velocity
and front velocity. D is the solute diffusion coefficient
in the liquid, TM the melting temperature of the pure
solvent. The solute concentration in the liquid far
ahead of the front is assumed to be kept constant.
K is the equilibrium solute distribution coefficient

(K = mL/ms, where mL, ms are the slopes of the liquidus
and solidus curves on the binary phase diagram at
= Tm, 11 = 0).
Following the classical analysis of the MS insta-

bility [4], since heat diffusion is quasi-instantaneous
compared with solute diffusion, we neglect all terms

(1) This effect, which does not introduce any new quali-
tative feature in the problem, will be studied in a forth-
coming article.

proportional to DjDth (where Dth is a heat diffusion
coefficient) in the dimensionless equations. Analo-
gously, it must be noticed that kinematic viscosities v
at the melting point are much larger than diffusion
coefficients (typically the inverse Schmidt number
Sc-1 = Dlv  10- 2), i.e. momentum diffusion in the
liquid phase is also quasi-instantaneous compared
with solute diffusion, and we also neglect terms of
order D/ v. Finally, we neglect diffusion in the solid
phase, and treat the liquid as incompressible.
The system is then completely described by the

following set of equations (equivalent to those of
references [2, 3] in the limit D/Dth = D/ v = 0).

(i) In the solid phase :
- Heat diffusion :

(ii) In the liquid phase :
- Heat diffusion :

- Solute diffusion :

where i is the unit vector along Oz.
- Mass conservation :

- Momentum conservation :

where a = - p-’ aplac is the solutal expansion
coefficient, and the gravity g &#x3E; 0. Equation (6) is

obtained, in the limit Sc-’ = 0, by twice taking the
curl of the Navier-Stokes equation.

(iii) At the interface (z = zs(r, t)) :
- No-slip condition :

where n is the unit vector along the normal to the
front pointing into the liquid.
- Mass conservation in the absence of intrinsic

advection :

- Continuity of temperature :

- Heat balance :

where ks,L are the thermal conductivities.
- Concentration balance :
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- Curvature-induced local interface temperature
shift : 

- 1... I- -11 1

where M = mL Coo/KT M’ r = TVILD, L being the
specific latent heat of fusion and y the solid-liquid
surface tension. K is the curvature of the front, defined
as positive for a convex solid.
As already mentioned, equations (2), (3) neglect the

term (D/Dth) (ðTL,sjðt - ðTL,sjðz), and equation (9)
neglects the latent heat production term (DID th)
(LjCp TM) us.n.

This is justified, due to the smallness of D/D,h,
except if the lengths of interest (here, the wavelength
of the front deformation mode DI Vams, or that of
the convective mode D/Va*) become comparable
with the thermal diffusive length Dth/V. This can

only occur for the MS wavelength, and only at the
very large velocities and extremely small thermal

gradients corresponding to the immediate vicinity of
the upper threshold of the MS bifurcation [4] (typi-
cally, V in the m/s range and G  10-2 K/cm), a
region of parameter space which will not be of interest
here.

Finally, equations (10) and (11) assume quasi-
instantaneous local thermodynamic equilibrium on
the front, which implies that the interface is microsco-
pically rough.
2. 1 THE PLANAR QUIESCENT STATIONARY SOLUTION. -

Choosing the front position as the origin of the z-
coordinate, one easily sees that the above system of
equations has a planar quiescent stationary solution :

where n = ks/kL, and GL is the (positive) dimension-
less temperature gradient in the liquid phase.
2.2 LINEAR STABILITY OF THE PLANAR QUIESCENT
STATE. - Let us now assume that the planar front
undergoes a small harmonic deformation of wave-
vector a, the direction of which is chosen to define
the x-axis :

This deformation induces responses bf(z, x, t) (with
f - (C, TL, TS, uz») of the concentration, temperature
and velocity fields. Expanding equations (2) to (11)
to first order in C about the planar quiescent solution,
one gets :

Equations (2) to (6) then give :

with [3] :

Equations (16. a, b) for the temperature field can be
solved trivially, together with the linearized version
of interface conditions (8), (9), giving [2, 3] :

Plugging this solution into the linearized interface
conditions obtained from equations (7), (10), (11),
one gets :

Elimination of C1(z) between equations (15. a) and
(15. b) and of ( between equations (19. c) and (19. d)
finally reduces the linear stability problem to solv-
ing [3] :

with the boundary conditions :

and : 

where
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The Rayleigh number Rs appearing in equation (20)
is defined as :

We assume it to be positive ((I - K) a &#x3E; 0), in
order to describe a situation which can give rise to
a solutal convective instability.
The volume problem is non trivial, due to the

presence of the non-constant e-z coefficient. This
stems from the exponential shape of the zeroth-
order concentration profile, which is characteristic of
the diffusion-controlled growth situation. The Ray-
leigh number defined in equation (23) has the standard
form (RS N ga(VC) d4jDv) appropriate to a « B6nard-
like convective box » of thickness d - D/V with an
applied concentration gradient VO - (1 - K)
FCJKD.
Following Hurle et al. [3] (2), we express the three

independent solutions of equation (20) U(i) (i = 1, 2, 3)
which satisfy boundary conditions (21. a) in terms of
power series of the variable s = e-Z (and of Logs).
The explicit expressions of the U(i)(s) are given in
the appendix. The general solution of equation (20)
must then satisfy the three interface conditions

(21. b, c, d). The resulting compatibility condition
provides the dispersion relation for the modes of the
linearized system F(a, a) = 0.

Since we look for the instability threshold, we are
only interested in the condition of existence of neutral
modes, defined by Re 6 = 0. We assume at this stage
that the principle of exchange of stabilities holds in
the system, i.e. that the neutral modes have Im r=0.
We will come back in § 5 to the validity of this assump-
tion in the weak coupling limit we are interested in.
The condition of existence of neutral modes can

then be written as :

with

and

(2) Note that reference [3] contains various misprints, in
particular in its equation (62. b).

The expressions of the dij, aij, bi/ s are given in the
appendix. It should be noticed that each of them is
a power series of the Rayleigh number R,, the coefh-
cients of which only depend on the (reduced) wave-
vector a.

So, the condition of existence (24) of neutral modes
for the system with a deformable front in the presence
of gravity appears as a condition linking a and the

three combinations of the « control parameters »

with

3. The uncoupled bifurcations.

In order to be able to define weak coupling regimes,
we must define uncoupled bifurcations, one of which
describes the onset of a purely convective instability,
while the other one corresponds to a pure morpho-
logical front instability.

3.1 THE PURE MULLINS-SEKERKA BIFURCATION. -

Clearly, it can only occur in the absence of gravity.
So, the corresponding neutral mode equation is
obtained by taking the Rs = 0 limit of equation (24).
It is found (see appendix) that :

where :

so that equation (24) reduces to :

i.e., precisely the MS neutral mode equation [4]. As
analysed in detail in reference [4], this equation
defines a neutral curve -6 = -6,,(a, fl), and the bifur-
cation corresponds to the minimum lJMS of lJc(a),
i.e. is determined by the parametric equations (30)
and

For fixed G (resp. Coo) this defines a bifurcation
curve in the (Coo, V) (resp. (G, V)) plane. These curves
are displayed in figures 1 and 3. Their small-velocity
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Fig. 3. - Pure Mullins-Sekerka (full line) and pure convec-
tive (dashed line) bifurcation curves in the (G, V) plane for
a fixed concentration Coo.

regions are described by the approximate analytic
expression :

(up to terms of order (q V/Coo)1/3). In this region, the
critical reduced wavevector (which corresponds to

the first neutral mode) is given, to the same order,
by :

When V increases, the critical wavevector decreases
monotonously : at the extremum of the MS bifurca-
tion curve it is, roughly, of order 1, and goes to zero
for V --&#x3E; CoojqK.

3.2 THE PURE CONVECTIVE BIFURCATION. - It cor-

responds to the case of a non-deformable solid-liquid
interface, i.e. to the limit of infinite surface tension.

So, it is obtained by taking the f3 -+ oo limit of equa-
tion (24). The corresponding neutral mode equation
reads :

For a given material (a given solute distribution
coefficient K), equation (34) defines a neutral curve (3)

(3) In fact, as usual in convection problems [5], equation
(35) only refers to the lowest branch of neutral modes [2]
- which describes the convective solution with the smallest
number of rolls in the vertical direction.

the minimum of which, (R *, a*), determines the pure
convective bifurcation, thus defined by :

Due to the power series form of A and B, equation
(34) can only be solved numerically. This has been
performed by Hurle, Jakeman and Wheeler [6], for
various values of K and of the Schmidt number. We
have recalculated Rs*(K) and a*(K) for Sc-1 = 0.
Our results are tabulated in table I. They fit closely
the values found by Hurle et al. [6] for Sc = 81. In
particular, for the PbSn alloy system, which, following
references [2, 3], we will use in the following in all
numerical illustrations, K = 0.3, and :

Table I. - Critical Rayleigh number Rs* and wave-
vector a* for the pure convective bifurcation and

coupling coefficient for the convective branch ç =
(K/Rs*) dRs*/dK versus distribution coefficient K.

As can be seen in table I and in reference [6], Rs
increases quite rapidly with K for K  0.5, after which
it increases much more slowly. The critical wavevector
also increases with K, reaching the quasi-constant
value a = 0.36 for K &#x3E; 0.8.
The bifurcation is given by equation (36). The bifur-

cation curves appear as :

- a vertical line in the (G, V) plane, the abscissa
of which moves with Coo (Fig. 3), 

N

- a cubic curve independent of G in the (Coo, V)
plane (Fig. 1).

Note that the critical wavevector a* is strictly cons-
tant along the pure convective bifurcation curve.

3.3 THE CROSSING POINT OF THE UNCOUPLED BIFUR-
CATION CURVES. - As explained in § l, it is of interest
to determine the crossing point of the two uncoupled



407

bifurcation curves, and to compare the critical wave-
vectors ams and ao at this point of parameter space.

Let us assume, to fix ideas, that the thermal gradient
G is kept constant, and look for the position (V0, Coo0)
of the crossing point in the (V, C, ) plane (Fig. 1). For
each value of G, there is only one such point.

Let us assume that the value of G is such that
a0MS &#x3E;&#x3E; 1. From equation (32), in this regime :

Inserting this expression into equation (36), one gets:

and, using equation (33) :

For the PbSn system, for example, using the values of
the various parameters given in references [2, 3], this
gives (with 6 in K/cm) :

The small-velocity approximation (Eqs. (32), (33))
for the MS bifurcation is good for a &#x3E;&#x3E; 1. That is, in
the PbSn system, for which

the above expressions (39), (40) for the crossing point
parameters and MS-wavevector are valid provided
that, in order of magnitude,

and, in this regime :

(where G is expressed in K/cm).
Note that most experiments are performed in this

large gradient regime.
For smaller values of G, Vo, Cooo and aos must be

calculated numerically. They all decrease smoothly
with decreasing G In particular, the variation of ams
is very slow for small G’s. For PbSn, for example,
ams only reaches a value close to 1 for G = 10- 2 K/cm,
a quite unrealistically small value in directional

growth experiments.

4. The weakly coupled bifurcations.

Equation (24) for the neutral modes of the real
system can be exactly rewritten as :

In this expression, the r.h.s. term can then be inter-
preted as a coupling between the pure MS and convec-
tive modes defined by equations (30) and (34).
One can now immediately set up a perturbation

expansion for the bifurcations of predominantly MS
or convective character : one simply has to solve
equation (44) formally by successive iterations around
each of the uncoupled bifurcations. To first order :

- at the MS-like bifurcation :

where

- at the convective-like bifurcation :

where use has been made of the fact that, for a = a*,
RS = Rs*’ equation (34) is satisfied, and

Note that, to first order, the shift of the critical
wavevectors aMS, a*, does not come into play in expres-
sions (45), (47), due to the fact that they correspond to
minima of the zeroth-order -6,(a) and Rsc(a) curves.

Clearly, such first order expansions are valid pro-
vided that the relative shifts of the bifurcations are very
small, i.e. in the regimes of weak effective couplings.

It can be seen that the effective couplings (which
have different values for the two bifurcations) can
become small for two different physical reasons :
- the r.h.s. of equation (44) is small, i.e. the  bare »

coupling strength is small. As can be seen from equa-
tions (28), this is the case, in particular, for small

enough Rs,
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- one of the two « slaving factors »

and

is large. Each of these factors is zero at the correspond-
ing uncoupled bifurcation (f,,..,(a*) =fms(ams) = 0),
they increase when the mismatch between a* and aMs
increases. This is related with the corresponding
increase in the relaxation rate of the « slaved » mode.

4.1 1 THE PERTURBED MORPHOLOGICAL BIFURCATION. -
Its shift is given, to first order, by equation (45), which
must be analysed when the point representing the
system moves along that part of the zeroth-order MS
bifurcation curve which lies in the (zeroth-order)
convection-free region of parameter space. That is,
assuming that the thermal gradient is kept fixed,
we are interested in the region V &#x3E; Yo of the curve.
So, one must calculate the values of A and B for the
corresponding values Rs(V), aMS(Y) of the Rayleigh
number and critical wavevector.

Since the numerical results [2, 3] prove that the r.h.s.
of equation (45) is in general small, and since this term
vanishes for R. = 0 (Eq. (28)), one may suspect that
a small-R. expansion of A and B will be adequate to
calculate the shift of the MS bifurcation.

Consequently, we calculate A(Rs, a) and B(lB, a) up
to terms of first order in R.. This is done in the appen-
dix. We find that the condition of validity of the small-
Rs expansion is different in each of the three regions
a &#x3E;&#x3E; 1, a - 1, a  1.

- When a &#x3E; 1, the expansion parameter is found
to be

- For a - 1, quite obviously, the relevant para-
meter is R. itself.
- For a  1, the parameter is R. a2(1 + 0(a)).
The first order expansion in each region is satisfac-

tory provided that the corresponding parameter is
small.

So, it appears that convective effects are describable
in terms of a wavevector-dependent effective Rayleigh
number. This is related with the fact that the charac-
teristic length of the convective flow driven by the
front deformation is of the order of the wavelength
of the deformation, a - 1. In particular, in the region
a &#x3E; 1 (4), where this wavelength is much smaller than

(4) For a « 1, the physical interpretation of the para-
meter Rs a2 is less clear : it results from a more subtle

interplay between the scale a-1 D/V of the flow and the
diffusion length D/V over which the liquid is driven by the
buoyancy force.

the thickness D/V of the diffusion layer, the physically
relevant Rayleigh number must be built for a fluid
drop of dimension - a-1 D/V (instead of the length
D/V used to build R.) driven by a concentration gra-
dient of order C,,,,I(a-’ D/V). That is, the effective

Rayleigh number is Rsja3.
As discussed in § 3.3, for physically reasonable

values of 6, the MS wavevector ams at the crossing
point is always &#x3E; 1. On the other hand, at this point,
by definition RS = R s * -= 10. So, clearly, the first order
expansion in RS is valid at ’the crossing point only if

With the help of equation (40), this condition
becomes :

For PbSn, this gives G &#x3E; 2 K/cm.
It may be shown, with the help of equations (30),

(31) that, when the point representing the system in
the (Coo, Y) plane moves away from the crossing point
along the MS curve, aMS decreases and

decreases monotonously. In the region ams &#x3E; 1,
R, oc V-4, aMS oc V-2/3. When cfis = 1, Rs = rq2 [L/pc
where is a K-dependent number. For PbSn,
Rs(aMS = 1) = 10-1/G (with G in K/cm).
- For larger velocities (which are anyhow too large
to be easily reached in experiments) aMS  1, Rs a 2 
Rs(aMS = 1). So, one can conclude that, if the small
expansion is justified at the crossing point (condition
(50)), it is valid everywhere along the MS curve, and
its accuracy improves with increasing V/ Vo. Thus, for
not very small temperature gradients, one can safely
use the expansion of A and B to first order in Rs (see
appendix). From this and equation (45), one gets :

m,here m is defined by equation (29).
From equation (52), the equation of the shifted

bifurcation can be written as :

from which one gets, using equation (27 . a) for fl, at
fixed G, V (i.e. in the representation of Fig. 1)
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It is seen from equation (54) that the Coo-shift is

always positive. That is, the coupling to convection
stabilizes the planar front. This was to be expected on
the basis of the interpretation proposed in § 1. Indeed,
the weakly coupled convective mode must be dragged
by the MS mode, which is thereby slowed down.

Since we consider 6’s such that ams &#x3E;&#x3E; 1, expression
(54) can be expanded in powers of a-’, yielding :

which gives, for PbSn :

In the vicinity of the crossing point, as long as
ams &#x3E; 1,

So, in this weak coupling regime, the relative shift
decreases when the representative point of the system
moves away from the crossing point along the MS
curve. For a given G, it -is maximum at this point. It
is seen from equation (56) that, as soon as G &#x3E; 1 K/cm,
bCm’IC,,,  4 x 10- 3. This perturbation result, which
is consistent with the numerical results of references

[2, 3], shows that, in practice, the convection-induced
shift of the MS bifurcation is negligibly small. It is

only at very small thermal gradients (typically
G  1 K/cm) that this result would cease to be valid,
and that the shift should be calculated numerically [3].

4.2 THE PERTURBED CONVECTIVE BIFURCATION. -

To first order in the coupling to front deformation, its
shift is given by equation (47). In order to calculate
this shift explicitly, we need to know the quantities
A * = A(R *, a*), (OAlORs)*, (ðBjðRs)* ; a* and Rs* are
constant along the zeroth-order convective bifurcation
curve, and only depend on the distribution coeffi-
cient K.
Note that these quantities cannot be computed

from a small-RS expansion : indeed, R,* L-- 10, while
a* -- 0.35 (see § 3.2). So, the relevant parameter in
the RS-expansion of A, B is of order R* a*2 N 1, and
these numbers must be calculated numerically.

Expression (47) may be simplified further : a*(K)
and Rs*(K) are defined by (see § 3 . 2) :

Differentiating equation (58. a) with respect to K,
and using equation (58. b), one gets :

and equation (47) becomes :

with

The variation of the coefficient ç with K is tabulated
in table I and plotted on figure 4. For K = 0.3 (the
value appropriate to the PbSn system), ç = 0.20. It
is seen that ç is always positive and smaller than 0.3,
and decreases at large K (this is to be related with the
corresponding shrinking of tfie bare MS bifurcation
curve).

Fig. 4. - The coupling coefficient for the convective branch
ç = (KI1B*) dR*/dK versus distribution coefficient K.

The shift of the zeroth-order convective curve is
thus given, with the help of equation (27), by (5) :

(5) Due to the cubic shape of the zeroth order curve, the
approximate value of the V-shift must be more accurate
than that of the Coo -shift.
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One can easily show [7], with the help of equations
(60), (30), (31), that, at the crossing point :

i.e., at this point, the shift is negative. It is thus clear
from equation (61) that (ðV(C)jV)coo,ð retains the same
sign for all V  Vo. 

Moreover, it can easily be checked that the r.h.s.
of equation (62) is minimum (and vanishes) for

ams = a* (i.e. mo S = m*). That is, as predicted in § 1,
the perturbation expansion cannot be valid at the
crossing point if the wavevectors of the two marginal
modes are not well spaced. In the physical region,
where G is not extremely small, aoms &#x3E; a*, and, at
large G’s (ao s &#x3E; 1)

So, the magnitude of the shift at the crossing point
is always larger than ç/3. For PbSn (K = 0.3), equa-
tion (63) gives a value of the order of 9 %.

It is clear from equation (61) that the shift decreases
rather rapidly when V decreases, i.e. when the repre-
sentative point of the system moves away from the
crossing point along the convective curve. For exam-
ple, for PbSn at G = 200 K/cm, when V = 30 p/s
(VjV 0 f’Oo.J 0.7), the relative shift predicted by equation
(61) is of order 1.8 %.

Therefore, one can conclude that the accuracy of
the perturbative expression (61) should be quite good
except possibly in the vicinity of the crossing point.
In order to check its validity in more detail, we have
calculated (bV(")IV) numerically for PbSn from the
exact equation (44), following a procedure similar to
that of reference [2]. The perturbative and numerical
results are plotted on figure 5, in the ( Coo, V ) repre-
sentation for G = 200 K/cm and, in the (6, V) repre-
sentation, for Coo = 0.2 wt %. The agreement between
the perturbative and computed results is very good :
we find that the difference, for given COO, G, between
the two values of the velocity never exceeds ~ 0.2 JJ,js,
while the numerical error may be evaluated to be of
the order of 0.1 g/s. Of course, the quality of this fit
may be to a certain extent accidental : one cannot
exclude that second order corrections are non negli-
gible, especially in the vicinity of the crossing point,
where the shift is largest However, these results indi-
cate that, although the convective shift is larger than
the MS one, the first order perturbation approximation
is quite satisfactory for both branches.
One must notice, at this stage, that our results for

the shift of the convective bifurcation, while agreeing
with the calculations of Coriell et al. [2], contradict
the analysis of reference [3], which implies that 6 V (’)

Fig. 5. - Bifurcation curve for the PbSn system. Dashed
line : bare bifurcation as in figure 1. Full line : bifurcation
of the coupled system. The dots correspond to the pertur-
bative result, the crosses to numerically computed values.
a) In the (Coo’ V) plane, for a fixed thermal gradient G =
200 K/cm. b) The vicinity of the crossing point in the

(G, V) plane for a fixed concentration Coo = 0.2 wt %.
Note that the shift of the MS curve (N 10-5 wt % at the
crossing point) is too small to be discernible on the scale of
the drawing.

t

should be strictly zero. We believe that this discre-
pancy results from the following error in Hurle et al.’s
work : while their representation of the neutral curve
of the coupled system agrees with that of reference [2]
and with our calculations, it can be proved that their
stability prescription in the region R. &#x3E; Rsc(a) (see
our Eq. (35); this region is the upper part of the band
between the dashed lines on Fig. 4 of Ref. [3]) should
be inverted Indeed, large G’s, as can be seen from
equation (14), are formally equivalent to large P’s, i.e.,
in this limit, MS effects are negligible, and the linear
stability of the system is that of the pure convective
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one. Since R. &#x3E; Rsc(a), it is therefore an unstable

region, and the minimum of the GL(a) curve (Fig. 4
of Ref. [3]) does describe the shifted convective bifur-
cation in the (G, V) representation.

5. Conclusion.

The above perturbative analysis thus appears both
qualitatively enlightening and quantitatively accurate
at not too small thermal gradients.
On the one hand, it permits one to identify the

physical parameters relevant to the problem. On the
other hand, it provides a method for calculating ana-
lytically the bifurcation shifts due to the coupling
between convection and front deformation.
The most striking feature of the results is probably

the difference between the orders of magnitude of the
shifts of the two bifurcations. The shift of the convec-
tive bifurcation is much larger than that of the MS
one, and is relatively large in the vicinity of the crossing
point.

This difference, as already pointed out, may be
traced back to two different sources :

(i) The respective values of the « bare coupling » of
equation (44). For the MS case, it is proportional to
the effective Rayleigh number defined in § 4. l, which
decreases as (Rs/(ams)’) for large enough G. In the
convective case, it is a constant, ç, which only depends
on the distribution coefficient K of the mixture. In

practice, it is  0.3 and decreases with increasing K.

(ii) The « slaving » factors which describe how fast
the slaved mode adapts to the marginal one. In the
MS case, this factor decreases when ao S increases, as
can be naively expected, and tends to zero for ams &#x3E;&#x3E; 1.
In the convective case, it does decrease when the mis-
match (ams - a*) increases, but tends to a finite value
of order 1 when ams -+ oo. This is due to the fact that
the relaxation rate of the pure MS mode, at the bifur-
cation, is given (6), for a L--- ams, by :

That is, the larger ams, the flatter the ams(a) curve,
and, for a --- a* , ao s, uMS(a*)  - 3 K/2. The de-
crease in the curvature of am’(a) thus roughly com-
pensates for the increase in the mismatch, which limits
the slaving effect.

So, at the crossing point, for large 6’s (&#x3E;&#x3E; 1 K/cm),
which are commonly used in the experiments, both

(6) Equation (64) can be obtained by expanding the MS
dispersion relation [4] :

at the bifurcation, in powers of Q and (a - aMS).

effects cooperate to give a negligibly small shift of the
MS bifurcation, while that of the convective one, of
order ç, is in general not very small. The shifts decrease
rapidly when the system moves away from the crossing
point along both branches. Their magnitudes increase
when the thermal gradient decreases. However, it
would take very small 6’s (typically  1 K/cm [3])
for the MS shift to become noticeable, even close to
the crossing point. Such small homogeneous thermal
gradients seem hardly realizable in practice. Moreover,
the corresponding concentrations would be very small
(typically, for G gg 10-2 K/cm, Coo  10-4 %).

Finally, it is found that, in the perturbative regimes,
the coupling is always stabilizing, which expresses the
fact that the mode driven by the marginal one is, in
the weak coupling limit, always rapidly relaxing.
These results rely on the assumption that the nature

of the bifurcations is not affected by the coupling; the
uncoupled bifurcations satisfy the principle of

exchange of stabilities [4, 6], that is, at the bifurcation,
Im a = 0 (a being the relaxation rate). We have assum-
ed, in equation (24), that this remains true for the
weakly coupled system, i.e. that the bifurcations do
not become of the Hopf type. We have no analytical
proof that the principle of exchange of stabilities
always holds in the coupled system, but its validity
in the weak coupling regime can be inferred from two
arguments :
- Coriell et al. [2, 8] and Hurle et al. [3] have

investigated numerically the possibility of the appea-
rance of a Hopf bifurcation for 6 = 200 K/cm in
PbSn. They find that, at all V’s, Im a = 0 at the bifur-
cation.
- As long as the first order perturbation expan-

sions are valid, an analogous first order calculation
can be used to show that there exists a vicinity of the
bifurcations in which 6 remains real. Let us insist,
however, that this is only a weak coupling argument
Indeed, in the vicinity of the point where the uncoupled
dispersion curves C’s(a), (J(C)(a) cross, a gap in general
opens in the dispersion curve of the coupled system,
which may correspond to the appearance of a domain
of a with no mode with real 6, i.e. to the appearance
of two modes with Im a 0 0. This is reflected in the
existence of oscillating neutral modes found in refe-
rences [2, 3] above the bifurcation. When the coupling
is weak, this only affects a small region in the (6, a)
space far from the marginal points, where Im 6
remains zero. When the coupling strength increases,
i.e. at smaller values of 6 and in the vicinity of the
crossing point (V 0’ Coo0), this strong coupling effect
might induce the appearance of a Hopf bifurcation.
Since the effective coupling is much stronger on the
convective branch, it should be the convective bifur-
cation which will change character first. More nume-
rical calculations at small thermal gradients are needed
to check whether this may effectively occur.
We have also neglected thermally-induced convec-

tive effects. As shown by Coriell et al. [9], when the
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thermal gradient is stabilizing, the effect of thermal
expansion on the shift of the solutal convective bifur-
cation is non negligible only at small velocities (Fig. 2
of Ref. [9]), which can be understood when one notices
that the relevant solutal and thermal Rayleigh num-
bers are such that Rs oc V - 3, and Rth oc y - 4.

Finally, it should be mentioned that the system we
have studied - a growing solid with a deformable
front in the presence of destabilizing solutal convec-
tion - opens a possibility of experimental access to
a bifurcation of codimension 2 - a situation in which
two different modes become simultaneously unstable.
Such a situation is met, for a given value of the thermal
gradient, at the crossing point (Vo, C.0) of the con-
vective and MS branches. As has been established by
bifurcation theory [10], beyond such a bifurcation, a
variety of dynamical behaviours can be met, depending
on the respective amplitudes of the different non-
linear terms. The present system should be a good
candidate to explore such effects, since the ratio bet-
ween the marginal wavevectors a0MS, ao can be varied
in a rather wide range by changing one of the three
external parameters, for example the applied thermal
gradient.

Appendix%

In order to solve equations (15), we apply the
1 -1 ,

operator to equation (15. a),

and get :

We set s = e-Z. The three independent solu-
tions U(i)(s) (i = 1, 2, 3) of equation (A .1) which
satisfy the boundary conditions (17) at s = 0 (z -&#x3E; oo)
can be calculated with the help of standard power
series expansion techniques [11]. One finds :

where

and

Note that the presence of the Log (s) terms in expres-
sion (A. 3) for U(2)(S) follows from our approximation
Sc-1 = 0, which results in the degeneracy of two
roots of the indicial equation associated with equa-
tion (A .1).
From the expressions of the U(i)’s (Eqs. (A. 2-4))

one immediately obtains the elements of the deter-
minants A, B, defined in equations (25), (26), as :
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where and Bn, Cn, Wn must be calculated at a = 0 (i.e.
with p - m).

Developing A and B (Eq. (25)) up to first order in R,,
with the help of equations (A. 9-20), one finds :

In the region a &#x3E;&#x3E; 1, equations (A. 22), (A. 23) may be developed in powers of a-1, which gives :

In order to calculate the shift of the MS bifurcation,
as given by equation (45), we need to calculate mA - B
in the region a &#x3E;&#x3E; 1. It is seen that, to the order in
a-1 used in equations (A. 24), (A. 25), mA and B
compensate exactly. One must therefore expand the
term of order Rs one step further in a-1. This is most
easily performed by first calculating mA - B from
equations (A. 22), (A. 23). Using repeatedly the rela-
tion m2 - m - a2 = 0, one gets :

from which equation (52) results immediately, and,
for a &#x3E; 1,

In order to check that, for a &#x3E;&#x3E; 1, the relevant

expansion parameter for mA - B is indeed (RS/a3)
(inspite of the above-mentioned cancellation of lowest
order terms), we have calculated the term of order
Rs in mA - B of lowest order in a-to We find that
it is effectively of order Rs2 j a4.
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