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Spectroscopic Stark line profile in a non-homogeneous
field quasi-static approximation

D. Lambert and M. Louis-Jacquet

Commissariat à l’Energie Atomique, Centre d’Etudes de Limeil-Valenton,
B.P. n° 27, 94190 Villeneuve-Saint-Georges, France

(Reçu le 22 juin 1983, révisé le 11 octobre 1984, accepte le 7 novembre 1984 )

Résumé. 2014 Nous précisons l’effet Stark quasi statique dans des plasmas de fusion pour des champs F décrits par
l’approximation de plus proche voisin (1 NN) réduite à ses premiers termes. Les états propres correspondant sont
exactement calculés en coordonnées sphériques puis convolués avec la distribution de microchamp de Hooper.
Nous présentons le calcul de la raie Lyman 03B3 de l’argon XVIII traceur dans un mélange DT, aux densités élec-
troniques 5 x 1021 cm-3 et 7  1022 cm-3.

Abstract 2014 The Stark effect in fusion plasmas is calculated for quasi-static F fields corresponding to a nearest
neighbour first terms approximation (1 NN). The resulting eigenstates, fully calculated in spherical coordinates,
are convoluted with Hooper’s microfield distribution. We present the computation of the Lyman 03B3 line for the
tracer argon isolated in DT fuel, at electronic densities 5  1021 cm-3 and 7 x 1022 cm-3. 
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1. Introduction.

Among the various means used to diagnose dense
plasmas the most interesting are surely those which
provide temporally and/or spatially resolved infor-
mation. An example is the spectral analysis of X-ray
emission.
For laser created inertially confined plasmas with

1021 to 1024 electrons per cubic centimeter in the
200 eV to 1 keV temperature range; the ionization
state is high enough to focus our studies on H-like
ion emission. For resonance lines such as Lyman a,
the optical depth can reach 10 or more and the resulting
reabsorption is so important that the line profile is

mostly due to the radiative transfer along the path of
the local emission. Its calculation, however, needs
the initial local emission line shape and is a good
motivation for studying the Stark broadening of the
wings of even these reabsorbed lines. Higher upper
level emission, on the other hand, provides a better
investigation of the emission itself, since for the

Lyman y, for instance, the corresponding optical
depth lies in the 10- 2 -10 - 1 range. Then the most

important broadening mechanism comes from Stark
effect, except at the line center itself, and is directly
related to the instantaneous local conditions, mainly
electrical charge density.

This paper presents a simple computation of the
argon Lyman y line profile for density diagnostic
purposes in DT. For theoretical reasons in hydro-
dynamics, one should prefer experiments using a near
zero argon proportion. As it is unrealistic we just
consider here the DT to be preponderant, and that no
argon ion is the closest to any other argon ion. The
electron density range is 1021 to at least 1023 cm - 3.
At such densities, the gradient length corresponding
to the screened ionic microfield can be shorter than
the orbital mean radius of the optical electron. Thus
the usual hypothesis of a homogeneous field is no

longer valid We present a development including the
dipolar and quadrupolar terms, as the first two terms
of the Taylor expansion of the microfield from the
nearest perturber (1 NN), to determine the quantum
response J(w, F) to the field F. The projection set
is restricted to n-level hydrogenic states in the spherical
harmonic representation. The evolution of the pro-
jections of the new eigenstates on these nlm ) de-
monstrates the importance of dipolar strength changes
due to the quadrupolar term. Then the convolution
of the dipolar emitting strength with Hooper’s pro-
bability function 5(F) of the microfield provides the
pure quasi-static profile. The next step includes the
broadening effect of non quasi-static perturbers,
which we treat by the convolution of the previous

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:01985004603037900

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphys:01985004603037900


380

lines with an operator corresponding to uncorrelated
electron impacts. The discussion is aimed at justifying
the choice of such a quantum quasi-static response to
be used with Hooper’s microfield probability.

2. Basic assumptions.

The origin of Stark perturbation is two-fold. For

a given emitter, the other ions induce a field which is
screened by the cloud of all the electrons which are
statistically equivalent - i.e. all the electrons but
those very close to the emitter itself. To estimate the
life-time of this microfield, one can divide the mean
distance between ions by their classical thermal

velocity. This is an under-estimated value, since
statistical fluctuations exchanging two perturbers tend
to maintain a constant field value. This conservative
microfield life-time is then

If we assume this time to be long, compared not
only to the radiative period but also to the photon
life-time - to be estimated after - the quantum
response to this quasi-static field will represent the
time averaged evolution of the real phenomena.
The only differences will be caused by the shortest
perturbations. So the quasi-static response J(cv, F)
of the emitter determines the new eigenstates to be
modified by the higher frequency part of the Stark
effect, mainly electron effects.
The electrons which may not be included in the

statistical quasi-static cloud are those which come in
the vicinity of the emitter itself. In order not to be
attracted and captured by it, they must have a sufficient
kinetic energy. So their perturbation is short in time,
with respect to the photon life-time but even also
to the period 2 nlw. So these perturbations, considered
from the time scaling of the emitter, may be considered
as collisions. We treat them as a succession of uncor-
related random impacts creating a phase confusion
of the emission. This replaces a discrete quasi-static
energy - or frequency - by an energy distribution
of width h Aw [1].
To determine a correct duration-hierarchy of these

phenomena, we must check that the quasi-static
effective life-time of the level is much longer than the
impact life-time

We now survey the sequence of this work.
The first step is the determination of the quasi-

static eigenstates from a Hamiltonian including the
electrostatic perturbation AH = - qY. Whenever the
field F is uniform over a large domain including the
optical electron range, the potential is simplified

into - qFr cos 0. But, for high densities and high
upper quantum (n = 4 for example) the mean dis-
tance from the emitting ion to its optical electron
reaches the distance from itself to the nearest ion.
In order to get a spatial description of the local

microfield, we need a further assumption. The simplest
one is that of a single perturber of charge Zp at distance
Rp from the emitting ion. With this hypothesis -
which requires only that all the other ions which are
farther than this one keep a statistical spherical
symmetry - we have

The quadrupolar term provides nearly all possible
couplings between the hydrogenic I nlm ) states of the
projection basis. In this paper, we keep n constant -
that means we work in a restricted subspace only.
For n = 4 (Lyman y) for instance, the single missing
term would be  400 AH 430 ) which requires
including the octupolar term into AH We shall use
the restricted Hamiltonian [2] :

The second step deals with the emissivity of the
previously calculated eigenstates. The emission power
from the initial state Ii) to the final state If) is taken
as the pure electrical dipolar one [3]

Pi being the density in the initial state for the total
configuration (the quantum state I i &#x3E; and the sur-
rounding conditions expressed in the value of the field
and of its moments).

This expression is valid as long as A » ( i I r Ii).
In a first approximation we may factorize p; as a
product of the probability s(F) [4, 5] to find F by
the probability TF(li&#x3E;) to find the state i ) among the
set of eigenfunctions. As the optical electron is the

single moving particle of the system, this probability
obeys Fermi statistics.
For any given value of F :
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where Zp(T) is the partition function. There is no

degeneracy factor gi here, since we make the sum-
mation over the new and all different eigenstates.
Then the total quasi-static emitting power becomes :

So one usually defines a so-called « line-profile » [6]
as :

The difference with the previous expression is the
factor K(w) inside the integration :

In order to make the search of new eigenstates
easier, the investigation of the new eigenstates uses
the projection on the subspace defined by a given
value of n only. Then we must restrict the broadening
frequency range to the limit of confusion with other n,
as in the Inglis-Teller like condition :

where E1 is the hydrogen ionization energy. For

medium Z elements, we are limited about A(o  3 %,
(0

and we checked that, within this range, the maximum
variation of K(cv) is less than 10 %. So we present
the line profile J(w) instead of the real emission P(w).
The last step, which is the convolution of quasi-
static results by electron impacts is also presented
in the J(a)) form.

3. Calculation of the new quasi-static eigenstates.

We use the spherical harmonic functions, solutions of
the unperturbed hydrogen-like Hamiltonian Ho, as
a basis of representation { I nlm &#x3E; }. Parabolic coor-
dinates (n1, n2, m) have often been used [7] since they
provide a direct diagonalization of the linear pertur-
bation AH, 1 = - qFr cos 0. These functions, however,
are not convenient for the further terms of the Hamil-

tonian, coming from a more suitable description of
the microfield. Instead of an approximate perturbation
method solving OH2 or any further term from these
parabolic states solutions of Ho + ðH1, we prefer
the exact diagonalization of the complete new Hamil-
tonian over the complete set of hydrogen-like functions
{ I nlm )}. Since a single perturber approximation
keeps axial symmetry, the new splitting does not mix

states of different magnetic projections m, and does
not remove the degeneracy induced by ± m.
We restrict our re-diagonalization to the states

{ I nlm &#x3E; },n being a constant (here n = 4). Since this
is not a complete projection set, the calculation is
not exact but remains valid enough inside the Inglis-
Teller limitation. So the identification of the new

eigenstates can use the previous quantum numbers n
and m. We complete this identification by the energy
rank i inside each (n, m) class. To distinguish this
notation from that of the spherical harmonics nlm &#x3E;
the representation of a new eigenstate will be nim &#x3E;.
After separation of the hydrogenic eigenstates accord-
ing to their magnetic projection, the 16 x 16 matrix
corresponding to the n = 4 level is factorized into a
product of simpler matrices (the spin projection is of
no interest here and we ignore its factor-2 complexity).
Our expression of the perturbation uses the assump-

tion that r  Rp. If we evaluate r as the value of Bohr
radius, r = ao n2/Z and calculate the field correspond-
ing to that limit, the maximal range of the calculation
is then for n = 4.

Although this limit is physically important, we
show the curves for field values up to 1013 Vm-1,
in order to complete the mathematical evolution.
For these last values, however, the physical meaning
of the calculation is uncertain since the electron is
correlated to both nuclei.
A 4 x 4 matrix deals with initial states 1400

1410), 420 ) and 430 ) corresponding to m = 0.
The energy solutions are non-degenerate and presented
in figure 1 versus the value of the field F. In reduced

Fig. 1. - Energy splitting of the states I 4i0 &#x3E; of XVIIIAr in
D + T + (originating from m = 0) versus electrostatic field
value. Dashed lines correspond to homogeneous field, full
lines to the first nearest neighbour approximation (1 NN).
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units the V1 + V2 solutions are universal. There is a
confusion in figure 2 of [2] which can be reconstructed
from figures 1, 3 and 5 of this work. Figures 2a, b, c, d,
show the evolution of the eigenstates 4/0 ) by their
projections over the hydrogenic functions 4l0 ).
The dotted curves show the eigenvalues of the classical
dipolar Hamiltonian only.
A 3 x 3 matrix deals with 1411&#x3E; 421 &#x3E; and

1 431 &#x3E; corresponding to m = 1 and an identical one
with 141 - I &#x3E;, 142 - I &#x3E;, I 43 - 1 ) corresponding to
m = - 1. Figure 3 shows the energy splitting, each

energy solution being doubly degenerate. Figures 4a,
b, c, show the projections of the I 4i+ I &#x3E; over the
correspondinig / 4/:t 1 &#x3E;.
Two identical 2 x 2 matrices deal with the (m = 2)

set 1422&#x3E;, 1432&#x3E; and the (m = - 2) set 142-2&#x3E;,
143 - 2 &#x3E;. The energy splitting is shown in figure 5.

Eventually, the states 1 433 &#x3E; and 143 - 3 &#x3E; remain
unmodified 1413 &#x3E; = !433); 1-41-3&#x3E; = 143-3 &#x3E;,
but there is a slight energy translation, also presented
in figure 5. There is no possible dipolar emissivity
from the states m = 2 towards the final state f) =

Fig. 2. - Evolution versus electrostatic field of the states I 4i0 &#x3E; represented by their projections over { /4/0 ) } in 1 NN.
The number identifies the state I of projection 4i0 4l0 &#x3E;. a) i = 1; b) i = 2; c) i = 3; d) i = 4.
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Fig. 3._ - Energy splitting of the states I 4i 1: 1 &#x3E; of XVIII Ar
in D + T + (originating from m = 1) full : 1 NN, dashed :
homogeneous held

] 100 ). So, the really meaningful energy behaviours
are those presented in figure 1 and figure 3. Let us
review a few interesting features they present. The
classical Stark symmetry is lost; but, up to high values
of the field (a few 1011 V. m-1 for argon), the difference
is very slight Afterwards the 1 NN curves are shifted
from the classical curves. For 420 &#x3E;, 430 &#x3E;, 42 ± 1 ),
the shift is negative at low field and then positive.
The opposite behaviour is true for 440 ) and 41 +1 &#x3E;.
The eigenstates 42 ± 1 &#x3E; also present the particularity
of the appearance of one minimum 5.75 eV lower than
the previous line centre, for the field 8 x 1011 V . m -1.
This range of field-values also corresponds to the
maximal variation of the eigenstate projections versus
field strength in figures 2 and 4. The most negative
eigenstates 1 440 &#x3E; and 43 ± 1 ) are the least affected,
and look very much like the homogeneous field
solutions (which can be extrapolated by F - 0).
The most affected states are 42 ± 1 ) which present
this energy minimum at - 5.75 eV. For the cor-

responding field value, the projections over the

hydrogenic basis states change quite abruptly. The
most positively shifted 410 ) and 41 ±1 ) suffer

only a smooth crossing of their projections and the
state 420 ) presents an intermediary behaviour, its

projection over 1410 &#x3E; and 420 ) being transposed
So, the introduction of the further term of the field
expansion has two kinds of consequences. First, the
energy splitting is modified and its symmetry is broken.

-

Fig. 4. - Evolution of the states 4i + I ), represented by
their projections over { 4l ± 1 ) } in 1 NN. The number I
identifies the state of projection  4i 1 I 4/1 ). a) i = I
b) i = 2; c) i = 3.
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Fig. 5. - Energy splitting of the non-emissive states 141 + 2 ).
1 42 ± 2 ) and 141 + 3 &#x3E; full : 1 NN; dashed : homoge-
neous field.

But the second effect is even more important : the
modification of eigenstate projections determines a
drastic change of emission strength and then modifies
the relative importance of the components.

4. Calculation of the dipolar electric strength and
the quasi-static line profile.

In the line profile expression

the dipolar term II  j I d If) 112 can be easily deter-
mined since, as only the I = 1 states can be coupled

to 1100 &#x3E;, the radial part f rRnl Rio r’ dr is common
for all the eigenstates coming from the level n. For
a given microfield F, the line profile is then

Since

and

the line profile for a given field is then, taking into account the m = + 1 degeneracy

this line profile being the mere addition of (2 n - 1) discrete frequencies.

This treatment does not take into account the
continuum part of the solutions of the Hamiltonian.
A correction can be added for this configuration
interaction [6] as a perturbation. But the only direct
incorporation is the calculation of the dipolar strength,
the energy being the variable. With the dipolar term
only, the calculation is possible for each value of F [7]
but the integration over F would be quite costly in
computer time. 
The projections of 4j0 ) and I 4j ± I &#x3E; over 410 )

and 41 +1 &#x3E; are shown in figure 2 and figure 4. One
can check how important the contribution of the term
AH2 of Stark perturbation is by listing the modification
of the emitting strength,

Only the most negative states, 440 ) and 43 ± 1 )
keep a quasi-constant emitting strength. The central
states 420 ) and 430 ) gain a more important
contribution at the expense of 410 ). The central
peak I 42 -1 ) loses most of its power to 41 ± 1 ).
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This is to be compared to the fixed dipolar strength
of a priori parabolic states, with no F dependent
evolution, such as the i ) described in [8], Appendix,
with the same limitation to the n = 4 subspace.
To represent the trace of the density operator over

the external conditions - i.e. the field value - we
make the integration

using the transformation

provided that Fk is the solution of w(Fk) = w. The
parameter k distinguishes the solutions of this equation
when úJj(F) is non-monotonous, that is for I 42 - 1 ).
The line profile then becomes :

One can see here that the advantage of choosing J(w)
instead of the more significant P(co) is the simplifi-
cation of the density operator which is supposed
factorizable into the product of the external condition
F with the quantum response I j). This allows all

permutations of the integrations over F and ).
Since the assumption r &#x3E;  Rp determines a

limitation F  Fm, the integration for much higher
field values has practically no physical meaning. But
the field distribution has no cut off. For XvIIIargon
in D + T +, the peak of the distribution function

[5] reaches 0.35 for F = 1.5 Fo. So we must limit the
density to lower values such that the fields above Fm
have a very low probability and thus a very small
energy contribution to the line profile. If we accept
a maximal probability 10-4 for Fm, then Fm &#x3E; 25 Fo
and Ne  2 x 1022 cm-3. For the maximal probabi-

Fig. 6. - Line components 14i0 &#x3E; originating from m = 0
for electron density 7 x 1022 cm- 3. The intensity unit is

arbitrary but common for homogeneous field (dashed) and
inhomogeneous field (full line).

lity 2 x 10-’ then Ne 6 x 1022 cm-3 and for
5 x 10-3 , Ne  1023 cm-3.
To be on the conservative, we present our calcula-

tion of argon Lyman y for Ne = 7 x 1022 CM- 3
at a temperature kT = 450 eV (Hooper’s parameter
is then 0.2).

Figure 6 shows the components for m = 0 and
figure 7 for m = 1. The intensity units are arbitrary,
but the same for these two figures.
For the homogeneous F field model (HFM), the

] 42+ 1 ) components are unshifted Dirac distri-
butions. Since their emission power equals that of
[ 41+1 or 143:t 1), by integration over F, we

determine the central peak profile of homogeneous
field Lyman y lines [11], thus escaping from the
numerical problem of the normalization of these
Dirac distributions.

Fig. 7. - Line components 4i ± 1 &#x3E; originating from
m = ± 1 with the same as previous arbitrary unit. Density
is 7 x 1022 cm-3. The homogeneous field originated com-
ponent is approximated here by a triangle (for this figure
only and not in the calculation).
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For the inhomogeneous F field, the corresponding
42 + I &#x3E; presents a non-monotonous shift resulting
in a shifted sharp peak - due to the fact that the
eigen-energy of 142 +1 &#x3E; is non-monotonous. This

peak, of course, can only be distinguished when the
microfield probability is not too low for the field
value of the energy extremum.
The addition of all components into the quasi-

static line profile is shown in figure 8 at high density to
demonstrate this behaviour of 42 ± 1 ).

Figure 9 presents this profile for a low density -
where differences between homogeneous and first

neighbour fields are of a lesser importance - except
at the very centre.
At higher densities the central region of the total

line - one unshifted peak for homogeneous field
or two peaks in I NN - is the most sensitive part of
the line to the effect of any other broadening pheno-
mena. Electron Stark effect and thermal Doppler and

Fig. 8. - Total quasi-static line profile for 7 x 1022 cm-3
in 1 NN approximation. The line presented in linear a)
and semi-log b) representations.

Fig. 9. - Same representation of quasi-static line profile at
the lower density 5 x 1021 cm-3, including Voigt convo-
lution.

ion dynamics effects result in a Voigt convolution
of the mere quasi-static profile :

The Lorentzian-like electronic impact parameter is
routinely calculated from [1]

N being in m-3, kT in eV and ? Am also in eV.
A more recent expression can be found in [9] but

this last work fits lower density experiments better
than laser plasmas.
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The Gaussian-like width corresponding to emitter
and perturber thermal effects is calculated from the

quadratic summation AW2 = A WD + A W;D of the
usual Doppler width WD and the ion dynamics with
[10]:

which dominates (2.17 eV against 0.62 eV), Griem’s
constant b being extrapolated from [10] to the value
1.2.
The three parameters Aw, Aa)D and ð WID are

considered as constants for the complete convolution.
We present in figure 10 this convoluted profile

corresponding to figure 8. One can check that the

general shape is little affected (in absence of all

reabsorbing treatment, of course) by this convolution.
So we can rely upon a very simple approximation of

Fig. 10. - Total line profile for 7 x 1022 cm- 3, correspond-
ing to figure 8 but including Voigt profile of electronic Stark,
Doppler and ion dynamics broadenings, linear a);
semi-log b).

electron impact width for density estimations - and
justify the efforts towards a better description of the
quasi-static phenomena by the fact they are the most
significant.

5. Discussion.

In this paper, we have expanded the field expression,
using the single first neighbour approximation, to its
first Taylor terms, dipolar and quadrupolar. But, since
the real plasma is a much more than three-body
problem, the field determination comes from a sta-
tistical calculation using all the neighbouring ions in a
correlation hierarchy. So there is something artificial
in the use of a single perturber quantum development,
associated to a statistical expression of the field itself,
instead of real perturber positions, but not more
artificial than the usual assumption of homogeneous
fields.

For’large values of the field - the scale being the
Holtsmark value Fo - the most probable situation
is that the field is nearly almost created by a single
very close perturber. If two near ions were to create
this field, since their directions should not be very
different, replacing both of them by a single closer
one would only result in a factor, the exceptional
maximum of which would be 2 - which is acceptable
enough. But, for low values of the field, the most
probable situation corresponds to the destructive
addition of a few comparable fields. In fact, a prepon-
derant supremacy of a first neighbour creating a weak
field would mean it should be further from the emitter
than the mean distance between ions - which is
absurd Anyway, the first nearest-neighbour approxi-
mation does not require the total plasma configura-
tion to be reduced to a single perturber. It remains
valid whenever the main differences from spherical
symmetry may be attributed to a single perturber.
So the previous relation between the field and its

first moments as calculated from 1 NN should be

corrected, since it is only a limit for high fields. To test
whether such an improvement is of real importance,
we used the purely mathematical factor th (F/aFo)
inserted in the gradient effect [11], Fo being the
Holtsmark field. This is smoother than a mere cut-off
of the quadrupolar effect for fields lower than a few Fo.
The new Hamiltonian is then :

Results for energy splittings as well as for dipolar
strengths prove that even for 430 ) and 42 ± 1 ),
which present the most chaotic behaviour, the diffe-
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Fig. 11. - Total quasi-static line profile for 7 x 1022 cm-3
corresponding to figure 8a), b) but including the limiting
factor th (F / F 0).

rence created by the test factor th is noticeable
1 -1

but not very important. We present the line shapes we
obtained with this factor th (F/aFo). Figures lla
and b with a = 1. Figures 12a and b show the effects
of Doppler and impacts ,with the same parameters
h LBw, LB W D and LB WID as in’figures 10a and b.
We present in figures 13a and b the calculation

using the factor th for the values 1, 2, 3 and 5

of a. We test that the wings of the line remain nearly
unmodified But the computation of the line core

presents a numerical problem.

For all eigenstates, the derivative factor is

low for low field values. It remains zero for 421 ) in
the HFM calculation, but since in HFM all dipolar

Fig. 12. - Total line profile for 7 x 1022 cm- 3 with factor
th (F/Fo) and including Voigt convolution of electronic
Stark, Doppler and ion dynamics broadening.

strengths remain constant, the normalization of 421 &#x3E;
delta peak from the energy of 1411 &#x3E; is easy.

In 1 NN and th-modified 1 NN, there are two

regions where nears zero : for the low

values of F and around a value FM for which 1421 &#x3E;
energy reaches a minimum. Both regions give a peak
by integration over the microfield distribution.
For pure 1 NN, or for a lower than 2.5, FM is located

in a region of high field probability. Then the peak
corresponding to W = W(FM) is important, and the
peak corresponding to W = 0 is not.
For a higher than 2.5, Fm outranges the region of

high probability of the field. Then the two peaks are
of comparable importance, but their proper balance is
uncertain with our algorithm. The reason is that the
presence of two peaks makes it impossible to use a
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Fig. 13. - Comparison between the line profiles correspond-
ing to the values 1, 2, 3 and 5 for a in th (F/ aFo). Full line
represents a = 1, dashed line is for a = 2, dashed-dotted
line for a = 3 and dotted line for a = 5.

These figures correspond to figures 8a), b) and lla), b).

calibration originating from the single peak of

homogeneous field. Then the energy must be calculated
directly from the expression J(cv) using I dw/dF I -1.
Since this factor tends to infinity, it is very sensitive
to the chosen values of the F steps. And two calcula-
tions using slightly different values for F can corres-
pond to nearly different ratios of the two peaks. So
we prefer to point out the problem of this normali-
zation.

Figures 13a and b show the line shapes corres-
ponding to the values a = 1, 2, 3 and 5. For the last
two values at least, the numerical uncalibration of the
central peak is symbolized by an arrow. The uncer-
tainty corresponds to a region

This domain must be compared to the spectral
precision of experimental results. One must also keep
in mind that this is the region the most affected by
reabsorption effects.
We can also verify that the line wings remain

untouched by adjusting the normalization parameters
of each line so that all the corresponding wings get
superposed
So we think that the comparison of the 1 NN with

th (F/Fo) improved 1 NN - or even up to

th improved 1 NN - is a validation of the

compatibility between 1 NN Hamiltonian and the
microfield distribution. A better justification, would
be the comparison of 1 NN gradient against the

results of Monte-Carlo statistical simulation of the

perturbers’ positions.
Since the proper use of an expression including both

the field value and its moments [12] Pj should

correctly lead to a multiple variable integration, we
consider the use of 1 NN with the simple microfield
probability P(F) as an improvement over HFM.

6. Conclusion.

The main points of this work are :
- First, the quasi-static perturbation is treated in

the nearest neighbour approximation, with the intro-
duction of the first non-linear Hamiltonian terms.
This part of the calculation is essential since it directly
governs the profile of the non-absorbed line wings.
- Then to these fundamental solutions corres-

ponding to large times, it is easy to add the effects of
electron impacts and thermal Doppler broadening
and even the instrumental function.
To compare our results to previous calculations of

dipolar perturbation only, we verified the H.W.H.M.
is not really different - at least in the laser plasma
temperature and density range of a few 102 eV and
1021_1023 cm-3. But the shape is modified, and no
longer symmetrical, even after the further Lorentzian
and Gaussian treatments.

Let us now consider the impact on the density
diagnosis of plasmas. For an isolated line, such as
argon Lyman y (presented here) or He-like argon
(1s4p-1s2) one tries to reproduce the experimental
curves by adjusting the values of the parameters
(T, Ne).
The couple of parameters (T, Ne) which corresponds

to the best coincidence between the calculation and
the spectroscopic data is then taken as representative
of the real plasma X-ray emission.
The coincidence of a whole theoretical line profile,

including wing asymmetries, with the spectroscopic
data provides a far better test of the possibility to
represent the plasma emission by a single couple
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(T, Ne) than the mere comparison of measured and
calculated H.W.H.M.
But a real line is very seldom isolated from the other

nearest lines, except for the resonance transitions
from level 2 to level l, which are subject to reabsorp-
tion. Many other lines, such as argon 3p-ls and
Is4p-ls2 and 1 s5p-1 s2 are merged together. And
anyway, all lines are superposed on a continuum
and the main lines are flanked by satellites.
To use the spectroscopic profile of a non-isolated

line, one has to extract its original shape from the
superposition of profiles and this requires the know-

ledge of the theoretical asymmetry of each of the lines
which are merged. And to use the energy ratio of
satellites, one needs to subtract the wing of the prin-
cipal line. Computer programs have been presented
for processing experimental data into the numerical
separation of merged lines [13J, using mainly a mode-
lization profile (Lorentzian or Gaussian).
Our present work which points out the danger of

reconstitution of merged lines by symmetry only,
presents an alternative by computing the main line
wing asymmetry and only afterwards discriminating
satellites in the experimental data.
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