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Résumé. 2014 Nous étudions un modèle de Marches sans retour Dirigées sur un réseau dilué, par différentes approches
(arbre de Cayley, développement de faible désordre, calcul Monte-Carlo avec construction de marches jusqu’à
2 000 pas). Ce modèle simple a l’avantage de présenter les traits essentiels du problème controversé des marches
sans retour en milieu aléatoire. On montre en particulier que quelle que soit la valeur du désordre, valeur moyenne
et valeur plus probable du nombre de marches sont différentes.

Abstract. 2014 We consider a model of Directed Self-Avoiding Walks (DSAW) on a dilute lattice, using various
approaches (Cayley Tree, weak-disorder expansion, Monte-Carlo generation of walks up to 2 000 steps). This
simple model appears to contain the essential features of the controversial problem of self-avoiding walks in a
random medium. It is shown in particular that with any amount of disorder the mean value for the number of
DSAW is different from its most probable value.
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1. Introduction.

The problem of Self-Avoiding Walks (SAW) on a
randomly dilute lattice has been studied a lot recently
[1-12], leading to conflicting conclusions. According
to some authors [1, 2], the statistical properties are
the same as for the pure system, apart from a trivial
renormalization of the connective constant; others

[4, 5] have obtained similar conclusions, except that
they give arguments for a change in the correlation
length exponent v at, and only at, the percolation
threshold Pc. Rammal et al. [6] give arguments for a
change (at least) at Pc of the exponent v. Numerical
calculations [7] lead to a change in v at any value of
p  1. The latter result is in agreement with the
original Harris criterion [8] for disordered systems.
Also Derrida [9, 10] has argued that a change in all
the statistics of the SAW should occur for any amount
of disorder, and in particular, one should observe a
difference between the mean value and the most

probable value of the number of SAW of a given
number of steps. In the first simulations on this

subject Hiley et al. [11] did not observe such an effect,
in agreement with authors quoted above [1-4]. On the
contrary, very recently this effect was observed in
2-d Monte Carlo calculations by Roy and Chakra-
barti [12]. Their work (exact enumeration of rather
short SAW) also supports a charge in the exponent y
for any value of p.

The purpose of this paper is to illustrate the argu-
ments given in [9, 10] by considering a simpler model,
namely the problem of Directed-Self-Avoiding Walks
(DSAW) on a dilute lattice, for which accurate calcu-
lations can be done. In section 2 we recall the ideas
of references [9, 10], and apply them to directed sys-
tems. In section 3 we discuss the general behaviour of
the main quantities of interest for the DSAW model
on a dilute lattice, and study this model on the Cayley
Tree. In section 4 we study the model in two dimen-
sions, first by a weak-disorder expansion, then on a
strip of width 2, and finally by Monte-Carlo calcula-
tions, using exact recursion relations to enumerate
DSAW up to 2 000 steps on random samples.
The main result is the difference obtained at any p,

0  p  1, between the mean value and the most
probable value of the number of DSAW of N steps
for N large. We also briefly discuss the possibility of
a change in the exponent y for any p.

2. Self-avoiding walks on a dilute lattice.

We briefly recall the arguments of references [9, 10].
For the problem of SAW on a pure lattice, one quantity
of interest is the number QN of SAW of N steps starting
at a given point 0. For large N, one expects [13]
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On a dilute lattice, where bonds are present with
probability p, one has to consider for each configura-
tion C of the lattice and for a given origin 0 the
number wN(0, C) of SAW of N steps. It is easy to
take the average over disorder (0 being fixed) :

Relying on (2) it has been claimed [4] that y is not

changed and that the sole effect of disorder is to change
the connective constant p into plt. However (2) shows
that for Jl-1  p  Pc’ WN increases exponentially
with N while the lattice does not percolate, so that
with probability one there is no N-step walk for N
very large. This is due to the fact that a few events of
extremely small probability dominate the average,
so that the most probable value mi of WN(O, C) is
different from its average even in the large N limit :

Another argument in favour of a change in the statistics
in presence of disorder is the general Harris criterion [8]
for disordered systems, which says that if the expo-
nent a (of the pure system) is positive, then any amount
of disorder should change the statistics. In particular a
is positive for SAW in any dimension d.
The preceding considerations apply as well for a

directed system. Hence for example relations like (1),
(2), (3) hold for the number of DSAW. In the pure
case, the problem of DSAW on a regular lattice is a
simple model recently studied [14]. Consider for

example the hypercubic lattice in d dimensions, with
the preferred direction along the main diagonal. Then
DSAW are walks starting at a given point 0 and
making steps only in one of the d directions which
have a positive projection along the preferred direc-
tion. As a result, no loops are possible, and the number
of such walks with N steps is simply

Each step has a projection 1/.Jd along the preferred
direction, therefore the mean end to end distance

along that direction is

The DSAW reduce to a random walk orthogonally
to the preferred direction, so that

This says that in any dimension d,

These results are the same on a directed Cayley Tree
of connectivity z = 1 + d (the root 0 having only
d neighbours).

If we now consider DSAW on a dilute lattice,
where each bond is present with probability p, we
have to look at the number SlN(0, C) of DSAW of
N steps starting at 0, for each configuration C of the
lattice. Again it is easy to compute the average value
WN Of WN(O, C) :

And again one can expect that the most probable
value will be different from this mean value. Indeed,
if Pc is now the threshold of directed percolation, for
Ild  p  pc, ii5N increases exponentially with N,
while the probability that there is no N-step directed
walk converges to 1 for very large N.
The length along the preferred direction of a

N-step DSAW being the same in the dilute case as in
the pure case, v I is still equal to 1. Note however that
 Ril &#x3E; - hence also v 2013 is defined only for clusters
C where wN(0, C) is not zero, while for example (7)
is obtained by averaging over all the clusters.
The Harris criterion can also easily be generalized

to directed systems. One can follow the argument of
Harris [8], taking into account two typical lengths
03BE and instead of one, one along and one orthogo-
nally to the preferred direction, associated with two
different exponents v II and vl. Then one finally
obtains the criterion :

then disorder should be relevant . (8)

For systems where the hyperscaling relation

(d - 1 ) vl + v 11 = 2 - a holds, (8) reads the same
as for non directed systems.

If we apply this criterion to Directed Animals on a
dilute lattice, we find that disorder should be relevant
for d  dr = 7. The DSAW problem seems particular
in that for any d, v II = 2 vl = 1. If we apply (8),
then critical exponents should be changed by disorder
ford 3.

In the next section we consider some simple pro-
perties of the distribution of DSAW on a dilute lattice.

3. Directed SAW on a dilute lattice.

We now consider the model introduced in the previous
section, i.e. DSAW on the hypercubic lattice in
d dimensions, where each bond is present with pro-
bability p, and absent with probability (1 - p) and
the preferred direction is along the main diagonal.
We have to consider the distribution DN((O) for the

number of DSAW of N steps starting at a given origin
0. One can write

where PN is the probability that there exists at least
one directed path of N steps, and AN(W) is the (norma-
lized) distribution for the number WN of DSAW of
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N steps on clusters extending at least up to N. When
N goes to infinity, PN converges toward P.(p), the
probability that the origin belongs to the infinite
cluster :

Clearly, for p  Pc’ the most probable value for (ON
is zero, in the large N limit. At any p or N, with pro-
bability PN(p), WN is not zero and is distributed accord-
ing to d N. In particular in this case one is interested
in the behaviour of the most probable value mi,
which gives the growth constant A *(p) :

We now define several averaged quantities. We will
show that for 0  p  1 they do not have the same
behaviour in the large N limit, and will give some
arguments to identify the growth constant A *(p) with
one of them. We have already defined the mean value
of OJ over the full distribution :

Similarly, we consider the mean value over d N :

Now consider the following quantities :

and the corresponding quantities obtained in the
infinite N limit :

(the additive constant 1 in the logarithms has been
introduced to avoid divergences in AN(P)). All these
four numbers take the common value log d at p = 1.
Also, one has :

and the following general relations

Due to the convexity of the logarithm function, one
has for any p and any N :

In the limit N --+ oo, (16) gives

and (15) gives, for N going to infinity ’ =

(where 03BEll (p) is the correlation length along the pre-
ferred direction).
On these relations one can deduce some simple

properties, which are summarized [15] on figure 1 :

i) If d N were peaked around its mean value WN,
one would have, for p &#x3E; p) B(p) = b( p) = a(p) =
Log (dp). This has led several authors to identify the
most probable value A *(p) with a(p), but this identifi-
cation is not justified if these quantities are not equal.

ii) Since B and A are finite quantities, bounded by
their common value log d at p = 1, one sees from

(18) that A(p) is singular at Pc - whereas a(p) is not.
In particular

Again this is not surprising since for p  Pc the most
probable value for the full distribution of wN in the
large N limit must be 0.

iii) Let us now look at the quantities obtained from
L1 N. Knowing the behaviour of j II I near p, [18] :
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Fig. 1. - Qualitative behaviour of the averaged quantities a,
b, A, B, defined in the text, as functions of p. In particular,
A(p) is singular at p., a(p) vanishes at p = m-’ d-1,
b(p) and B( p) have an inflexion point atpr.

with vxP) &#x3E; 1 in all d  5, equation (19) implies that
b(p),,,has an inflexion point at Pc. According to our
numerical calculations in 2 dimensions described
here after, it seems likely that B has a qualitative
behaviour similar to b, but with B( p)  b( p) for

any p in ]0, 1[.

iv) In the lhnit p - 0, since PN behaves like (dp)N,
one has

thus

and using (17)

Note that this gives the behaviour of c;lI(P) in this
limit, from (19) :

We also note here that in the preceding considerations
no restriction is put on the size of the clusters : another
problem which might be interesting in the study of
(directed) percolation clusters would be the study
of (D) SAW on clusters of a given number of sites S.
Other statistics would be obtained, and in particular
in the limit p --+ 0, one would find the statistics of
(D) SAW on (directed) animals of a given size S.

We will argue below that the most probable growth
constant is given by B(p), and not by b( p) or a(p).
Before that, we now consider various analytical
approaches to the DSAW model, on a dilute Cayley
Tree, on strips and by a weak-disorder expansion.

4. Analytical approaches.

4.1 RESULTS ON THE CAYLEY TREE. - We consider
a Directed Cayley Tree (DCT) defined as a Cayley
tree of connectivity z = 1 + (1, with an origin 0
having only a next nearest neighbours. Note that if we
consider the DCT locally embedded in a cubic lattice,
a plays the role of a dimension. We consider the site
model : each site is present with probability p. The
number of DSAW of N steps starting from 0 on the
dilute DCT is identical to the number. of sites that
are accessible in exactly N steps from 0 on the dilute
DCT, a quantity recently studied [16], which is related
to the « spreading dimension » of the percolation
cluster. This identity is due to the absence of loops
on a Cayley tree. As a result, at Pc’ the mean number
of DSAW - is a constant when the average is per-
formed over all possible configurations :

whereas if one only considers walks on clusters

extending at least up to N, the mean number 6N of
these walks [16] grows like N (for N large, at Pc)

Here we are interested in the fluctuations of (ON in
both cases, and not only at pr.
On the DCT, the (directed) percblation threshold is

and the number of DSAW of N steps (for the pure
case) :

so that the growth constant J.l = Q is equal to pc 1.
We see on figure 1 that in this case all the curves will
be identical, at least for p  pc. However, even in this
case the fluctuations can be very large. To see this, one
can consider the distribution DN(w) for the number
of DSAW of N steps on the dilute DCT.
One obtains recursion relations for its generating

function UN(z) :
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Any moment of cvN can be obtained from (25), as for
example

One can also deduce from (25) the probability PN for
(ON to be non zero :

B 
-

the moments of WN according to ,

The behaviour of PN for large N is the following :

For the relative fluctuations

one obtains in the large N limit :

One can also see that at Pc’ (WN)ft does not depend on N,
w’k is a polynomial in N of degree n - 1, and §§
of degree n. Thus we see that at Pc’ even though all the
quantities give the same growth constant, the fluc-
tuations of WN are very large.

4.2 WEAK-DISORDER EXPANSION IN 2 DIMENSIONS. -

Consider the square lattice with the preferred direction
along the diagonal. At the lowest order in q (proba-
bility for a site to be empty), we look, at the probability
distribution DN(w) of the number w of DSAW of N
steps starting at a given occupied site (Fig. 2).

Fig. 2. - A directed self-avoiding walk . (DSAW) on the
dilute square lattice (heavy line). The preferred direction,
along the main diagonal, is indicated by the arrow. All sites
are present, except the two sites A and B of coordinate
(11, h 1) and (12, h2).

At order q2, one gets

where f2(l)(A) (resp. 0(l)(A, B)) is the number of DSAW when the site A is missing, (resp. when A and B are
missing), and the primed sum £’ is over each pair of different sites (A, B) - also different from 0. Each point

(A,B)

is characterized by the distance I from the source along the main axis (preferred direction) and the height h
orthogonally to it (Fig. 2). Denoting by g(l, h) the fraction of walks reaching point (l, h) (on the non dilute lattice);
one has

and one obtains for A = (I, h), I  I  N :

and for A
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with

As - = pN 2N, at second order in q

and one can check that this result is also obtained from (31 ). Now, from (31 )

As N goes to infinity, the term of order q is

and thus is identical in the thermodynamic limit
with the corresponding term in log WN’ whereas the
term of order q2 is

with s - 0.16 obtained numerically.
This shows that with any amount of disorder the

logarithm of the mean value and the mean value of the
logarithm are different.

4. 3 DSAW ON A STRIP. - Let us illustrate the preced-
ing considerations on the simple case of site DSAW
on a dilute strip of width 2, drawn on the directed
square lattice, with periodic boundary conditions :
on every column, there are two sites, each of them
being neighbour of each site of the previous column.
If wN(i) is the number of DSAW of N steps arriving
at site i on the Nth column, we have the recursion
relation

where ai(N) is 1 if site i is present on the column N,
and 0 otherwise. Then coN is given by a product of
random matrices :

The total number wN of DSAW is the sum

WN(l) + wN(2), and in this particular example WN
obeys a simple recursion relation

so that one obtains

where p(t) is the distribution probability of t = al + a2
under the condition that t is not 0 :

In the present case where WN is given by a product of
independent random variables, it is well known that
the distribution JN(W) is log-normal. The most pro-
bable value mi is then obtained from the mean value
of the logarithm :

with

and not by exp(Na(p)) :

For a strip of width n &#x3E; 3 and for the 2-d sys-
tems, WN is still obtained from a product of independent
random matrices, but the calculation of d N does not
reduce to a product of independent random variables.
However it is reasonable to expect that the most
probable value according to AN is still given by
exp(NBN( p)), BN( p) being the mean value of the

logarithm. This is confirmed by the following Monte-
Carlo calculations.
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5. - Monte-Carlo calculation for the square lattice.

5.1 METHOD. - The preferred direction is taken

along the main diagonal of the square lattice. For a
given dilute network, we enumerate exactly the num-
ber of DSAW starting from a given point, with a
given number N of steps. We then calculate the

averaged quantities aN, AN, BN, and also study the full
distribution DN of WN. This was done for N up to 2 000,
and various values of p, with particular attention to
the neighbourhood of Pc. We consider both the site
and the bond problems.
The exact enumeration can be obtained very simply

(for a given network) because it is possible to write
recursion relations between the numbers wN(h) of
walks arriving at site h on the Nth column orthogonal
to the preferred direction. This enables us to study
much longer walks than is possible for isotropic
SAW models.

For the site model, one has

where the random variable aN(h) is the occupancy of
site (L, h), and takes the value 1 with probability p,
and 0 with probability (1 - p). Similarly, for the bond
problem :

where aN (h) are the random variables associated with
occupancy of the bond between the sites (N, h) and
(N-1,A±1).

Starting with

one can iterate (47) column after column. One sample
is terminated when a column is encountered where
no site (or bond) is found connected to the origin.

5.2 NUMERICAL RESULTS. - On figure 3 we show for
the site model the mean value - obtained on about
2 500 samples, for N  100, and at different values of

p. As shown log (ON should be independent ofp. As shown above, WN should be inde pe ndent of
N. Clearly, as N grows and p decreases, it becomes
harder and harder to recover this result numerically :
this is due to the fact that the mean value is dominated

by very rare events. For p  Pc’ the numerically
obtained (log wN)/N stays near its theoretical value
as long as N is less than the typical length of the
clusters.
On the contrary, one obtains more easily accurate

values of log (1 + WN) even for large N. On figure 4
AN(p) and BN(p) are shown as functions of p, together
with a(p) = log (2 p). Clearly AN becomes singular

Fig. 3. - Numerical results for N - 1 log WN versus the
number of steps N, for different values of p, for the site dilu-
tion model : WN is here the value obtained by averaging over
about 2 500 samples. One sees that for p  Pc~ 0.705,

logown drops for large N below its theoretical value
N

(Eq. (14)), indicated by a segment for each p.

at a value p* when N goes to infinity. for the site
problem we obtain

and for the bond problem

by analysing the size dependence of our results. These
values agree well with known estimates [17-18] of
the critical probabilities for the directed site and bond
percolation problems on the square lattice : p(s)
0.7058 ± 0.0005 and p c (B) = 0.6445 + 0.0005. It seems
likely from figure 4 that B( p) has an inflexion point
at pc.
We also checked that at p. the probability PL

behaves with a power law of L in the range of length
studied : PL - L - fJ/VII. Our results give a value of
- 0. 16 for the exponent, in good agreement with
known values of P and v II for directed percolation [18].
On figure 5 we show the probability distribution

7rN Of U = N -1 log (1 + WN) for N = 103 for the site
model near the percolation threshold (p = 0.705). nN
is peaked around its most probable value BN( p), and
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Fig. 4. - a) Monte Carlo calculations in 2 dimensions for the bond dilution model. We show A,(p) = 1 log (1 + maiN 
’

and BN(p) = AN(p)/PN(p), for N = 2 000. The points lie below the solid curve a(p) = log 2 p. At this scale, the points do
not differ significantly from their asymptotic value A (p) or B(p), except for AN( p) very nearp, = 0.6445 (denoted by an arrow) :
at Pc AN(p) goes to zero as N goes to infinity. b) Magnified portion of the curve BN(p) near Pc- for N = 400 and N = 2 000.
It suggests that in the limit of infinite N the inflection point of B(p) will be atp,.

aN and bN lie outside this peak. This shows that the
distribution has a long tail at large values of OJN,
which is unobservable numerically.
The probability distribution of U for the bond model

at threshold is displayed in figure 6, for two values of
N. One sees that the distributions closely coincide
when scaled by factors N 1/2 : this shows that the
width of nN vanishes like N 1/2 for large N at pc, and
suggests that it follows a scaling law. We also checked
that such a scaling law exists for p &#x3E; p,, but with
another power of N.

5.3 EFFECTIVE EXPONENT y. - As stated in the intro-

duction, there is much debate on the influence of
dilution on the critical exponents of SAW. By analogy
with equation (1 ) for the pure system, one might

E- Fig. 5. - Distribution 1tN of u = 1 log (1 + wN), for the site
N

dilution model at p £r Pc’ for N = 1 000. The arrow indi-
I) cates the value a(p) = log 2 p = 0,495695..., which lies

outside the peak of the distribution.
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Fig 6. - Distribution 1tN of u = 1 log (I + (J)N)’ for theN
bond dilution model at P  Pc = 0.6445, for N = 400 and
N = 103. Here 1tN/.JN is plotted as a function of

..,I-N(u - BN) - BN being the mean value of u -, and the
similarity of the two curves suggests the existence of a
scaling law for 1tN.

expect that the most probable value mi in the dilute
system has an asymptotic expansion of the form

where y may now depend on p. However, one cannot
a priori exclude that the expansion is more compli-
cated and contains terms of order N 1/2 for example.

If expansion (49) is correct, one can expect a simi-
lar behaviour for BN(p) :

In figure 7, BN(p) is shown as a function of N -1 log N,
for different values of p. Assuming that equation (50)
holds for DSAW, we extract an effective exponent
y(p) from the slope of the curves for N &#x3E; 103. This
gives y  1, for p &#x3E; pr ,, (y - 0.70 for p = 0.75),
~ 1 for p = Pc and &#x3E; 1 for p  pc.
We also see on figure 7 that for each p &#x3E; Pc there

exists some N(p) such that the slope is positive and
small for N  N(p) and crosses over to a different
value for N &#x3E; N(p). A crossover has also been
observed by Roy and Chakrabarty [12] for the non-
directed case. This shows that it is necessary to study
long walks, but even in the directed model where we
are able to study much longer walks than in other
situations, it is not possible to distinguish numerically
between corrections in N -1 log N and, say, N - 1/2 :

Fig. 7. - Asymptotic behaviour of BN(p) in the bond dilu-

tion model, plotted as a function of log N , for several values
N

of p. The slope measured for N &#x3E; 103 (up to 4 x 103 for
p = 0.75) gives an effective exponent y that varies with p.

a plot of the data of figure 7 versus N -1/2 gives equally
plausible results. A better theoretical understanding
of these corrections is required before a reliable

analysis can be performed

6. Conclusion.

We have studied a model of Directed Self-Avoiding
Walks on a dilute lattice, by various approaches. We
have shown that, for any amount of disorder, the
most probable and the mean value of the number
wN of N-step walks are different.
More precisely, the distribution of (ON has two

parts : a delta function at m = 0, which corresponds
to samples for which there is no SAW of N steps,
and a non-trivial part whose weight in the infinite N
limit is the probability P(p) that the origin belongs
to the infinite cluster. The latter part is peaked around
the most probable value WN ~ exp(log coN), and has
a long tail at large values of coN, which is reflected in
the mean value roN = (dp)N. This was checked in
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particular by Monte-Carlo calculations in two dimen-
sions, generating DSAW up to 2 000 steps for several
values of p, and in a few cases up to 4 000 steps. We
also obtained numerical evidence for either a change
in the exponent y for any p  1, or at least an asymp-
totic behaviour different from the pure case.
The model of DSAW thus appears to shed some

light on the controversial problem of SAW in random

media, and should provide a useful ground for further
study of that intriguing subject.
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