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Résumé. 2014 Nous proposons un test expérimental de la nature du chaos engendré par l’itération de systèmes
dynamiques discrets en développant des simulations de Monte-Carlo de marches aléatoires sur un réseau uni-
dimensionnel périodique contenant un site absorbant. Nous considérons en particulier l’application logistique
comme un générateur de nombres pseudo-aléatoires. La comparaison avec des résultats analytiques généralisés
aux cas de marches asymétriques et de marches faiblement non markoviennes apporte de fortes évidences expé-
rimentales de la validité de la conjecture selon laquelle la sensibilité sur les conditions initiales implique, pour
l’application, l’existence d’une mesure invariante absolument continue par rapport à la mesure de Lebesgue.

Abstract. 2014 To test the nature of the deterministic chaos generated by the iteration of discrete dynamical sys-
tems, we perform Monte-Carlo random walk experiments on a one-dimensional periodic lattice with a trapping
site using the logistic map as a generator of pseudo-random numbers. Comparison with analytical results derived
for asymmetric and also for weakly non-Markovian random walks lend strong experimental support to the con-
jecture that sensitive dependence on the initial conditions implies for the map the existence of an absolutely conti-
nuous invariant measure with respect to Lebesgue’s measure.
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1. Introduction.

Iterations of continuous maps of an interval onto
itself provide the simplest examples of models for
dynamical systems [1]. In spite of their structural

simplicity, such models exhibit a variety of behaviours,
including limit points, limit cycles and chaotic attrac-
tors. In the present work, we focus our attention on
those regimes where the behaviour (although fully
deterministic) appears as chaotic, i.e. shows profound
similarities with the sample function of a random
process.

(*) Laboratoire de Physique de la Matiere Condensee,
Associe au CNRS.

(**) Equipe de Recherche associee au CNRS.

From a mathematical point of view a random
process involves random variables whose values
cannot be predicted in advance. In other words, a
realization of a given random variable is completely
uncorrelated with previous and future realizations.
This amounts to defining with J. N. Franklin [2] that
a sequence (of numbers) is random if it has every pro-
perty that is shared by all infinite sequences of inde-
pendent samples of random variables. In this sense the
random behaviour of a deterministic sequence is

highly suspect. To justify this terminology, one must
examine in what sense the generated numbers behave
as if they were truly random. Since Franklin’s state-
ment can be shown to be impossible to fulfil in prac-
tice, one has to turn to a more pragmatic definition :
« A random sequence is a vague notion embodying the
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idea of a sequence in which each term is unpredictable
to the uninitiated and whose numbers pass a certain
number of tests, traditional to statisticians and depending
somewhat on the uses to which the sequence is to be

put [2] ». A fundamental test is the existence of a
limit probability density function p which, for ite-
rative processes of the type

where f is a scalar function, can be defined as the
time average :

with 6(x) the Dirac measure at x. Equation (1.1)
defines what mathematicians call an invariant measure
on the orbit of xo. If one starts from another number
xo, the measure defined by (1.1) is in general different.
For a process defined by the iterative procedure (1.0)
to be called random, one would further require that
the measure be independent of the starting point, or
in other words, be « absolutely continuous with res-
pect to Lebesgue measure ». However, the existence
of such absolutely continuous measures has been
proved only in a limited number of cases. No general
theorem is available but a conjecture by Ruelle for
general dynamical systems states that if a system
possesses sensitive dependence on initial conditions
(i.e. a system with positive Liapunov characteristic
exponents), then invariant measure(s), when con-

ditioned onto the unstable manifold(s), should be
absolutely continuous [3] (1).
Now restriction to maps of the interval makes the

problem easier because, when there is an unstable

direction, then there is no space for a stable direction.
When the map is everywhere expanding, the Liapunov
characteristic exponent is clearly positive, and in this
case the existence of an absolutely continuous inva-
riant measure was shown [4, 5]. A map of the interval
with a critical point is of course not uniformly expand-
ing ; however it was proved that there is an absolutely
continuous invariant measure when the critical points
have orbits which eventually land on unstable fixed
points [6, 7]. This result holds for maps whose critical
points have orbits that do not come close to the
critical point [8, 9]. Very recently, it was shown that
an absolutely continuous invariant measure exists
when the Liapunov exponent is positive and the inverse
of the map is contracting [10].
These rigorous results appear to converge and lend

support to Ruelle’s conjecture. However a dissonant
claim [11] was recently presented on the basis of a

(1) For a revised version on the problem of the measures
describing Turbulence, see D. Ruelle, Suppl. Prog. Theor.
Phys. 64 (1978) 339.

numerical study of the logistic map of the interval
[0, 1] :

Kozak, Musho and Hatlee [11] considered this map
as a pseudo-random number generator and they used
Monte-Carlo simulation to calculate the average walk

length for trapping on a periodic one-dimensional
lattice with a centrosymmetric trap. They arrived at the
conclusion that comparison with exact results suggests
that the only truly chaotic sequence is the one for R = 4.

This conclusion is obviously misleading since it has
been proved that there exists infinity of R-values for
which the logistic map possesses an absolutely conti-
nuous invariant measure. We argue that the failing of
the random walk test comes from short-range corre-
lation effects stemming from the deterministic cha-
racter of the sequences of numbers generated by the
iteration of (1.2). When these correlations are taken
into account, either by introducing them in a refor-
mulation of the theory, or by numerically removing
them by using some iterate of f, we show that good
agreement is obtained between the Monte-Carlo expe-
riment and the exact theoretical results for all R’s

yielding sensitive dependence on the initial conditions.
This indicates that with some caution the logistic map
can be used as a good pseudo-random number gene-
rator. This conclusion recently announced in a short
letter [12], lends experimental support to Ruelle’s

conjecture.
The paper is organized as follows. In section 2, we

introduce the random-walk experiment as a test of
pseudo-random number generators and discuss its
relation with classical statistical tests. To implement
the random walk test requires knowledge of exact
analytical results. Recently, problems of solid state
physics have stimulated either explicitly or implicitly
a number of investigations on diffusion processes
modelled by lattice random walks. The theory on
infinite lattices was first discussed by Polya [13] who
was especially concerned with the effect of dimensiona-
lity on the probability that a walker starting at a given
point eventually returns to that point. Some other
types of problems which are of special interest involve
the average time required by a walker to go from a
given lattice point to another preassigned point for
the first time. Results on these topics as well as the
effect of a small number of lattice defects on random
walks have been discussed in a series of papers by
Montroll and co-workers [14]. In section 3 we extend
the analysis of Montroll [14] to anisotropic random
walks and derive the average walk length of a walker
starting from an arbitrary site on a periodic one-
dimensional lattice with a centro-symmetric trapping
site. In section 4 we present the numerical results
obtained from the Monte-Carlo random-walk experi-
ment. Comparison with theory requires the estimate
of the statistical error which is derived in the Appen-
dix B.
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2. The Monte-Carlo random walk experiment as a
« statistical test » of pseudo-random generators.

As outlined in the introduction, when confronted with
an apparent « chaotic » sequence of numbers obtained
by iterating (1.0), one has to invent procedures to test
the nature of its randomness. Workers interested in
Monte-Carlo computations i.e. using extensively pseu-
do-random number generators, have been aware of
this problem for a long time. They have introduced
several empirical tests some of which we will recall
briefly [2]. One can roughly divide these tests into two
categories. Those of the first one check that the gene-
rated numbers are distributed according to a well-
defined probability distribution p (Kolmogorov-Smir-
nov and frequency tests) (see Fig. 1). Tests of the second
category are devised to essentially detect correlations
in the sequence of numbers. For example, the serial
correlation test computes the usual correlation func-
tion C( j) defined by

where x - 1 
n 

xi.where  z) = - LXi.
i-1

A small value of C( j) indicates that quantities x;,
xi+j... are roughly speaking independent of each other.
Another example is the so-called run-test which exa-
mines the length of monotonic subsequences of the
original sequence (i.e. segments which are increasing
or decreasing) and compares the length distribution
to that one should observe for a true random variable.
Let us finally mention the test on subsequences : after
extracting a subsequence (for example by taking one
number out of every two numbers in the initial sequen-
ce) one can apply to it the set of tests mentioned above,.
The need for many tests, when theorems on the

generator are not available, stems from the fact that
it has been reported that some pseudo-random sequen-
ces have passed some tests successfully and failed
others.
We now present a new statistical test, the random

walk test introduced in a recent study on the chaotic
orbits of the logistic map [11, 12].
The underlying idea is that the most useful test to

apply to a given pseudo-random sequence of numbers
is just the calculation for which the pseudo-random
numbers are needed and, if the correct answer to this
problem is known theoretically, then it provides a

Fig. 1. - Probability density p(x) obtained by plotting the -
histogram of 5 x 106 iterates of xo = 0.4 by equation (1.2),
in 1 000 intervals [i/ 1000, i + 1 / 1004], i = 0, ..., 999.
R = 4(a), 3.8(b), 3.8275(c), 3.62(d).
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straightforward test of the generator. In this spirit, the
random walk test uses the non-linear map (1.0) (for
example (1.2)) as a random number generator for a
Monte-Carlo random walk experiment on a one-
dimensional periodic lattice (of period N) with a
trapping site. The Monte-Carlo experiment is perform-
ed as follows : knowing the interval explored by the

/ nB n")

successive iterates of 1.2 , namely R 1 - R T r( ) y 4 4 ’4

we choose arbitrarily a cut-off separating this interval
into two sub-intervals. One then makes the random
walker step either to the right or to the left depending
on which subinterval the iteration lies in. Counting
the relative number of iterates which fall on the right,
{ left }, subinterval allows to define and experimentally
measure the average probability p, { 1- p }, for the
walker to step to the right, { left }. Simulations are
performed for X (= 2 000 to 800.000) walkers start-
ing from each of the N - 1 non-trapping lattice sites
(N = 13). The numerical average nT(s) Xxp is obtain-
ed by calculating the walk length of each walker
starting from a given site placed at s steps from the
trap (counting clockwise) and averaging over the N
walkers. Then by comparing this value to the analy-
tically determined walk lengthy nT(S) )th of a walker,
starting at s sites from the trap and moving to the
right, { left }, with the probability p { 1 - p }, one can
assess the randomness of the sequence of numbers.
One can immediately see that this .new test is a

mixture of the « usual &#x3E;&#x3E; statistical tests. In particular,
the random walk experiment is very sensitive to non-
Markovian effects as discussed extensively in § 4. Fur-
thermore, we claim that the random walk test provides
an efficient device for checking the existence for the
pseudo-random generator, of an absolutely conti-
nuous measure with respect to the Lebesgue measure.
When the map has sensitive dependence on initial
conditions, a sequence of numbers xi originating from
a given seed xo will not follow the true orbit of xo
since, at each iteration, a small but non-zero trun-
cation error is made by the computer. For a given
relative precision of about 10-16, the n th number
obtained by iterating the logistic map (1.2) will have
lost completely the memory of its seed xo as soon as
n &#x3E; log 1016/log 2 - 50, where log 2 is the upper-
bound of the Lyapunov characteristic exponent
reached at R = 4 for which the map is surjective [1].
As a consequence, a sequence of numbers, generated
by the iteration of (1.2), samples a different orbit
roughly every 50 steps. Since the average random walk
length is of the same order of magnitude (see tables I-
IX), each walker will be directed by a different orbit.
As a consequence, the comparison between the nume-
rical experiment and analytical results provides a good
test of the independence of the probability distribution
(p-measure) on the choice of the seed xo.

Other relations between the random walk test and
the usual statistical tests will be underlined in the pre-
sentation and discussion of the results in § 4.

3. Random walk with nearest neighbour transition on
a 1-D periodic lattice.

To use the random-walk test requires knowledge of
exact analytical results. The theoretical analysis of the
symmetric case p = 1 - p = 1/2, has been investigated
by Montroll [14] who proved in particular that the
expected average walk length for a walker to be trapped
starting from the site s is given by

However, it is important to realize that, in order to
test the existence of an absolutely continuous inva-
riant measure, investigations cannot be limited to the
one particular cut-off yielding p =1 - p = 1/2 and
must be extended to all values of p between 0 and 1.
We derive in section § 3.1 the average walk length
( nT(s) Xh for arbitrary p. Furthermore, we give the
expected walk length (§ 3b) for the special case of a
weakly non-Markovian walker for which the memory
effect extends over two steps : the probability at each
step to go to the right or to the left becomes a condi-
tional probability which depends on the preceding
step. This result will be used in § 4 to discuss the short-
range correlation effects inherent in the dynamics of
deterministic processes.

3.1 NON-SYMMETRIC NEAREST-NEIGHBOUR RANDOM

WALKS. - We consider random walks on a N-periodic
one-dimensional lattice where the walker jumps to
nearest-neighbour lattice sites, with a probability p to
go to the right and 1 - p to go to the left.

Formally, the average walk length n(s) ) to reach
the site so + s for the first time starting from the site
SO is independent of so and given by

where F n (N)(S) is the probability that a random walker
starting at the site so reaches the site so + s for the
first time at step n. We label the different sites counter-
clockwise.
One can relate F n (N)(S) to the probability pn(N)(S) of

going from the starting site so to the lattice site so + s
after n steps through [14]

Introduction of the generating functions F IN)(S’ z) and
p (N)(S, z) given by

and
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multiplication of (3.2) by z" and summation over n
yield

From (3.5) we obtain F(N)(S, z) in terms of p(N)(S, z) :

F (N)(S, z) = (P(N)(S, z) - ðs,o)/ p(N)(O, z). (3 . 6)

Thus, the knowledge of p(N)(S, z) yields F(N)(S, z) which
by differentiation at z =1 leads to ( n(s) ) :

Now P(’)(s, z) is the generating function for random
walks on a ring of N sites and satisfies the periodic
condition :

This generating function is equivalent to the sum of
the generating functions P’(s, z) for all those walks
on an infinite line which represent walks from so to
so + s, so to so + s + N, ... as well as from so to

so + s - N, so to so ’ + s - 2 N, ... Hence,

where POO(s, z) remains to be computed.
Since the random walk is Markovian, PnOO(s) (which

is the probability equivalent to Pn(N)(s) but for an
infinite line) satisfies the usual recursion formula

(master equation) :

p +1(s) = p P noo (s - 1) + (1 - p) P noo (s + 1). (3.10)

By multiplying (3.10) by z", summing over all n and
with the initial condition P’(s) = 6,,0, one obtains :

Introducing the Fourier transform of P’(s, z)

in equation (3 .11 ) and inverting equation (3.12) yields

which reduces to the result of reference [14] in the
symmetric case p = I - p = 1/2.

We now define the constant a such that

which allows one to transform (3.13) into

With the change of variables, T = 4&#x3E; - ia and Z =

z J 4 p(1 - p), equation (3.15) involves an integral
along the linear contour parallel to the real axis but
displaced from it by the amount - a. Then, it is

straightforward (2) to show that P’(s, z) is equal to

which can be explicitely calculated [15]

with

Substitution of expression (3.17) for P °°(s, z) into

equation (3.9) yields after summation

Then from (3.6) and (3.7) we finally get
r

The average walk length for a walker starting at the
site s to reach the site 0 which is supposed to be the
trapping site is obtained by changing the labelling of

(2) Equation (3.16) results from the integration on a
contour in a complex plane lying on the two horizontal
segments at Im T = 0 and - ia respectively, closed by
two vertical segments (Re 9 = ± n), and which does not
contain any pole of the integrand.
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the sites from counter clockwise to clockwise that is

p into 1 - p in (3.20)

This formula reduces to (3. 0) in the limit p - 1/2.

3.2 NON-MARKOVIAN RANDOM WALK WITH A TWO-
STEP MEMORY. - We now extend the anisotropic
random walk model by allowing for a short-range cor-
relation. The probability for the walker to go to the
right { left } now depends on the direction of its pre-
vious step. This requires the definition of four condi-
tional probabilities namely pRR the probability to have
two successive steps to the right, pLL the probability to
have two successive steps to the left, pRL the probability
that a step to the right is followed by a step to the left,
pLR the probability that a step to the left is followed
by a step to the right. This problem reduces to the
previous case when the four probabilities we have
introduced obey the relation :

A similar problem has been studied by other

authors, who give, for the continuous case, the asymp-
totic behaviour of the diffusion coefficient [16] and
the variance of the probability distribution [17]. In
addition to being a model of anisotropic neutron
pseudo-diffusion, this picture may be useful to des-
cribe several physical systems such as dielectric relaxa-
tion anomalous transients and noise phenomena. As
we will see in § 4, this situation also occurs when using
the logistic map (1.2) to generate pseudo-random
numbers for R = 4 and with the particular cut-off
value Xc = f-1(1/2).
The expected average walk length is computed as

follows. A straightforward generalization of equation
(3.10) reads

The general method for calculating POO(s, z) being
slightly more involved than in § 3.1, is presented in
Appendix A. Knowing POO(s, z) yields P(’)(s, z) by
equation (3.9). Then differentiating F(N)(S’ z) obtained
with equation (3.6) with respect to z at z =1 yields
 n(s) ) (Eq. (A. .15)).
Now, applying this result to the random walk expe-

riment, performed with the logistic map with R = 4,

x, = inf f -1 ( 1 /2), as the random number generator,
requires the determination of pLL, pRR, PRL and pLR
defined above. As shown in figure 2, the interval [0, 1]

Fig. 2. - (a) The logistic map f (x) given by equation (1. 2)
for R = 4; three cut off values used in the Monte-Carlo
experiment are shown. (b) The second iterate f2(X) of the
logistic map for R = 4 ; the subinterval [0, inf f -1(1/2)] is
mapped onto the whole definition interval [0, 1]. (c) Fifth
iterate f5(X) of the logistic map for R = 4; the subinterval
[0, Xc = 1/4] is mapped several times onto [0, 1]; the

relative importance of the mismatch shown by the dashed
line becomes negligible for such high iterates of (1.2).
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can be partitioned into four disjoint intervals :

L-’

and

At each step, the iteration of (1.2) lies in one of these
subintervals. If xn E [0, fin-f’(x,,:)] then Xn is less than
Xc and the walker goes to the left at the n th step. At
the next step, xn + 1 = f (xn) still belongs to [0, xc] and
again the walker will go to the left. Therefore

where p(x) is the absolutely continuous invariant
measure defined in (1.1). The same analysis carried
on the other three subintervals leads to :

With the cut-off value x, = inf f -’ ( 1 /2) the logistic
map yields p = 3/4, pLL = 1/8 and Y = e2a = 5 ;
owing to the large value of Y nT(S) &#x3E; is then given
to leading order by

Equation (3.25) has been used to compute the theo-
retical values of ( nT(s) &#x3E;:h which are compared with
the experimental values in table III.

4. Numerical results of the Monte-Carlo random
walk experiment.

In this section, we present numerical results obtained
when using the logistic map (1.2) or one of its iterates
f " = f 0 f 0 ... o f, n = 2,... as the random number

generator for different values of the control para-
meter spanning the interval bounded’ by the chaotic
threshold Rc = 3.5699 and R = 4. The procedure
chosen for the Monte-Carlo experiment has been
described in § 2 (see also Appendix B). In order to
examine in what sense the Monte Carlo random walk

experiment tests the existence of such a measure, we
first study the case R = 4 for which the map is sur-
jective and possesses an absolutely continuous inva-

riant measure [18] with density p(x) I [x(1- x)] - i l2
7r

(see Fig. 1).

4.1 R = 4. - In table I, we report numerical expe-
riments carried with a symmetric cut-off Xc = 1/2
corresponding to a probability p = 1/2. We obtain
results similar to those described in reference [11].
Experiment and theory (see § 3.1) are in agreement
within statistical error; the mean standard deviation
is of the order of one percent for N = 20 000. How-
ever, considering the monotonous behaviour of the
map ( 1. 2) on each subinterval, (see Fig. 2) one could
expect a systematic discrepancy due to the existence
of short-range correlations. By direct numerical

computation, we find that two-point correlation
functions (see Eq. (2.0)) (with the condition that
the first point belongs to one of the two subintervals)
show exponential decay with a correlation length
equal to the Liapunov characteristic exponent,
1. = log 2. Although such correlation effects are

always experimentally present, they are buried in the
statistical error, because of their low amplitude. In
order to make them observable in the random walk

experiment, fairly prohibitive statistics would be

required. Runs up to N - 106 have not permitted
us to detect these effects. Therefore the random walk
test is much less sensitive to this type of correlation
than the serial correlation test (see § 2). However, we
now show that it is very sensitive to another type of
correlation, namely the ill-definition of the proba-
bility p at each step which occurs for non-symmetric
cut-offs (p =1= 1/2). Indeed, as soon as one of the

boundaries of either subinterval R 2 1 - R , x4 T , xc
and [xc, R/4] is not mapped onto one of the boun-

Table I. - Average walk length  nT(s) ) for trapping
from individual sites on a N = 13 periodic lattice for
R = 4 and p = 1/2 (xc = 1 /2) and using g ( nT(s) )th
is obtained from equation (3 . 21 ).
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daries of the whole invariant subinterval R 2 1- R
R

4’p 
becomes a conditional probability which

depends on the preceding step. This non-Markovian
effect can lead to a strong discrepancy between theory
and experiment as illustrated in table II. In this case,
failing to get a fixed p for each step arises from partial
overlap of the invariant interval with the iterate of
one of the two subintervals (see Fig: 2a). Further
experiments performed with a higher iterate f n of
the logistic map lead to considerably better agree-
ment with theory. Numerical computation of the

probability p for each step shows indeed convergence
to the mean value of p as n is increased. Then each
subinterval is mapped several times onto the inva-

riant interval with the result that the relative impor-
tance of the mismatch diminishes with the number
of mappings as shown in figures 2b, c.
Note that the ill-definition of p at each step is

related to the occurrence of monotonic subsequences
of numbers when iterating f. The sensitivity of the
random walk test to such correlation effects indicates
that it supports the comparison with the statistical
run-test briefly described in § 2.
Whatever the cut-off value Xc, one can always

compensate numerically for the ill-definition of p at
each step by using a sufficiently high iterate of f.
However for R = 4 and particular cut-off values
- that is the nth inverse iterates of the critical point 1/2
of the logistic map for all n - this ill-definition of p
strictly disappears when considering fn + 1 as the
random-number generator, as illustrated in table III

Table II. - Average walk length  nT(S) ) for trapping from individual site on a N = 13 periodic lattice for R = 4,
p = 2/3 (xc = 1 /4) and using f, f 2 and f10 respectively.  nT(s) )th is obtained from equation (3 . 21 ).

Table III. - Average walk length  nT(s) ) for trapping from individual site on a N = 13 periodic lattice for R = 4,

p = 3/4 (Xc = 1/2 - 1/2/2 and using f and f z respectively.  n(s) &#x3E;lh is derived from equation (3.21). Exact resultsi)
obtained for a non-Markovian two-step effect random walk (Eq. (3.25)) are shown in the first cqlumn and compare
well with experimental results when using f.
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Table IV. - Average length  nT(S) &#x3E; for trapping from individual site on a N =13 periodic lattice for R = 4,
p = 0.96883 (xc = inf f -4(1/2)) using f, f 5, f 10 respectively.  nT(s) )th is obtained from equation (3.21). The
comparison between  nT(s) )exp and  nT(s) )th is more direct when tabulating and comparing the deviation
I  nT(s) ) exp -  nT(S) &#x3E;lh I with the predicted mean standard deviation (Eq. (B. 24)) : see table 1

for x, = inf f -1 (1/2). For this simple case we obtain,
as expected, good numerical results when using j’2,
which reflects a two-step correlation effect. This

simple non-Markovian behaviour has been analysed
in § 3.2. Good agreement is found betwen the theo-
retical prediction equation (3.25) and the numerical
simulations performed with f (see Table III).

In tables IV and V, we also present results obtained
for large p = 0.96883 corresponding to xc =
inf j’ - 4( 1/2), for which we have theoretically esti-
mated the mean standard deviation AT,N(S) of

 nT(S) &#x3E;exp in Appendix B. As expected the numerical
deviations fall within 2 AT,N(S) when using f n with
n&#x3E;5.

Let us remark that the use of some iterate f ",
with n &#x3E; 2, amounts to extracting a subsequence
out of the original sequence. Our numerical results
thus show that when combining the random walk
test with the subsequence test (see § 2) one is able
to select a « truly» random sequence of numbers
from the initial deterministic sequence.

4.2 Rc  R  4. - We now investigate the general
case R # 4. For the set of Misiurewicz’s R values [8],
one can easily convince oneself that the problem
simply reduces to the case R = 4, when using f k
instead of f as a random generator. These R values
correspond to the different stages of the reverse

cascade [1] for which the 2k+ 1-band chaotic attractor
merges to 2k-bands. Indeed in each of the 2k-bands,
f k is surjective as is f on [0, 1] for R = 4.
We first concentrate on values of R in the last

step of the reverse cascade, R = 3.67857... to R = 4.
For R = 3.8, and a bisecting cut-off such that p = 1/2,
we obtain the same poor results as those presented
in reference [11] when using f. However with f 2 0
considerable improvement is obtained as shown in

Table V. - Normalized deviations

bn  nT(S) )exp -  nT(S) &#x3E;lh IIAT,X(S)
of the average length for trapping from individual site
on a N = 13 periodic lattice for R = 4, p = 0.96883
(xc = inf f -4(1/2)) using f ", n = 1, 5, 6, 8, 10 where

AT,N(S) is the mean standard deviation estimated in

Appendix B (Eq. (B.24)). When using f, we obtain
deviations up to - 90 r.m.s. while for fn, n &#x3E; 5, the
deviation always lies within 2 r.m.s. This confirms that
with high iterates of f, we get rid of non-Markovian
effects inherent in iterations of deterministic process.

table VI. A numerical estimate of the short-range
correlation effects shows unambiguously that the ill-
definition of p at each step is responsible for the
misleading claim of Kozak et al. Our conclusion is
corroborated by simulations with different cut-off

values, for which the correlation effects are less
dramatic and easier to handle with lower iterates of
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Table VI. - A verage walk length  nT(s) &#x3E; for trapping from individual site on a N = 13 periodic lattice for R = 3.8,
p = 1 /2 (xc = 0.690258) and using f, f 5 and f20 respectively.  nT(s) )th is obtained from equation (3.21).

the logistic map (see Table VII). In fact, cut-off values
such that p - 1/2 lead to short-range oscillating
behaviour reminiscent of the systematic periodicity 2
superimposed to chaotic behaviour as it occurs in
the previous stage of the reverse cascade.
The results for R = 3.8275 are presented in

table VIII. For this value of the parameter, the logistic
map shows intermittent [19] behaviour preceding
the occurrence of a stable period-three cycle. This
characteristic short-range order in chaotic dynamics
is reflected in the random walk experiment by the
necessary use of rather high iterates of f. The bias
increases drastically when R approaches the bifur-

cation value R = 1 + J8 = 3.828427... Avoiding
this intermittent regularity could be attempted by
selecting those points in the dynamics which are
not in the resonant channels; but even for such

points; memory of the periodicity persists.

We have also extended our numerical study to the
different stages of the reverse cascade, and we obtain
similar results when the non-connexity of the chaotic
attractor is taken into account. In particular the
disconnected structure of the attractor reflects into a
back and forth walk, when using f as the random
number generator in the symmetric case p = 1/2.
For a 2’-’-band attractor, the general procedure
requires at least the kth iterate of f. This restricts
the analysis to one of the bands of the attractor which
is invariant under fk. Next by choosing an arbitrary
cut-off in this band, we face again a situation similar
to that one encountered in the last stage of the reverse
cascade discussed above. In table IX, we present
experimental results for R = 3.62 in the 2-band
chaotic region. For f20 as the random number

generator, good agreement is obtained between theory
and experiment. Many additional numerical experi-
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Table VIII. - Average walk length  nT(s) ) for
trapping from individual site on a N = 13 periodic
lattice for R = 3.8275, p = 0.725404 (xc = 0.4) and
using f and f20 respectively.  nT(s) )th is obtained

from equation (3.21).

ments were performed for other arbitrary values of R.
They all confirm the results presented above : when
the Liapunov characteristic exponent is computed
positive, the logistic map can be used as a pseudo-
random number generator provided its deterministic
nature is taken into account.

In conclusion, we hope that the present work has
shown the relevance of the random walk test as an

easily tractable and powerful statistical test. Its use

Table IX. - Average walk length  nT(s) ) for trapping
from individual site on a N = 13 periodic lattice for
R = 3.62, p = 0.2919 (xc = 1/2) and using f2 and f20
respectively.  nT(s) &#x3E;lh is obtained from equation (3-2 I).

has helped in clarifying the nature of the chaos
exhibited by discrete dynamical systems and lent

strong experimental support to Ruelle’s conjecture.
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Appendix A.

We start from the recursion relation (3.23)

Multiplication of (A. .1) by z" summation over all n and use of the initial conditions

rpoo 

yield

This equation can be solved like equation (3.11) ; using the Fourier expansion of POO(s, z), we obtain

With the new variables r, 9, Z defined by :
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and

Equation (A. 4) transforms into

Each integral in (A. 7) reduces to an integral evaluated on the real line when introducing, as in § 3 . l, the new
a

variable ({J = 0 - I y.
Then POO(s, z) can be reexpressed as

Explicit integration of the integrals involved in (A. 8) can be foond in tables of definite integrals [15]

where Z is given by equation (A. 6) and

then we get

Substituting (A. 11) into (3. 9) yields after summation of the two series :
-

where
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Equation (A .13) only holds for s even. For s odd, p(N)(S, z) is easily obtained by remarking that since N is odd
(which is our choice in our numerical experiments), s and N - s re of different parities. If s is odd, then N - s
is even and p(N)(S, z) is obtained from (A. 13) by replacing s by - s and p by 1 - p.

Now from (3.6) and (3.7) we find

where

The average walk length ( nT(S) ) to be trapped starting from the site s is thus deduced from (A. 15) and (A. 16)
by replacing p by 1 - p which by (A. 14) and (A. 10) amounts to replace Y by y-1 in (A. 16).

Appendix B.

In this Appendix, we estimate theoretically the mean standard deviation between the exact average walk length
for a walker to go from the site so to the site so + s and its numerical estimate obtained by averaging over
X walkers. The probability TN(X n) that among X walkers, JY’n walkers reach the site so + s for the first time
after n steps, is given by :

where F n (’)(s) is defined in § 3 . l. For large N and Nn’ the binomial law (B .1) becomes Gaussian :

where Fn(N)(S) is expressed in terms of Fn )(s) as :

A typical numerical experiment will yield Nn1 walkers making nl steps, ..., Xnoo walkers making noo steps. The
Nnj,i = 1,..., oo are not independent but satisfy the relation

From this realization, a numerical estimate of the average walk length  n(s) ) is given by :

To obtain the mean standard deviation  « n &#x3E;, -  n(s) &#x3E;)2 &#x3E;, one has first to compute the law of proba-
bility of  n &#x3E; N which reads :

where the summation runs over all configurations of N walkers such that (B. 4) and (B. 5) are fulfilled, each
configuration being weighted by its corresponding probability. For large JV and Nnj(j = 1,..., oo), the discrete
sums in (B. 6) can be replaced by continuous integrals over new variables xi defined by :
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Equation (B. 6) thus becomes :

The second 6-function cancels out by Fourier transforming fr(  n ) x) with respect to  n ) x -  n(s) &#x3E;, whereas
the first 6-function can be removed by integration over a chosen Xm. We thus obtain :

The argument A of the exponential in (B. 9) can be expressed in matricial form :

where the elements of A and B are given by :

Introducing the change of variables

we find

where we have used the fact that the matrix A-1 is symmetric. Hence, equation (B. 9) reads

Integration over the yj’s gives a number independent of k. Taking the inverse Fourier transform of (B .14) leads
back to 

with

Therefore, as one expects for large N , the  n &#x3E;x are normally distributed around ( n(s) ) with a mean standard
deviation AN(s) given by equation (B .16). Using expressions (B .11) AN(s) becomes :

in which the numerator does not depend anymore on X, but only on the probabilities Fnj(N)(S).
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The matrices a and b are defined by :

The quadratic form tba-1 b is not analytically computable in general, except when the probability Fn(N)(S) is
sharply peaked around the average walk length  n(s) ). This occurs when the probability p for the walker to
go to the right is small (or conversely 1-p is small). Let us notice that Fn(N)(S) is a delta function in the limit p -&#x3E; 0.
By choosing nm as the nearest integer value to  n(s) ) one can write :

since Fnm(N)(s) is much greater than Fij(N) for all j # m. Substituting (B .19) in, (B .17) yields :

where Q2 =  (n - ( n »)2 ) is the variance of the first passage walk length. Q can be exactly computed using
the methods exposed in section 3. In terms of the generating function F(N)(S, z), (12 reads :

From equations (3.6) and (3.19) we obtain :

which yields through equation (B. 20)

Now since the average walk length  nT(S) ) for a walker starting from the site s to be trapped at the origin
can be deduced from ( n(s) ) by replacing either p by 1 - p or s by N - s in (3. 20), we end with the following
estimate of the mean standard deviation of  nT(s) ) : 
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