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Résumé. 2014 Le modèle proposé par Prost pour les cristaux liquides polaires avec compétition entre deux distances
inter-couche dans la phase smectique-A est utilisé dans une étude de l’intensité I(q) de diffusion des rayons-x
dans la phase monocouche (A1). I(q) peut manifester une tache, un anneau, deux anneaux ou deux taches près du
vecteur d’onde q0 de la phase bicouche (A2) lorsqu’on approche respectivement les phases A2; A, C ou la phase
incommensurable. I1 peut exister aussi une double tache avec un anneau lorsqu’il y a compétition entre la phase
incommensurable et la phase A. Ces formes idéales de I(q) peuvent être cachées par des fluctuations non critiques
si une transition du premier ordre empêche l’approche de la limite de stabilité de la phase A1.

Abstract. 2014 The model introduced by Prost to describe polar liquid crystals with competition between two
different layer spacings in smectic-A phases is used to calculate the x-ray scattering intensity I(q) in the mono-
layer (A1) phase. I(q) can respectively exhibit a single spot, single ring, double ring, or double spot pattern in the
vicinity of the bi-layer wavenumber q0 as the A2, A, C or incommensurate phases are approached. There may
also be a double-spot-single-ring pattern when there is competition between the incommensurate and A phases.
These idealized patterns may be masked by non-critical fluctuations if first order transitions prevent a close
approach to the limit of stability of the A1 phase.
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1. Introduction.

Smectic liquid crystalline mesophases are solid-like
in one spatial direction and liquid like in the other
two. They are produced when oriented bar-like
molecules segregate into stacks of parallel planes as
shown in figure 1. When the constituent molecules
are not inversion symmetric as is the case when they
carry an off centre dipole moment, a variety of smectic
phases are possible [1-3] as shown in figure 1 (the
normal to the planes is along the z-axis specified
by a unit vector iz). In the A, (Fig. la) or monolayer
phase, the repeat distance d normal to the layers
is equal to the length of a molecule, 1, and the dipolar
heads are randomly up and down in a given layer;
in the A2 (Fig. lb) or bilayer phase, d is twice 1, and
the dipolar heads are preferentially up or down in a
given molecular layer; in the A (Fig. Ic) and C
(Fig. ld) anti-phases, the direction of dipolar align-
ment is modulated in the plane of the layers. In
addition, there is an Ad monolayer phase with
1  d  2 1. This phase has a distinct signature,
but in fact has the same symmetry as the A2 phase [4].
Each of these phases and the high temperature
nematic phase from which they evolve have characte-
rictic x-ray scattering intensities as shown in figure 2.

Prost [2, 5] proposed a phenomenological model
(based on an earlier model for the N-A2 transition [6])

to describe these phases and the transitions between
them. In this model, there are two fields tp 1 and tp 2
with preference to order with spatial modulations
with respective collinear wavenumbers k, = k1 ez

Fig. 1. - Schematic representation of five smectic-A

phases : (a) the monolayer or Ai, (b) the bilayer or A2
phase, (c) the A phase, (d) the C phase, and (e) the A,
phase with layer spacing between one and two molecular
lengths.
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Fig. 2. - Schematic representation of the x-ray scattering
intensity in the various liquid crystal phases : (a) the
nematic phase with two diffuse spots at k, and k2, (b) the
At phase with a quasi-Bragg peak at k2 and a diffuse spot
at ki, (c) the A2 phase with two quasi-Bragg peaks at

2 qo and qo, (d) the A phase with a Bragg peak at qZ = 2 qo
and two Bragg peaks at qz = qo and non-zero ql, and

(e) the C phase with a Bragg peak at qZ = 2 qo and two
Bragg-peaks at (qz = qo + k, qx = Po) and (q., = qo - k,
qx = - po), the former being more intense than the latter.

and k2 = k2 ez corresponding to the peaks in the

x-ray intensity in the nematic phase. In the A phase,
only tp 2 is ordered. In the A2 phase, both tp 1 and tp 2
are ordered with the wave number of tp I locked in at
one half that of tp 2’ The A and C phases represent
responses to the frustration imposed by incommen-
surate k , and k2. Mean field studies of the phase
diagrams of this model have been carried out by
Prost and collaborators [2, 7].

In the A1 phase, tp 2 is ordered at wavenumber

2 qo êz = k2 and produces a periodic potential for
the field tp 1 that may be incommensurate with its

preferred periodicity determined by kl. In this paper,
we will use the Prost model to study fluctuations in
the A phase. We will be particularly interested.in the
observable signatures in the x-ray intensity I(q)
of the approach to the A2, A and C phases. We find
that there are five idealized forms depicted in figure 3
that I(q) can take : (1) a diffuse spot on the z-axis
at qo signaling an approach to the A2 phase, (2) a
diffuse ring in the xy plane centred along the z-axis at
qo signaling an approach to the A phase, (3) two
diffuse rings in the xy plane with centres equally
spaced on the z-axis about qo signaling an approach
to the C phase, (4) two diffuse spots equally spaced
about qo on the z-axis signaling an approach to a
phase with coexisting incommensurate wavenumbers,
and (5) two diffuse spots and a diffuse ring signaling

Fig. 3. - Idealized limits of the x-ray intensities in the A 1
phase in the vicinity of instabilities into the (a) A2, (b) A,
(c) C, (d) incommensurate phases, (e) show the x-ray

intensity when there is competition between C and incom-
mensurate ordering.

an approach either to the incommensurate or A
phase. The double spot pattern characteristic of an
approach to an incommensurate phase has not yet
been observed experimentally though there is no
theoretical reason why it should not exist in systems
with sufficient anisotropy along the z-axis and suffi-
cient mismatch between k and k2. The forms depicted
in figure 3 represent idealized limits that may only
be observable near the limit of stability of the A 1
phase. Y1 is a complex order parameter with two
independent components. Only one linear combi-
nation of independent components orders at the
various transitions under consideration. I(q) probes
fluctuations in both components, and only the

ordering component that dominates near the limit
of stability produces the idealized forms. Inclusion
of the non-ordering component leads to the much
more complicated contours of constant I(q) shown
in figures 4-8. Since the transitions from the A, to
the A and C are expected to be first order, it may in
some cases not be possible to approach close enough
to the limit of stability of the A 1 phase to see the
respective ideal single and double ring patterns.

2. Development of the model.

To obtain a model for the A, phase, we follow Prost
[2, 5] and introduce two complex fields Y1 I and tp 2
with Fourier components in the upper half plane
that are responsible for the intensity maxima in I(q)
in the nematic phase at k, and k2. It is convenient
but not necessary to identify tp 2 with the molecular
centre of mass density and tp 1 with the dipole moment
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Fig. 4. - Contour plots for 81 1(q) and 7(q) illustrating (right) the idealized one spot pattern in e= indicating an approach
to the A2 phase and (left) the resultant pattern in I for r = 0.6, yl = 0.5, Y2 = 0.3, Y3 = 3.0, Y4 = 0.5.

density of the polar heads. A phenomenological Landau-Ginzburg Hamiltonian with maximum fluctuations
in tp 1 and Y2 at wavenumbers k1 and k2 is

where r, - I - TCl and r2 - T - Tc2 where T
is the temperature and T, 1, and T c2 are the mean field
transition temperatures for ordering of tp 1 and W2’
In general there could be other terms in H of the form
tp 2*P tp’l for general (p, q) :A (1, 2) coupling tp 1 and W2
For k1 k2/2, the W* Vf2 term retained in equa-
tion (2 .1 ) is the most important one, and we will
consider it only. The effect of the other terms on the
properties of the A 1 phase can be treated in perturba-
tion theory. They do not qualitatively alter the results
presented here. The mean field x-ray intensity pre-
dicted by equation (2 .1 ) is

where tp C2(q) is the Fourier transform of tp 1,2(X).
I(q) clearly has the required maxima at q = ki and
q=k2.

In the A1 phase,  tp 2 &#x3E; is non-zero and has a

spatial modulation at wavenumber 2 qo = 2 qo ez.
qo can vary with temperature but is of order k2/2.
Writing

we obtain from equation (2 .1 ) an effective Hamilto-
nian describing fluctuations of 0 in the A, phase :
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Fig. 5. - (a) One ring pattern in 8= l(q) indicating an
approach to the A phase and (b) resultant pattern in I
for 7 = 0.6, y, = 0.5, Y2 = 0.5, Y3 = 0.2, and Y4 = 1.0.

where

where v = w  t/J2 ). In equations (2.4) and (2.5),
we have slightly generalized the original Prost model
with the addition of a term (Dl - D) I Vit/J12 to H.
This allows for independent rates of decay of I(q)
for large q = q1. and q = q êz. The V(t/J2 + ql*2)
term in equation (2.5) results from umklapp coupling
of fluctuations near - qo to those near qo made

possible by the non-vanishing ( t/J2 &#x3E;. As in the BCS
theory of superconductivity, we employ the Nambu [8]
notation and introduce

Fig. 6. -(a) Two ring pattern in c -- ’(q) indicating an
approach to the t phase and (b) resultant pattern in I for
r = 4.5, y, = 7.0, Y2 = 1.8, Y3 = 2.6, and Y4 = 0.17.
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Ho is then re-expressed as

where the Einstein convention is understood and

where

Mean field correlation functions of tp ex follow directly
from equation (2.7). We have

eap is a 2 x 2 matrix with eigenvalues

and orthonormal eigenvectors

Thus we can write

The x-ray intensity h due to fluctuations in 0 is
related to GaP(q) via

Note that I1 (k) is dominated by e= 1 only near the
limit of stability of the A, phase.

3. Analysis.

We now wish to use the results of the previous sec-
tion to study instabilities in the A 1 phase and how
they are manifested in the x-ray intensity II (q).
The A phase becomes unstable when one of the eigen-

values of 8«o goes through zero. Since s-  E+, we
need only be concerned with s_(q). 8-(q) has a
minimum value for wavevectors qm = (qmh qmll) such
that Vq 8 - (qm) = 0. If qm = 0, the system becomes
unstable with respect of the appearance of spatially
uniform order in 03C8(x) as r decreased. If q. 0 0, then
the instability is towards spatially modulated order
in 0 at wavevector qm. Only the component of P(J.(q)
associated with E_ (qm) is critical so that the order

parameter

Fig. 7. - (a) Two spot pattern in e= l(q) indicating an
approach to in incommensurate phase and (b) resultant
pattern in 7 for r = 0.3, yi = 0.3, y2 = 1.1, Y3 = 0.6,
and Y4 = 0.91.
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has Ising symmetry rather that the xy symmetry of
the full complex field ql. This results from the preferred
relative phase of the original fields § and 02 impos-
ed by equation (2 .1 ). Long range order in qy at wave-
number qn, leads to =

It is clear that equation (3.2) can describe the A2,
A, and C phases discussed in the introduction. qm = 0

Fig. 8. - (a) Double-spot-single-ring pattern in B= 1(q) indi-
cating an approach either to the incommensurate phase or
the A phase and (b) resultant pattern in I for F = 0.6,
Yl = 1.0, Y2 = 1.1, Y3 = 0.6, and Y4 = 0.83.

corresponds to the A2 phase; el = e2 , qm = qm êx
where ex is a unit vector in an arbitrary direction per-
pendicular of eZ to the A phase ; and el 0 e2 , qm =
qml ex + qm êz to the C phase. We will see shortly
that the situation qm = qml êx + qm y êz, el - e2
does not exist.

In order to analyse the possible forms of 8_ (q),
we first introduce unitless variables :

Then we have

We now expand E _ in powers of p :

where

The fourth order coefficients b l, b.1’ and bl.1 are all
positive whereas al and a.1 can be positive or nega-
tive. The determination of qm = (qm.1, Qmjj) from

equation (3 . 3 ) is therefore exactly analogous to the
mean-field determination of order parameters in the
vicinity of a bi- or tetra-critical point [9]. The phase
diagram for qmll I and qm.1 in the aI -a.1 plane is shown
in figure 9. Figure 9a is for the tetracritical case
with bî.1  bl bl, and figure 9b is the bicritical case
with bî.1 &#x3E; b l b.1’ In both cases, there are four regions
in the phase diagram defined by the positive a .1

and al axes and by the lines al = (b1.1lb.1) ai (OC)
and ai = (bIlbI.1) a.1 (OD) in the third quadrant.
In regions I, qm = 0 leading to the single spot pattern
of figure 3a and instability into the A2 phase; in
regions II, qm jj I = 0 and qm.1 &#x3E; 0 leading to the single
ring pattern of figure 3b and instability into the A
phase; in regions IV, qm.1 = 0 and qm 11 &#x3E; 0 leading
to the double-spot pattern of figure 3d and instability
into the incommensurate phase. Finally regions III
are different for the bi- and tetra-critical cases. In
the tetracritical case (Fig. 9a), both qm II and qm.1
are non-zero leading to the double ring pattern of
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Fig. 9. - Phase diagram in the al-al plane showing the
regions where the different patterns shown in figures 3
and 4 occur for small values of al and a,. (a) shows the
tetracritical case and (b) the bicritical case. Lines OA and OB
are respectively the a.L and ai axes; OC and OD are the
line al = (b1.L/b.L) al and al = (b1/b1.L) al ; OE in (b) is
the line separating instability into the incommensurate

phase from instability into the C phase. Region I (see text)
in (a) is bounded by OA and OB, II by OB and OC, III by
OC and OD, and IV by OD and OA, and similarly for (b).

figure 3c and instability into the C phase. In the
bicritical case (Fig. 9b), the patterns of regions II
and IV coexist in region III leading to double spot-
single ring pattern of figure 3e. The intensities into
the spots and ring are equal along the line OE in
figure 9b. Thus above OE, the system becomes
unstable toward the A phase whereas below OE, it
becomes unstable toward the incommensurate phase.
In the bicritical phase transition analogy, OE is a
first order transition line along which two phases
coexist.
At the origin in figures 9a and 9b, s_ = r + O(q’).

The origin, therefore, corresponds to an n = 1,
m = 3 Lifshitz point [10] in three dimensions. Simi-
larly, the positive ai and a_L axes are respectively lines
of n = 1, m = 1 and n = 1, m = 2 Lifshitz points.
This implies that the point where the A i, A2 and A
phases meet is an n = 1, m = 2 Lifshitz point. The
lines OA and OB in the tetracritical case are respec-
tively generalized m = 2 and m = 1 Lifshitz lines.

Figure 9 represents the phase diagrams in the a1 - a.l
plane valid near the point whqre a 1 and al vanish.
In figure 10, we show the global phase diagram obtain-
ed from equation (3.4) in the yl - Y2 - Y3 space
for fixed y4 = 0.17. For small y,, there is the bicritical

point shown in figure 9b. There is also another multi-
critical point at a larger value of y2 where single-ring,
double-spot, double-ring, and double-spot-single-ring

Fig. 10. - Global phase diagram in the space of the para-
meters YI, Y2 and Y3 for fixed y4 = 0.17 showing regions
where the various idealized x-ray patterns occur. The

single spot region is indicated by I, the single ring by II,
the double spot by III, the double ring by IV, and the
double spot-single ring by V. Note that for small values
of yl, the tetracritical point shown in figure 9a does not
exist, and the double-ring pattern only appears beyond
another multicritical point where regions II, III, IV, and V
meet. At larger values of yi, the tetracritical point does
emerge.

regions meet. At larger values of yi, the tetracritical
point of figure 9a emerges. This phase diagram is

qualitatively the same for other values of y4.
As discussed in the previous section, I(q + qo)

measures r_ (q)/8_ (q) 8 + (q) rather than B= 1 (q) alone.
The maximum of I(q + qo) occurs at q = qi defined
via

It is clear that qI = q. in the limit that 8- (qm) = 0.
With a little algebra, it is possible to show that q, = q,,,
only if 8- (qm) = 0 or if qm = 0 and Y2 = 0. Thus, I(q)
will obtain the idealized forms depicted in figure 2
only near the’limit of stability of the Al phase defin-
ed by s-(qm) = 0 or for the trivial case when qm = 0
and Y2 = 0. Otherwise, the maximum intensity of
I(q) will not occur at q = qm, and the contours of
constant I(q) can be quite complicated as shown in
figures 4-8. Within the mean-field theory presented
here, we find
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near the A2 and k phase boundaries and

near the A phase boundary. Equation (3.9) predicts
that ql II - qm II tends to zero more rapidly than is
observed experimentally [11] near the A1 - A tran-
sition. Presumably, however, fluctuations will modify
the mean-field result of equation (3.9).

4. Discussion.

In this paper, we have studied the properties of the
x-ray scattering intensity I(q) in the mono-layer A,
phase in mean field theory using a phenomenologi-
cal model suggested by Prost [2, 5]. We found that I(q)
assumes characteristic forms as the A2, A, C, and I
phases are approached as shown in figures 3 to 8.
We will now briefly discuss what is known about phase
transitions among the above phases. We will also
discuss the relevance to experimental systems and
possible limitations of the calculations presented here.
The AI-A2 phase transition is observed to be second

order [12] and is predicted to be in the Ising univer-
sality class [13]. There is a continuous degeneracy of
directions for the spatial modulations of the A
phase to condense. Thus, just as the nematic to smectic-
C transition is first order [14, 15] so the A1-A transi-
tion is predicted to be first order via arguments due
to Brazovskii [16]. The AI-A2-Ã multi-critical point
(occurring for example in mixtures of DBS and T8)
where the A,, A2, and A phases meet corresponds to
a point along the al = 0 axis of figure 9. Furthermore,
the order parameter of the A,-A2 phase transition
has Ising symmetry. Therefore, the A,-A2-A multi-
critical point is an n = 1, m = 2 Lifshitz point [10]
(n refers to the number of components of the order
parameter, and m to the number of soft spatial direc-
tions with q4 rather than q2 in the propagator). The
A,, A2, and A phases correspond respectively to the
paramagnetic (P), ferromagnetic (F) and modulated
(M) phases of magnetic systems exhibiting Lifshitz
points. The A-A2 transition is, therefore, expected to
be first order (in agreement with Prost [2]) just as the
MF transition is first order in Ising magnetic sys-
tems [17]. Though the Al-A transition is first order,
there should be no trouble in observing its characte-

ristic single ring pattern because as can be seen in
figure 4, the difference between e--’(q) and I(q)
is not significant. Indeed the single ring pattern has
been observed [11]. Finally, we note the possibility [18]
of a biaxial monolayer phase A 1 analogous to the
biaxial nematic phase [19] AT in which the two Bragg
spots of the A1 phase in the vicinity of qo are replaced
by diffuse spots. If this phase exists, then thye would
be second order A 1-A’1 and A’1-A transitions.
As for the A phase, there is a continuous degene-

racy of directions for the spatial modulations of the C
phase, and the Ai-13 transition should be first order.
It may, therefore, be difficult to approach close enough
to the limit of stability of the A phase to see the two
ring pattern of figure 3c since it is so easily lost in
I(q) (see Fig. 4). We feel, however, that a more detailed
experimental study of the Al-C transition such as
occurs in DB9 [1] would be of interest.
Within the truncated model considered in this article,

the double spot pattern of figure 3d represents an
instability into a phase with modulations at two coexist-
ing wavenumbers that could in general have an irra-
tional or incommensurate ratio. Higher order terms
not included in H of equation (2.1) of the form W P W*q
become important when § orders. These terms favour
commensurate lockin with wavenumber ratio p/q
and presumably lead to phase diagrams for highly
anisotropic systems which are similar to the very
complex phase diagrams encountered in the ANNNI
model [20, 21] or the Frankel-Kontorova model [20,
22]. To date there has been no experimental observa-
tion of the double spot pattern-probably because the
anisotropy in liquid crystals is sufficiently weak that the
formation of anti-phases with spatial modulation in
two or more dimensions is the preferred method of
relaxing the frustration imposed by a ratio k2/k,
significantly different from two. We see no reason,
however, why this pattern should not in principle
be obtained by the application, for example, of strong
external magnetic fields to enhance anisotropy.
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