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Résumé. 2014 On étudie la croissance d’une instabilité tearing dans le régime non linéaire de Rutherford. L’usage
des techniques de perturbations singulières nous permet de retrouver, à l’ordre le plus bas, les résultats de Ruther-
ford. A l’ordre suivant nous montrons que le mode engendre une déformation quasi linéaire du profil d’équilibre
du flux magnétique; la diffusion résistive de cette déformation ralentit la croissance du mode et indique la possi-
bilité d’une saturation de l’instabilité.

Abstract. 2014 The growth of a tearing instability in Rutherford’s non-linear regime is investigated. Using a singular
perturbations technique, we recover to lowest order Rutherford’s result. To the following order we show that the
mode generates a quasi-linear deformation of the equilibrium flux profile, whose resistive diffusion slows down
the growth and shows the possibility of a saturation of the instability.
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1. Tearing instabilities [1] have been shown to play
an important role in many areas of plasma physics,
including magnetic fusion experiments, solar flares
and magnetospheric activity. A decisive step in the
understanding of their non-linear behaviour was

accomplished by Rutherford [2]. He showed that
when the width of a magnetic island, due to a high-m
(m &#x3E; 2) tearing mode, exceeds that of the resistive
singular layer, the non-linear j x B force becomes
more important than plasma inertia to oppose the
fluid motion. Then there results a regime where the
island size grows linearly - rather than exponen-
tially - with time. This result has been extended to
a model with anomalous electron viscosity, modelling
the braiding of magnetic field lines in the vicinity
of the separatrix [3].

This however does not explain the saturation of the
instability, observed both in experiments [4] and in
numerical simulations [5, 6]. Saturation was found in
a semi-analytical calculation by White et al. [5].
They observed that in numerical simulations the per-
turbed’ current behaves linearly with the total magnetic
flux, inside the magnetic island. Then the ansatz that
J = a + bVl, where a and b are constants to be deter-
mined by matching with the outer solution, allows
them to find the island’s growth rate as :

where A is a constant, xT is the island width, and a is

due to the cylindrical geometry and to the resulting
asymmetry of the island. A’(XT)’S the slope-jump of the
outer solution, found numerically at the separatrix.
Saturation results when the island is wide enough to
cancel the slope-jump, which measures the available
magnetic energy.
However this work raises many questions, mainly

about the validity of the original ansatz and of the
matching method. The authors, as usual in tearing-
mode theory [1, 2], define an « outer » solution and
an « inner » solution of the MHD equations. Then they
match these solutions and their first derivatives at the

separatrix of the magnetic island. But this leads them
to a confusion between the solution inside the magne-
tic island, and the « inner » solution of a boundary-
layer problem. To be more specific, consider Ruther-
ford’s work : its main point is the existence of a non-
linear current, which dominates in the region of the
magnetic island : this current exists both inside and
outside the island, and extends to a few island widths
from the resonant surface. Using a boundary-layer
technique, Rutherford correctly matches his inner and
outer solutions at a distance larger than the island
width, but smaller than the plasma radius. On the
other hand, White et al. extend the « outer » solution
(obtained from ideal-MHD equations) to the separa-
trix, and use the « inner solution » (with resistive
effects included approximately) only inside the island :
thus their incorrect use of boundary-layer theory
leads them to neglect all resistive effects, including
Rutherford’s current, outside of the island. As will be
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seen in this paper, these neglected effects turn out to be
the main cause of the decrease of the growth rate of
the instability. The definition in reference [5] of the
slope-jump 0’(xT) is thus invalid, because it is not part
of a consistent boundary-layer technique.
We address this problem in a more systematic

manner, using Van Dyke’s formulation [7] of singular
perturbation theory (which is an extension of usual
boundary-layer theory). This technique has already
been used [8] to regularize Rutherford’s solution,
which was singular as the separatrix due to the neglect
of inertia and viscosity.
The first step is to define a small parameter which is

the ratio between the scale-length of the singular
layer (in our case the island width xT), and the scale-
length of the outer solution (in our case this scale is
given by the inverse of the slope-jump A’). Thus our

1 1
small parameter is 8 = A’XT - xT 1 ax . It wassmall parameter is e = A’ XT " XT ’" 1 ax . 

It was

noted by Drake et al. [9,10] that s is also the ratio tkl’rc,
where- TR = xii r¡ is the skin time through the island

and Ic = 1 0/ is the growth time of the

island [10] : then the usual « constant-0 » approxima-
tion is equivalent to 8 = 0. The present work carries
the calculation to first order in q thus taking into
account a weak departure from constant 0.

Its main result is that, as the tearing instability
grows in Rutherford’s regime, it generates a quasi-
linear deformation 64/0 of the equilibrium magnetic

1"i .

flux 4/0. Because s = z is small, boo can diffuse
Tc 

resistively far from the island in a time T,, it diffuses
xT 

to a distance 6x - xT . Then it substantially altersE 1/2 
the outer solution, decreasing the « outer » slope-
jump. At the same time, the growth of the island self-
consistently modifies its shape (through boo and the
radial dependence of 4/ 1), further reducing the growth-
rate of the instability.

Section 2 of this paper outlines the main steps of the
determination of the inner and outer solutions for the

perturbed magnetic flux. Section 3 gives the final
results and the conclusion. Detailed calculations are

given in separate appendices.
2. We use the same model as that of Rutherford [2],
considering a plane plasma slab with the main magne-
tic field in the z direction, the periodicity in the y
direction, and the equilibrium gradients in the x
direction. The plasma is assumed to have a constant
resistivity and is submitted to an externally-applied
electric field Eo(x) eZ, resulting in an equilibrium
current jo(x) = Eo(x)/ N. The magnetic field and velo-
city are represented by the flux and stream function
u with : ; 

In the small plasma pressure limit, neglecting inertia
and viscosity (as was done by Rutherford) the equa-
tions of resistive MHD are written as :

At equilibrium we have 4/ = qlo(x), By = Bo(x) =

ox and in the vicinity of the resonant surface

x2
(where Bo = 0) we approximate : t/lo(x)  B’ z .

Rutherford has also shown that when a high-m
(m &#x3E;, 2) tearing mode is growing its harmonics can
be neglected, provided they are sufficiently damped.
Accordingly we assume a perturbation given by :

5o is the quasi-linear perturbation of the equili-
brium flux due to the growth of the unstable mode
4/1,

Averaging equation (la) over field lines, we get :

where the brackets mean the average over y at cons-
tant 0. Following Rutherford we solve equation (2)
separately in the island region (x - xT = 2(OIIB;)Ill)
and outside of it (x &#x3E; xT).

2.1 INNER SOLUTION. - In the inner region (not to be
confused with the inside of the island, 0  -ifí 1) we
use Rutherford’s result giving at il A’ to order the
different terms in equation (2). As pointed out by Drake
et al. [9] c = 0 corresponds to the familiar « constant-
t/J» approximation. Assuming B = e’xT small but
finite allows us to relax this approximation and to
treat explicity the weak variation of § in the island
region. We write it as :

where Oi and 6§o are only functions of time, and the
radial dependences of f 1 and 6§o have been expanded
in 8. h and g will appear as integrals of Rutherford’s
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current, which is even in x. Then we require h and g
to be even, and to be zero at the resonant surface. s
in an integration constant, implying an asymmetry of
the island due to that of the outer solution. The fact
that 6§o is of order c will be justified later.
We write equation (2) as :

In the vicinity of the island the Laplacian reduces to
a2/ax2. The term in square brackets (linearized current)
writes to lowest order ’’ x - 1 1 . With

L x
1 ot/! i A h I.. dji - By/a and - ai - A’Bl, XT the linearized currentY 

11 at Y

is thus of order (a0’)-’ compared to the first term
(Rutherford’s current) in the right hand side of equa-
tion (4). Then we must require (aA’) to be large to
neglect this term, as was done by Rutherford. Writing :

where primes denote derivatives with respect to x,
and solving equation (4) order by order in s, we get :

Equation (6a) is just that solved by Rutherford. M is the first order modification of the metrics, due to the depar-
ture from constant .p t. It must be noted again that s represents the asymmetry of the island due to that of the
outer solution, coming in practical cases from the cylindrical geometry. It figures only to second order in the
metrics, and thus must be neglected in our calculation. This constitutes an important difference with the results
of reference [5] where, due to the incorrect ordering, the asymmetry of the island was found to play an important
role.

Equations (5) and (6) are solved for ho, go and hl. Detailed calculations and solutions are given in appen-
dix A. Expanding the solutions for X = x &#x3E; 1 (where they will be matched to the outer ones) we obtain :

xT

where
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and :

The functions a and P are expressed in terms of elliptic integrals, and the integrals over w and w’ are performed
numerically.

2.2 OUTER SOLUTION. - In the outer region we solve equation (4) by expansion in /0  1. Detailed

calculations are given in appendix B. To second order we obtain :

The linear terms in equation (8a) give the familiar ideal MHD equation for the outer solution 01, while far from

the island (2013  2013 2013) equation (8b) gives the ideal result for boo, used by White et al. [5] :?I q at)

but this is easily shown to contribute only to order e3 to the slope-jump.
We solve equation (8b) for 6§o with the conditions that it matches for small x to equation (7b) and for

large x to equation (9). For x - xT e-1/2 (which is the resistive depth on a time 1"c) we find :

with :

Substituting this result into equation (8a) we get : § = t/lIL + ðt/l l’ where t/lIL is the linear solution and :
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For x  xT E- li2 this gives :

where X = A’x and &#x26;+2013&#x26;.= 1, giving the linear outer slope-jump. The quadratic and logarithmic terms in
1

r nthes s are of order il I 
and can be ne lected the match to the o linearized c rr n » rmparentheses are of order -- 0 - - , and can be neglected (they match to the « linearized current » term

y y e’ ae’ ’ 
neglected in the inner solution), and :

with :

The ordering in 83/2 comes from the resistive diffusion on a scale length XT 8-’ /2.

3. Matching the inner solution (Eq. 7a) to the outer one (Eq. 11), as shown in appendix C, gives our final result :

where we have re-introduced the factor 4 n neglected for simplicity in equation (4c), and where o’ is still the
linear slope-jump.

To lowest order we recover Rutherford’s result,
although in reference [2] the numerical value of c,
was incorrect and s was not given explicitly. To the
following orders, although the use of a boundary-
layer technique restricts us to small values of 8,
our result shows that saturation can occur for 8 - 1.
This is indeed the order of magnitude observed in
numerical simulations, with (aA’) - 10-20 and

xT 0.1 in most cases. Because of the differences in
a

the techniques used and in the physics involved in the
calculations, it is difficult to compare our result

(Eq. (12)) with that of White et al. In equation (12),
A’(1 - 0.40 C112) is the non-linear «outer» slope-
jump. It plays the same role as A’(XT) in the result
of White et al. However in the later case the evolution
of 4’(xT) is due to the ideal-MHD quasi-linear flux
6VIO; our work shows that this contribution is smaller
than the one we take into account, which is due to the
resistive diffusion of 6§o, away from the island region.
On the other hand the term (1 - 0.16 E ) in equa-

tion (12) represents a correction to the « inner »
slope-jump, and plays the same role as the term

(1 - axT) in the results of reference [5].

However, although these terms seem to have the
same order of magnitude, it is impossible to know
whether they have the same origin, because the result
of reference [5] relies on an ansatz on the current

profile, and is limited to a contribution form inside
the island, and not from the whole island region.

Finally we note that our « inner » correction,
proportional to c, comes only from terms propor-

a 
tional t° °§l . Thus this term should not play antional to 

at 
hus this term should not play an

important role at saturation. The latter should thus
essentially be due to the outer correction (in e3/2),
as boo would keep diffusing, from the level reached
during the growth of the island, on a scale-length
xT(tltc)1/2. This slow evolution of tf¡ 0 (and of the
saturated island width) was indeed observed, but
not explained, in the numerical simulations of refe-
rence [5].

In conclusion, we have shown that improper use of
boundary-layer techniques has led White et al. to

neglect the most important effect causing the decrease
of the slope-jump A’. A more correct technique,
based on singular-perturbation theory, allows us to
give the ordering of the saturated-island width
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(A’XT - 1) and to identify the mechanism leading
to this saturation : the resistive diffusion, away from
the island, of the quasi-linear magnetic flux 64/0
which flattens the current gradient responsible for
the instability. It should be possible to measure 6§o
in numerical calculations, and to check the validity
of this mechanism.

Work is in progress to study a similar effect, due
to the evolution of the temperature profile in Ruther-
ford’s regime.

Acknowledgments. - The authors are happy to
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Appendix A.

INNER EQUATIONS AND SOLUTIONS.

We start from equation (4) :

where

and we have neglected the linearized current term.
To first order the metrics writes :

where

and

We solve equation (A-1 ) order by order in e = A’XT, using Rutherford’s result to get :

From equations (A-2) and (A-3) we get :
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M, like h and g, is even and is zero at x = 0. This gives :

where

After some algebra we find :

where

Using these results, we integrate and Fourier transform equation (A-4) to obtain, for w &#x3E; 1 (where the inner and
outer solutions will be matched) :

From equation (A. 3) we also get :
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where we have used the facts that :

and that, for

For ho we obtain :

Finally we get ho - xho by equations (A-2) and (A-5), giving :

Collecting the results, we have for w &#x3E; 1 :

with

and : o o
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Appendix B.

OUTER EQUATIONS AND SOLUTIONS.

In the outer region, we solve equation (4) :

by expansion to second order in §/§, with

To do this, we must express the average at constant § of x-dependent quantities. Writing :

we obtain after some algebra :

and finally :

This procedure avoids us to assume, as in reference [5], the conservation of the current between flux lines.
Then equation (B-1 ) gives :

The linear terms of equation (B-4) give the usual linear equation for the outer solution, while far from the island

( ð22 .!. i) equation B-5 ives the ideal-MHD result :Î1Y n Î1t ( ) g

This solution is easily shown to contribute only, for x &#x3E; A’ B to order e3 to the slope-jump of § i .
-Then we solve equations (B-4) and (B-5) for x  ð’ -1, where we can estimate the non-linear terms :
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The solution of equation (B-5) must match for large x (x &#x3E;&#x3E; xT g - 112) to equation (B-6) and for small x
(X - xT) to the inner solution, equation (7b). By Laplace transform in time we find :

where

and to lowest order c is a constant. Integrating equation (B-7) would give the value of 86§o(t) in the inner solu-
tion, but this result is not needed here.

Substituting equation (B-7) into equation (B-4) we get :

where t/J 1 L is the linear outer solution, and :

For X = A’x - e we obtain :

where b+ - b_ = 1 (giving the linear slope-jump) and the terms in parentheses can be neglected, as they are
of order (aA’) - ’ and match to the linearized current term neglected in the inner solution. For bql 1 we get to
lowest order :

where

The term in 1/x matches to a similar term in the inner solution, contributing only to order e2 Ln e to the
/1 a03C81

growth rate, and we neglect it. Using ’1t = 2 1/11 r; a/ we obtain from Eqs. (B-9) and (B-10) :q -Ft )
with

Appendix C.

MATCHING AND FINAL RESULT.

We match the inner solution taken at x &#x3E; xT (Eq. (7a)) to the outer solution taken at x  xT e-1/2
(Eq. (11)). Details of the matching technique can be found in reference [7]. Then we have :
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Matching these solutions gives :

hence :

and :

Solving this equation by iteration we get to lowest order :

which is just Rutherford’s result, and to order c3/2

Using equation (C-3) we finally get :

with
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