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Résumé. 2014 On mesure la corrélation des fluctuations de forme en fonction du temps des grandes (~ 10 03BCm) vési-
cules semi-sphériques de phospholipides hydratés, vésicules dont les membranes consistent en une ou plusieurs
couches bimoléculaires. Ces membranes sont flasques, de sorte que la superficie et le volume de la vésicule sont
constants. Ainsi la seule contribution à l’énergie associée à une fluctuation de forme vient de l’excès de courbure
d’un élément de la membrane. De l’amplitude moyenne quadratique des modes normaux des fluctuations, on
obtient une valeur pour le module d’élasticité de courbure, Kc, en employant le théorème d’équipartition. On trouve
une expression pour le temps de corrélation en résolvant la dynamique de la relaxation de la membrane en fonc-
tion de la résistance visqueuse de l’eau à petit nombre de Reynolds. On calcule la force de rappel de la membrane
en suivant la théorie de Jenkins [1], selon laquelle la membrane agit comme un fluide incompressible à deux dimen-
sions. Le temps de corrélation est fonction de Kc et de d0, la pression à deux dimensions sur le plan de la membrane.
Les mesures donnent pour Kc une valeur de 1-2  10-12 erg, ce qui est en accord avec d’autres expériences sur
des vésicules artificielles [2, 3], et pour d0 des valeurs qui s’accordent avec les valeurs théoriques calculées [1].
On suggère une raison pour laquelle les expériences [4] sur des globules rouges ont conduit pour Kc à une valeur
moins élevée.

Abstract. 2014 The time correlation function of the fluctuations in shape of large ( ~ 10 03BCm) quasi-spherical hydrated
phospholipid membrane vesicles consisting of one to several bimolecular layers is measured. These membranes
are flaccid, so the vesicle area and volume remain constant and the only contribution to the energy of the fluctuating
shape is from the excess curvature of a membrane element. A value for the curvature elastic modulus, Kc, is obtained
from the mean-square amplitude of normal modes of the fluctuations using the equipartition theorem. An expres-
sion for the correlation time is found by solving the dynamics of membrane relaxation against the low Reynolds
number viscous drag of the water. The restoring force of the membrane is calculated following the theory of Jen-
kins [1] which treats the membrane as a two dimensional incompressible fluid. The correlation time is a function
of Kc and d0, the two dimensional pressure in the membrane plane. The measurements yield Kc ~ 1-2  10-12
ergs, in agreement with other experiments on artificial vesicles [2, 3], and values for d0 in agreement with the theoret-
ical range of predicted values [1]. A reason for the lower published value of Kc deduced from experiments [4]
on the red blood cell is suggested.
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1. Introduction.

Thin-walled phospholipid vesicles are of current

interest as models of cell membranes [5-8] and as
systems of two-dimensional intermolecular order-

ing [9-12]. For a given area and volume, the equi-
librium shape of a flaccid, non-fluctuating vesicle

(and also of a red blood cell) is determined by the
minimization of the elastic energy due to curvature
of a membrane element [1, 13]. The curvature elastic

energy of a vesicle is [14,15]

where dA is an area element of the membrane,
H = 1 /R1 + 1 /R2, is twice the mean curvature of
dA, R1 and R2 are the two principal radii of curvature
of dA [16], and Kc is the curvature elastic modulus.
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Equation (1) assumes that the two sides of the mem-
brane bilayer are identical. If they are not identical,
the membrane may assume a spontaneous curvature,
which can be taken into account by inserting a
constant, HS, in equation (1) so that H is replaced by
H - Hs [13, 15]. Kc is expected to be related to the
splay elastic constant K, [17] of smectic A liquid
crystals. Because the fluid-like layers of a smectic A
can slide over each other, Kc = K1 w, where w
is the lamellar repeat distance.

Because the curvature elastic modulus is very
small [2-4], a flaccid vesicle can attain many thermally
accessible shapes at constant area and volume. In
fact, the shapes of many thin-walled vesicles are

observed to fluctuate [2-3, 9], the same phenomenon
as the so-called « flicker » of red blood cells [4,18-19].
Measurements of these thermal excitations have been
used to deduce a value for the curvature elastic

modulus, Kc, of red blood cells and artificial vesicles.
Brochard and Lennon [4] measured the frequency
spectrum of the fluctuations of the central thickness
(peristaltic mode) of the red blood cell and found
Kc ~ 3 x 10- 13 ergs, while Servuss et al. measured
the mean-square amplitude of the bends of long
unilamellar cylindrical phosphatidylcholine vesicles
and found Kc ~ 2 X 10-12 ergs [2]. Surprisingly,
the artificial vesicles appeared to have a larger curva-
ture elastic modulus, despite the fact that the mem-
brane of the red blood cell consists of lipids similar
to those in the artificial membrane with the addition
of cholesterol, integral proteins, and a polymeric
protein cortex. Some of the integral proteins are

attached to the spectrin-actin polymeric network
[20, 21] beneath the cell membrane. It is anticipated
that this additional structure affects the behavior
of the red cell membrane, but it should stiffen it,
rather than decrease Kc*
We previously reported measurements of the time

correlation function of the fundamental bending
mode of long cylindrical vesicles [3]. We found
Kc ~ 1-2 x 10-12 ergs from both the amplitude
and the spectra of the fluctuations, in agreement
with Servuss et al. [2]. The red blood cell experiments
measured the dynamics of a peristaltic mode and
were analysed using a planar membrane approxi-
mation for the real biconcave discoid Our theory
for the long tubes is not sufficiently refined to use
to measure Kc from the peristaltic mode. Because
of its simplicity, it predicts the instability of these
modes, while we note that we have observed stable
small amplitude peristaltic fluctuations in cylindrical
vesicles. We believe that a more detailed theory,
which better approximates the actual shape of the
vesicles and which treats the membrane as an incom-

pressible two-dimensional fluid, is necessary to

describe the peristaltic fluctuations and regimes of
instability. Here we carry out the corresponding
calculation to describe the thermal fluctuations of a
quasi-spherical vesicle by extending the curvature

elasticity theory introduced by Jenkins [1] to deter-
mine the equilibrium shapes of non-fluctuating vesicles
as a function of their area and volume.
The time correlation function of the difference,

rl(t), between two perpendicular diameters of a
vesicle whose time averaged shape is spherical (Fig. 1)
is measured The mode measured is simply inter-
preted as the fluctuations of a quasi-sphere into

prolate and oblate ellipsoids whose major and minor
axes are (roughly) the two perpendicular diameters
used to calculate rl(t).

According to our theory, Kc can be determined
from the correlation amplitude of these fluctuations.
We again find experimentally that Kc ~ 1-
2 x 10-12 ergs. The correlation time involves Kc
and the two dimensional pressure in the plane of the
membrane, do. For the sphere, do can have a range
of values [1]. The value of Kc deduced from the
amplitude of the correlation function is used to

determine do from the correlation time. The results
are consistent with the theory.

Fig. 1. - Sketch of the measurement on a quasi-spherical
vesicle. Two independent measurements of r1 (t) are made
as indicated by the solid lines and the dashed lines. Also
shown are the eight plots of fluorescence intensity versus
the radial distance for the eight radii used to calculate the
two r1 (t)’s. The computer reads the intensity (starting at
the points marked inside the vesicle and proceeding radially
outward to the points marked outside the vesicle) and
determines the edge of the vesicle by an algorithm which
looks for the steepest slope in the intensity graph. The
edge is indicated by the filled circle on the scan lines and
intensity graphs. The computer is correct about 50 % of
the time. At other times, a manual correction is necessary
because the algorithm cannot handle optical interference
from out of focus vesicles or dirt which happens to lie over
part of the vesicle being measured.
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2. Theory for the fluctuations of a quasi-spherical
vesicle.

A perfect sphere cannot perceivably fluctuate at

constant volume but, if a small amount of volume
is removed, large thermal fluctuations of the now
flaccid quasi-sphere are possible. Our theory describes
the thermal fluctuations of a vesicle whose area-
to-volume ratio is greater than that of a sphere but
whose time-averaged shape is spherical. The excess
area of the vesicle is distributed amoung the dif-
ferent modes of the thermal fluctuations, and, since
each mode uses only a small fraction of the excess
area, the modes can be treated as independent.
The time-averaged spherical shape of the vesicle is
treated as the equilibrium vesicle shape in our anal-
ysis.
An expression is needed for the time correlation

function of the shape of the fluctuating quasi-sphere.
The fluctuations are analysed by examining the
linear response of a membrane element to small

perturbations. The membrane is considered to be a
two dimensional, incompressible, inviscid [1, 5, 14]
fluid Thus, the area of each membrane element
remains constant during deformations and the mem-
brane offers no resistance to shear. Because the
membrane has a large elastic area compressibility
modulus [22], any thermal fluctuations which change
the membrane area would have too small an ampli-
tude to be optically observable. The relevant defor-
mations also occur at constant vesicle volume because,
on the timescale of the fluctuations, the vesicle walls
are impermeable to water flow [23]. The only impor-
tant contribution to the excess energy of a deformed
vesicle is from the curvature elastic energy.
We make the reasonable assumption that the

area-to-volume ratio of the time-averaged vesicle
determines its time-averaged shape in the same way
as the area-to-volume ratio of a non-fluctuating
vesicle (i.e. one at T = 0 K) determines its shape,
as calculated by Jenkins [1]. He shows that, for
vesicles of non-uniform curvature, the balance of
forces across the membrane requires (a) a uniform
hydrostatic pressure difference across the membrane
and (b) a uniform surface pressure, do, in the membrane,
whose contribution to the normal force per unit area,
at a point on the membrane, is the product of do and
the curvature at that point. The spherical vesicle is
stable for a range of surface pressures, including 0.
Note that these surface pressures are extremely small,
on the order of 6 Kc/a2, or 10- 5 dynes/cm for a 20 gm
diameter vesicle.
The excess curvature, Hj, of the fluctuating vesicle

can be expanded in a set of normal modes which
are linearly independent of the curvature, Ho, of the
time-averaged sphere. The equipartition theorem

gives the average excess energy in each mode as

kb T/2. The energy of the fluctuating vesicle above
that of the time-averaged sphere is the sum over all
the modes of the excess curvature energy per mode,

plus the sum over all the modes of - do times the
excess area per mode. Since the area of the real
vesicle is fixed, the latter sum is constant in time.
Therefore, the only contribution to the excess thermal
energy from each mode is its curvature elastic energy.
The fluctuating shape associated with the linear

expansion in curvature, which is also consistent with
the constraint of local area incompressibility, can
be described in terms of the displacement vector of a
membrane element from its position on the original
sphere to its position on the deformed sphere. The
displacement, E(8, 0), of a point (0, gr) from the

equilibrium sphere with radius a, consists of a radial
component m and tangential components oca and

fla sin 0, as shown in figure 2. Thus,

Defining the outward normal as positive, it is
shown in section A. .1 of the appendix that the curva-
ture of the membrane element described by equation (2)
is, to first order, in the displacements,

where V is the three dimensional nabla operator.

Fig. 2. - Notation used in the calculations for the fluc-
tuations of a quasi-spherical vesicle. The diagram shows
the intersection of the vesicles with the xy, (0 = n/2) plane.
The light line is the equilibrium quasi-sphere with radius a,
the dark line is the fluctuating vesicle whose shape is des-
cribed with the displacement vector E(n/2, gi) . The amplitude
of the fluctuation is exaggerated for clarity. In this plane,
the radial displacement of a membrane element at (n/2, §)
is u(n/2, t/J) and the tangential displacement is aP(n/2, 0).
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Since H(0, ýJ) only involves the normal displacement
u(0, VI), we choose u to express the local curvature
and expand it in surface spherical harmonics [24],
Ynm(lJ, ýJ), with amplitude Unm(t),

(Since n = 0 does not conserve volume, and n = 1
is a uniform displacement of the entire sphere, the
sum starts from n = 2.)
The area element of the deformed vesicle,

dA + 6 dA, may be written, to first order in the

displacements (see section A. I in the appendix) as
dA (1 + V.I:), where dA is the area element of the
undeformed sphere. Because the membrane is a two
dimensional incompressible fluid, the displacement
vector must satisfy the continuity equation V.c = 0.
The curvature energy is derived from equations (1),

(3), (4) and the normalization properties of the surface
spherical harmonics [24]. The excess curvature energy,
E, of the fluctuating sphere, to second order, is found
to be

Upon setting the average energy in each mode equal
to (1 /2) kb T we find

Thus, the curvature energy (Eq. (5)) of each mode
is roughly Kc Q 4  U 2 ) A [25], where U and Q are,
respectively, the amplitude and wavenumber of a
mode and A is the area of the vesicle. The brackets
denote an ensemble (or time) average. A measurement
of the mean-square amplitude of a mode,  U2 &#x3E;
(Eq. (6)), yields a value for Kc. Each of the independent
modes contributing to the description of the shape
of the vesicle possesses a characteristic correlation

time, Tc* The time correlation function of a mode
is [26]

An expression for the correlation time of a mode is
obtained by solving the dynamical problem of the
vesicle excited into a normal mode and relaxing to
its equilibrium shape. In this process, the restoring
force of the membrane’s curvature elasticity is balanced
by the viscous resistance of the surrounding fluid
The membrane fluid is, in fact, viscous but for long
wavelength fluctuations its resistance to shearing
is negligible compared to that of the surrounding
fluid [27]. The necessary boundary conditions are
that the three components of the fluid velocity are
continuous across the membrane, that they are

equal to the three components of the velocity of the

membrane, and that the normal and tangential
components of the membrane forces balance the net
viscous tractions exerted by the fluid inside and outside
of the membrane.
The velocity of a membrane element is simply the

time derivative of its displacement (Eq. (2))

The calculation of the membrane forces follows
Jenkins [1]. The restoring force per unit area is given
by the negative of the variational gradient of the
curvature energy (Eq. (1)) with respect to the displace-
ment (Eq. (2))

Because the membrane fluid is incompressible, a two
dimensional pressure, y(O, gr), appears in the variation
of the free energy as the Lagrange multiplier associated
with 6 dA = 0. With this, the variation of the energy
of the vesicle may be written as

or, upon redefining the Lagrange multiplier to

Retaining only the first order terms (see appendix
section A. 2), we find the normal and tangential forces
acting on a membrane element are

and

The normal force has two parts : the first is the restor-
ing force resisting the excess curvature; the second
is Laplace’s expression for the equilibrium of a spheri-
cal element [28] (but with a surface pressure, d, instead
of a surface tension). The tangential force is that usually
associated with a hydrostatic pressure gradient
The incompressibility conditions, V.c==0 may

be written, using equation (2), as
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Equation (13) reduces the number of independent
scalar functions required to describe the displace-
ment E from three to two. Equation (13) may be satis-
fied identically by choosing two functions, f and g,
as

Notice that V x c involves only g, while the radial
component of c involves only f. Setting equation (14)
equal to equation (2), we hnd u = - (1/2) O2f.
We choose to work with the scalar functions u and g.
The motion of the surrounding fluid is described

by the Navier-Stokes equations and the continuity
equation

and

respectively. Here v is the velocity of the fluid, p
and il are, respectively, its density (1 gm/cm3 ) and
viscosity (0.0 1 poise), and p is the hydrostatic pressure.
Because the relaxation times are on the order of
seconds and the decay lengths of the velocity fluctua-
tions measured are on the order of the size of the
vesicles (about 30 um), the ratio of the inertial to the
viscous forces is about 0.001. Consequently, the inertial
term can be neglected in equation (4a) and the pro-
blem falls into the regime of low Reynolds number
hydrodynamics [29].
The solution to the Navier-Stokes equations in the

low Reynolds number limit in spherical coordinates
is expressed by Lamb [30] in terms of three scalar
functions : T, x and p where cp and x are solutions to
the homogeneous equation and p is the hydrostatic
pressure. The expression for the curl of the velocity
involves x while the radial component of the velocity
involves cp and p. The functions T, x and p are expressed
in terms of solid spherical harmonics.
Brenner [29, 31] writes the boundary conditions

on the velocity in terms of the vector identities

and

where v is the fluid velocity interior and exterior to
the membrane and V is given by equation (8). A simi-
lar identity holds for the forces. To obtain this replace
V by equation (12) and replace v by the negative of
the difference between the viscous forces inside and
outside the membrane, n. (a’ - d-’), where 6 is the

viscous stress tensor
then

and

This simplifies the calculation because the terms

involving V x v (or V x dQ) (only a function of x)
are coupled only to all the terms involving V x V
(or V x F) (only a function of g, Eqs. (12), (14)). These
terms are of no interest to us because they have no
radial displacement term and are not measurable.
The simplified problem involves two scalar func-

tions describing the fluid inside, p’, T’, two describing
the fluid outside, p°, cpo and two functions describing
the fluid membrane, u, the normal component of the
membrane displacement and d, the two dimensional
pressure. Writing Unm(t) = Unm e-t/nm, in equation (4),
and expanding the rest of the functions in terms of
solid and surface spherical harmonics [24, 29], we have

and

where tnm is the relaxation time associated with the
normal mode indexed by n and m. Again, the sums
begin at n = 2. The expressions on the right hand
side of equation (16) involving the membrane velocity
and on the right hand side of equation (17) involving
the membrane restoring force are derived in
section A. 3 of the appendix. Brenner gives expressions
for the left hand sides of equation (16) [29, 31] and
equation (17) [31] ] in terms of the 4&#x3E;nm and P nm (see
the appendix section A. 4). Inserting equation (4)
and 18 into equations (3), (8), (12) (16a, b), and (17a,
b) as shown in section A. 5 of the appendix, and solv-
ing for 1: nm’ yields

where
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Note that Z(n) &#x3E; 0 for n &#x3E; 1, which is the regime of
interest. The subscript m has been dropped since T..
depends only on n. In equation (19), do is the two-
dimensional surface pressure in the membrane of the

time-averaged equilibrium sphere.
To understand the significance of the denominator

in equation (19), first consider the possible equilibrium
shapes of a vesicle of given surface area at T = 0 K.
Jenkins [1] has calculated the equilibrium shape,
area-to-volume ratio, and surface pressure of a vesicle
as a function of the external pressure excess, APO=
Po - P’, across the membrane where P’(P’O) is the
hydrostatic pressure of the fluid outside (inside) the
vesicle. If APO is negative, the only stable shape is
the sphere and, since the external pressure excess for
a sphere is related to do by Laplace’s formula,
APO = 2 do/a. Here do is negative ; a membrane
element is under a surface tension. Jenkins has found
that the sphere is also stable for a small range of

positive DPo’s. The two dimensional stress, do, is
then compressive, and has a range,

If the volume is allowed to change as APO is increased
from zero, a shape « bifurcation )) occurs at APO =
12 Kc/a3 (do = 6 Kc/a2) when the equilibrium vesicle
shape buckles and becomes ellipsoidal. The reiaxation
time in equation (19) recovers the bifurcation (at
n = 2) found by Jenkins [1] and Deuling and Hel-
frich [13]. Before the bifurcation, as the external

pressure is increased, there appears a positive two-
dimensional stress do in the membrane plane, but the
vesicle shape remains spherical. After the bifurcation,
all ellipsoids except for the sphere, have unique
values of do determined by their surface-to-volume
ratio. This discussion neglects fluctuations, i.e. T = 0 K.
Next we consider the effect of small thermal fluctua-
tions on these states.
Our problem requires that we determine whether

the bifurcation at positive pressure and T = 0 K is
reflected in our fluctuation spectra for T &#x3E; 0 K. Our

strategy is to compare (a) the volume decrease (from
that of a sphere) needed to accomodate all of the
thermal fluctuations with (b) the decrease in volume
associated with an ellipsoidal equilibrium shape at
T = 0 K whose ellipticity is equal to the root mean
square of that of the n = 2 mode measured in our

experiment. We find that the change in volume needed
to accommodate all of the thermal fluctuation modes
is 25 times the corresponding volume change of an
ellipsoid that accommodates the lowest mode, that
is, one whose major and minor semi-axes are

a +  U 2 &#x3E; 1/2. This means that the surface to

volume ratio of the fluctuating vesicle is quite large,
so much so that at T = 0 K it would have a much

larger ellipticity than is ever measured for the n = 2
modes in our experiments. For the thermal fluctua-
tions, we conclude that the fluctuation modes are
essentially independent because each mode requires

a small part of the available excess area to reach its
equipartition amplitude. The amplitude of the devia-
tions from spherical form are so small that each
excited mode can be treated as if the restoring force
would return the vesicle to a sphere, its time-averaged
shape. Therefore, the vesicle fluctuations are unaf-
fected by the bifurcation that occurs at higher ellip-
ticities.
The picture we have is that, at finite temperatures,

a vesicle fluctuates whenever its volume is below that
of a sphere. The fluctuations take up the excess area
and the membrane is not compressed (i.e. do = 0)
until the volume decrease is enough for the fluctua-
tions to reach their equipartition amplitude. Further
pressure decreases the volume until eventually the
bifurcation occurs (at do = 6 Kc/a2). Thus, above
T = 0 K, we have interpreted the equilibrium shapes
calculated by Jenkins [1] as the time-averaged shapes
about which the fluctuations occur and hence, they
are the shapes to which the curvature forces act to
restore the membrane. We have analysed here only
the spherical time-averaged shapes.

In our experiments, we measure the time correla-
tion function of the difference, rl(t), of two perpen-
dicular diameters of the fluctuating sphere (Fig. 1).
The plane of the measurement is the 0 = n/2 plane,
as shown in figure 2. To first order, the quantity
measured is

From equations (4), (19) and (20), the correlation
function measured is

where ! denotes factorial and r { x } is the gamma
function of argument x [32]. For our experiments
(using Eqs. (19) and (20)) only the n = 2 terms in
equation (23) are important for points after r = 0
since Z(n) - I/n so T. - 1/n3. Finally, from equa-
tions (6), (19), (20), (23), the quantity measured is

where

and 6(1) is the Kroeckner delta [24].
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The amplitude of the correlation function involves
only the curvature elastic modulus, Kc, but the
correlation time involves Kc and the two-dimensional
pressure of the time-averaged equilibrium sphere, do.
The area of each membrane element remains constant

during the fluctuation, so d does no net work and
cannot appear in the energy. The value of do is res-
tricted (Eq. (21)); but it is not uniquely determined
for these fluctuating spheres, so we can only do a
consistency check on the theory. In our experiments
Kc is determined by the amplitude of the correlation
function; then do is calculated from Kc and the
correlation time.

3. Experiments.

3.1 PREPARATION OF SPHERICAL VESICLES. - Fluc-

tuating spherical vesicles are most successfully pre-
pared with the method described in reference [3]
using the desalted stock solution containing 50 mg egg
phosphotidylcholine (Applied Science, State College,
Pa.) in 5 ml 2 : 1 v/v chloroform-methanol and
5 x 10-4 mole fraction 3.3’-dehexadecylindocarbo-
cyanine iodide (dil) [33], a fluorescent lipid analogue
(a generous gift of Dr. Alan S. Waggoner). Sometimes
larger batches of vesicles are prepared by placing
0.5 ml of stock solution in a 10 ml flask, evaporating
the solvent, gently adding 10 ml of deionized, doubly
distilled water, and letting the vesicles swell for
several days. For observations, a 50 ym path length
microslide (Vitro Dynamics, Rockaway, New Jersey)

samples the solution about half a centimeter above
the vesicle cloud.
We have found it to be extremely important to

prevent the evaporation of water by closing the flask
well and/or leaving the stoppered flask in a water
saturated atmosphere. If this is not done, most of
the spherical vesicles are attached to very long and
thin tethers. Boroske et al. [23] have found that this
structure is a result of osmotic shrinkage of the vesicle.

3.2 EXPERIMENTAL RESULTS. - We select vesicles for

study whose average shape seems to be spherical and
whose fluctuations are large. A video tape is made
of the fluctuating vesicle as observed with fluorescence
microscopy and the video image processing system
described in reference [3] is used to store a video
frame on the computer every At seconds. Each frame
is analysed as shown in figure 1. For each time, we
measure rl (Eq. (22)) of two independent modes
whose axes are 450 apart. The number of bilayers in
the membrane is estimated from the intensity profile
across an edge of the sphere. The fluorescence intensity
of thin multibilayer vesicles is observed to be approxi-
mately an integer multiple of that of single bilayer
vesicles with the same diameter. The data for a single
bilayer quasi-spherical vesicle is shown in figure 3a
and the correlation function calculated from the data
is shown in figure 3b. If N is the total number of
consecutive video frames analysed, the correlation
function is calculated from the formula

Fig. 3. - The data and calculated correlation function for a single bilayer quasi-spherical vesicle of radius 7.5 pm. (a) rl(t)
versus t for one of the two independent rl values. (b) The calculated correlation function from both rl values.
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The two independent correlation functions are averaged together. The error bars, (a2)1/2, for G( j At) are deter-
mined from the formula [34]

where Tc is the correlation time. Since G(jAt) is a
random variable, the error in its measurement is

expected to scale like N - 1/2; however, adjacent
points in the sum used to calculate G( j At) (Eq. (25))
are correlated over a time Tc. Therefore, the total
number of independent time intervals in equation (25)
is N At/Tc not N so the error should be proportional
to (N åtlt"c)-1/2 roughly as equation (26) implies.
Since the computer limits N to 175 points, or about
17 correlation times, the correlation amplitude and
times are measurable to within a factor of 2.
A weighted linearized least-squares routine [35]

is used to fit the correlation function to an amplitude
multiplying an exponential decay plus a constant
The fit is also shown in figure 3b. The residual con-
stant is due to the error in locating the centre of the
sphere. The i = 0 point is omitted from the fit

Using equation (24), Kc is determined from the corre-
lation amplitude and then do (in units of Kcla 2) is
determined from the correlation time. The estimated
error for a parameter of the fit correspond to one
standard deviation. (The probability that the para-
meter falls within the indicated range of error is
about 68 % [35].)
Although two additional fluctuation modes, n = 4,

m = ± 4 and n = 3, m = ± 3 were measured, the
resolution of the system was too low to analyse the
data. This is consistent with the expected amplitude
’and correlation times of these modes compared to
that of the n = 2, m = ± 2 modes which were
successfully analysed.

The data for eight spherical vesicles with radii

varying from 5 to 16 Jim, is shown in table I. We find
 u2 &#x3E; 1/2 to be about 0.05 a, so the fluctuations are
small. The surprising result is that the value of Kc
is independent of the number of bilayers in the wall
of the spherical vesicle. (The data and correlation
function for a multibilayer vesicle are shown in

Fig 4.) From the results on the cylindrical vesicles in
reference [3], it appears that all of the quasi-spheres
act as single bilayers in the measurements. We hypo-
thesize that the inner layers are more flaccid than the
outer layer and hence do not affect the measurements.
We have often observed a sudden decrease in the
fluctuation amplitude of a thin multibilayer vesicle,
followed by the appearance of a small cylindrical
« bud » on the inside of the vesicle. We take this
« zipping » phenomena as confirmation of the flac-
cidness of the inner layers of the original vesicle.
This process will be discussed in a future publica;
tion [36].
The average and standard deviation for the cur-

vature elastic modulus from the mean values of the
fitted amplitude of all the vesicles in table I is

in agreement with previous values on artificial vesi-
cles [2, 3]. The fitted values of do are

Table I. - Results on quasi-spherical vesicles
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Fig. 4. - The data and calculated correlation function for
a quasi-spherical vesicle of radius 11 gm. The wall of the
vesicle contains about 4 bilayers. (a) One set of rl(t) values.
(b) The calculated correlation function from six indepen-
dent sets of r1 (t) values.

consistent with the expected range of do values in
equation (21). Note that if do did not appear in the
expression for the correlation time in equation (24),
then j7a’/(r2 Kc) would be equal to a constant. This
is contradicted by the last column in table I where
the value of this quantity is seen to vary by a factor
of 7.

Since conservation of area and volume couples
the (otherwise) normal modes of the thermal fluctua-
tions, we selected distinctly flaccid vesicles with
large excess areas in which no one mode absorbs
a substantial fraction of the total excess area. Thus
coupling of the spherical harmonic modes can be

neglected and they can be treated as normal fluctua-
tion modes. However, the occurrence of the shape
bifurcation to an average ellipsoidal shape limits the
acceptable flaccidity. The measured mean values of
rl, our measure of ellipticity, do reflect the bifurca-
tion since the axis of mean ellipticity cannot rotate
on the timescale of the experiment [37]. To avoid
corrections to the fluctuation spectra for the bifurca-
tion, we must limit the flaccidity to an excess curva-
ture energy of the mean ellipsoid of less than kb T.
This limit is established by restricting the mean
values of rl to much less than the corresponding
amplitude of the n = 2 fluctuation mode, i.e.

 rl &#x3E; I  4 U 2 &#x3E; 1/2.

4. Conclusion

We conclude, from the results reported here and from
our measurements on cylindrical vesicles [3], that

Kc ~ 1-2 x lO-12 ergs. This implies a. splay elastic
constant for the corresponding smectic A liquid
cry5tal of K1 ’" 2 x 10-6 dynes if the repeat dis-
tance of the stack of bilayers is taken as 60 A. For
thermotropic smectic A liquid crystals with lamellar
repeat distances of 20 A, K 1 ~ 10- 6 dynes [17].
The new feature in our analysis of the quasi-

spheres is the treatment of the membrane as a two-
dimensional incompressible fluid The addition of
the Lagrange multiplier associated with this con-
straint, the two-dimensional pressure, d, allows us to
satisfy boundary conditions on the three components
of the fluid velocity and on the three components
of the fluid forces. For the quasi-spheres, do is not

unique but is a function of the amount of infinitesimal
volume removed from the perfect sphere. Since the
value of do is directly proportional to the excess

hydrostatic pressure of the fluid inside the sphere
by the formula of Laplace [1] it is theoretically pos-
sible to control do by changing the osmotic pressure
of the fluid Changing do by Kc/a2 requires changing
the hydrostatic pressure difference by 2 Kcla 3. If
this were equated to an osmotic pressure, it would

correspond to a change of the concentration differ-
ence across the membrane of 2 Kcl(a 3 kh T) or

rougly 0.1 nmolar for a 10 J.1m radius quasi-spherical
vesicle. We have found this small concentration

change extremely difficult to control.
Further studies on vesicles are desirable to deter-

mine the value of Kc as a function of temperature and
composition of the vesicles. We have observed that
the magnitude of the fluctuations seems to increase
just above the liquid crystalline-to-gel phase tran-
sition as the temperature is lowered The effect on Kc
of the concentration of cholesterol in the membrane
is of interest to biophysicists.

Brochard et al. [38] modified the original theory of
the fluctuations of the red blood cell to allow for
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normal and tangential motion of the membrane

molecules, an anharmonic effect in which u appears
in a fourth order term in the energy. They concluded
that the equipartition theorem applied to the ampli-
tude of the fluctuations was still valid We concur.
In the present theory, anharmonic effects can be

ignored in both the statics and dynamics of the
fluctuations as long as the excess area needed by
each normal mode to reach its equipartition ampli-
tude is a small fraction of the total excess area of the
real vesicle above that of the time-averaged sphere.
We think that a similar normal mode analysis of the
fluctuations about the discoid shape of the red blood
cell is needed
The calculations for the red blood cell should also

include a spontaneous curvature because the two
monolayers of the red cell membrane are not iden-
tical [13]. We have examined the effect of a sponta-
neous curvature in the calculations for quasi-spheri-
cal vesicles; it does not appear in the expression for
the correlation amplitude but it does appear in the
correlation time. If spontaneous curvature is present,
then do in equation (19) is replaced by do - 2 Kc Hsla -
Kc Hs /2 where Hs is the value of the spontaneous
curvature (with the outward normal taken as posi-
tive). Since. the values of do, and Hs for the discoid
shape are unique [1, 13], it should be possible to
determine Kc from the correlation time of the fluc-
tuations of the red blood cell. An additional con-
straint should derive from the spectrin network [20-

21]. However, its effect on the cell’s curvature modu-
lus may be smalf since the connections between
the lipid layer and the spectrin cortex are free to
slip; thus the curvature moduli only add linearly.
The curvature modulus of the cortex should not
overwhelm the lipid layer because the spectrin layer
is so thin. This conjecture has now been supported
by recent work of Evans [39] who used large ampli-
tude deformations of the red blood cell to determine
a value for the cell’s curvature modulus from a buck-

ling instability. He also found Kc ~ 1.8 x 10-12 ergs,
in agreement with our results. Thus the cortex appar-
ently does not dominate the effective curvature

modulus.
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Appendix.

This appendix gives the details of the calculations. The calculation of the energy is to second order and that
of the forces is to first order. For the membrane forces, we follow Jenkins [1] with a modification of notation
explained later. A good reference for the necessary differential geometry is Eisenhart [16].

The shape of the fluctuating vesicle is described in reference to the equilibrium sphere (with normalized
radius = 1) by the displacement vector

The fluctuating shape is, in spherical coordinates (r, 0, gr),

A. INCOMPRESSIBILITY AND THE CALCULATION OF CURVATURE. - To find an expression for the curvature,
H = (1/R1) + (I/R2), the first and second fundamental forms of the surface [16] must be calculated

The equation for the surface is a function of two parameters, 0 and ýJ. The tangent vector, ao, parallel to the
lines 0 = constant on the surface is

where u o = OulOO, etc., and the following identities are used [40] :
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The tangent vector, ao parallel to the ’lines 0 = constant is

where u.,, = au/at/! etc., and we have used

The outward unit normal to the surface is

hence,

The tensor, aij, whose components are those of the first fundamental form of the surface, is

Using equations (A. 3), (A. 4)

and

Define a = det aij = aee a** - a’ (since aij is symmetric). Then

The area element at the point on the membrane (0, ýJ) is dA = al/2 d0 dgr. To keep the area element constant,
we must have dA = a’12 dO dýJ = sin 0 dO dýJ or, from (A. 7)

This is the incompressibility constraint, V. E = 0, where V is the three dimensional nabla operator.
Because a # 0, aij possesses a unique inverse, cij, which is also symmetric

Using equations (A. 6) and (A. 7)

and

The reciprocal vectors, a’ = a° aj (with i, j = 0, gr and repeated indices summed) are also tangent to the
surface, but a° is perpendicular to the lines 0 = constant and a’ is perpendicular to the lines 0 = constant.

and
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The second fundamental form, bij, of the surface is bij = fi. rij :

where r,oo = ôr,8lô8 etc.
From equations (A. 3-5),

and

The components of the second fundamental form are

and

The sum, H, of the radii of curvature is given by H = ( 1 /R1 ) + ( 1 /R2) = bii = aij bji. From (A. 9), (A .12),
this is 

.

which is (3).

A. 2 CALCULATION OF THE MEMBRANE FORCES. - The membrane forces are derived in Jenkins [1]. The notation
here differs from his. His c = 2 Kc and his h = H/2.

The tangential force equation (Eq. (2.32) in Jenkins) is

where d is the two dimensional pressure in the plane of the membrane.
Using (A. 10-11) this becomes, to first order,

which is (12b).
The normal force equation is (2.35) in Jenkins,

where k = det bij = det aim bmj = 1 - 2 u - V2u from (A. 9, A .12). From the expression for H in (A .13),
[(1/4) H2 - k] = 0. Using (1Ial/2) (a1/2 dj H,j),i = D2H(page 113 in Ref [16]), the normal force is

which is (12a).

A. 3 MEMBRANE EXPRESSIONS FOR VELOCITY AND FORCE USED IN THE BOUNDARY CONDITIONS. - The velocity
boundary conditions, the right hand side of (16), are found from (8, 2 and 14)

and
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Using the expression for u in (4), with Unm(t) = V nm e-tITnm, these boundary conditions become

and

Using in the membrane force (A. .14-15), the expressions for H (Eq. A .13), and the unit normal, n (Eq. A. 5),
the membrane force F = F,an + Fnorm is

where do is the two dimensional pressure in the equilibrium sphere.
Equations (2) and (14) imply u = - (1/2) Vf. The boundary conditions on the membrane forces, given

by the right hand side of equation (17), are

and

Using the expansions for u and 4 equations (4) and (18c), the boundary conditions on the membrane forces are

and

A.4 FLUID VELOCITY AND STRESS BOUNDARY CONDITIONS. - Lamb’s [29, 31] solution for the fluid velocity,
v, in spherical coordinates at the low Reynolds number limit, is expressed in terms of three scalar functions,
p, T, and x. If we put x = E Xnm(t) Ynm(O, ýJ), and use the expression in (18a, b) for p and T, then the fluid velocity

n,m

inside the spherical vesicle (r  1) is

The expression for the velocity outside the spherical vesicle, r &#x3E; 1, is obtained by substituting - n - 1 for n
in the above expression :

The boundary conditions on the fluid velocity (left hand side of Eq. (16)) are given by Brenner [29, 31]. For r  1 :
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and

For r &#x3E; 1, substitute - n - 1 for n,

and

Setting the coefficients of the Y_(0, 0)’s in equation (A. 19) and (A. 20) equal to those in (A. 16) as prescribed
in (16), we find

and

Notice that the terms involving g and x separate out. This will be true in the force boundary conditions as well,
so these terms can be ignored.

The force, P’, that the inner fluid exerts on the membrane is given by - n. a’ where a’ is the stress tensor
of the inner fluid,

where the 0")1 are given in any fluid mechanics book (see Ref. [28], page 52). To first order, P’ _ - n. a’ = Pr + PeX
where P’ is the fluid force if the membrane normal is in the radial direction and Pix is the extra force because
the normal vector is not radial. Using equation (A. 5),

where Po is the equilibrium hydrostatic pressure of the inner fluid at the membrane. The force expressions for
the outer fluid are similar, but with a change in sign.

Substituting for ag fl in terms of u and g (Eq. (14)), using the incompressibility condition (Eq. (A. 8)), and
defining Aa,, = - (Pex - Pex), the difference in the extra traction of the fluid outside and inside the membrane,
the left hand side of equation (17), for Aa,,, may be written as

and

Using the expression in Brenner [31] for Pr and Pr, and for the left hand side of equation (17) (letting n -+
- n - 1 to obtain the expressions for r &#x3E; 1), and defining åa, = - (Pr - Pr), we find



1471

and

A. 5 FiNAL RESULT. - We insert equations (A. 21) into (A. 23), add (A. 22) to (A. 23), and set the coefficients of
Y,,,.(O, ýJ) equal to those in (A. .18) as prescribed in (17). The resulting eigenvalue equations are

and

Solving the above equations for 1’nm’ we obtain equations (19) and (20).
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