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Résumé. 2014 Nous établissons la version continue du modèle des polymères organiques à une dimension en pre-
nant en compte la déformation du réseau par une formulation du type SSH et la corrélation électronique par
une interaction du type Hubbard L’hamiltonien obtenu rentre dans la catégorie des théories des champs à symétrie
interne. Nous le traitons par une méthode du type Hartree-Fock et nous obtenons de manière simple les résultats
préalablement déduits par le calcul direct sur le réseau. Ceci nous permet de préciser la validité des modèles conti-
nus.

Abstract. 2014 We establish the continuum version for the model of 1-d organic polymers by taking into account
within a SSH type formulation the lattice deformation, and within a Hubbard interaction, the electronic corre-
lation. The deduced Hamiltonian belongs to the category of field theories with internal symmetry. We treat it
by a self-consistent field method and we obtain in a simple way the results already deduced by direct calculation
on the lattice model. This allows for a discussion of the validity of continuum models.
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1. Introduction.

Within a few exceptions, the study of conducting
1-d organic polymers rests on the so-called SSH
model [1]. Essentially this model assumes that the
polymer can be described by non interacting electrons
moving on a dimerizable one dimensional lattice,
the electrons being characterized by a tight-binding
band with a transfer integral modulated via the chain
deformation. Therefore a competition results between
the gain in electron energy due to dimerization (a gap
opens at k = kF : Peierls instability) and the loss of
elastic energy of the lattice. SSH concluded that in,
e.g. polyacetylene, the ground state is indeed an
alternate succession of « simple &#x3E;&#x3E; and « double »
bonds. Recent experiments support this description [2].
A question however arises : does Peierls instability

subsist in the presence of correlation between elec-
trons ? To be sure no definite answer is known on
theoretical grounds [3]. On the other hand, polymers
with analogous properties, e.g. polyparaphenylene,
do not show up the doubly degenerate configuration
required by the SSH treatment, which therefore does
not apply.

In order to take into account the electron cor-

(*) Associ6 au C.N.R.S.

relation, a simple way is to add a Hubbard repulsion
term to the SSH Hamiltonian. Equivalently this
amounts to allow for a modulation of the transfer

integral in the famous exact calculation by Lieb
and Wu [4]. To our knowledge the exact solution of
this new problem is not known so that approximate
treatments have to be used

Several authors have tackled the question by using
a Hartree-Fock approximation for the Hubbard
term [5]. The most recent work is Kivelson and
Heim’s [5]. They conclude that there exists an upper
critical value Ucr for the Hubbard parameter below
which the stablest phase is dimerized If one retains
the values of the parameters used in the SSH model,
one obtains Ucr ’" 4.6 eV, a rather low value as
compared to 10, 15 eV the « bare » value ordinarily
retained Kivelson and Heim estimate that for poly-
acetylene U - 4.5 a value which is rather close, if

below, to Vcr. Moreover if one compare two exact
models, namely the SSH ground state (dimerization,
one electron per site and the repulsion U), and the
Lieb and Wu state (no-dimerization) it is found that
U cr is reduced by a factor - 3 [6].
Furthermore, another statement of Kivelson and

Heim is surprising. They have tried to improve the
Hartree-Fock treatment by a perturbation calcula-
tion, and they reach the conclusion that the dimeriza-
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tion is enchanced when U is increased in the limit

U/to  1, a result which has also been obtained

recently by a Monte-Carlo calculation [7]. Clearly,
on physical grounds, for U -+ oo the system must
be uniform, a fact that all models exhibit.

In this paper we present a continuous version of
the Lieb and Wu problem in the presence of dimeriza-
tion, which seems to us a better starting point for
reaching an exact solution. However we have not
been able to diagonalize exactly the corresponding
Hamiltonian, and we give an Hartree-Fock treatment
which recovers most of the Kivelson and Heim results.
To our opinion the interest is threefold :

1) It is a way to test the continuum approximation
and it shed light on various aspects of the solutions
of exact models (in particular on the problem of cut-
off determination).

2) It details and illustrates our paper on solitons
in the spin density wave (SDW) phase and shows
clearly the symmetric r6le played by the two order
parameters : chain distortion amplitude, and SDW
amplitude [8].

3) It is a starting point for a subsequent paper in
which we show that if one uses a naive description
for the electronic correlation (i.e. of the Luttinger type)
no dimerization is to be expected

2. Continuum approximation and SCF equations.

The starting Hamiltonian for 1-d polymers in the

presence of Hubbard repulsion reads :

where the notations are standard and may be found
in Kivelson and Heim’s paper. A part from the last
term which represents the elastic energy due to the
lattice deformation, the Hamiltonian is Lieb and Wu’s
Hamiltonian except for the modulation term a(u" + 1-
u,,).
The basic step in deriving the continuum version

is to exhibit the assumed rapid spatial variation of the
Cn,s’s. We set :

Where kF a = n12. The 41’s are assumed to be slowly
varying functions on the scale of the lattice spacing a.

Equation (2.2) introduces a two component quasi-

spinor - [Ý’ts]. . When rewriting (2.1) in termsÝ’2s 
of these new operators we remark that sums like

are negligible. After a small algebra the Hamiltonian
is transformed into :

When writing (2. 3) we have, as usual (see Takayama, Lin-Liu and Maki [9]) linearized the spectrum around
k = kF and assumed a uniform dimerization of the lattice, i.e. :

The i’s are the isotopic (Pauli) matrices, hvF = 2 ato, m = 4 au and N is the number of carbon atoms in the
quantization « box ». One immediately remarks the analogy between the Hamiltonian (2.3) and the so-called
« massive Thirring model » which has been recently diagonalized by Bergknoff and Thacker [10]. However the
interaction term is much more complicated and actually (2. 3) belongs to the class of « held theories with inter-
nal symmetry ».

Ordinarily problems of this kind are handled by a Bethe Ansatz, but no one can a priori be sure that the
procedure will be successful. Indeed Belavin (11) has diagonalized a Hamiltonian with internal symmetry. But
the interaction term is much simpler than (2. 3) and moreover Belavin states, that even for his Hamiltonian, the
Bethe Ansatz fails when a « mass term » (i.e. m 0 0) is present

We have nevertheless tried to diagonalize (2. 3) exactly by a Bethe Ansatz, following the method of Bergknoff
and Thacker [10], but with no success. We therefore resort to an approximate treatment which will be developped
below.

We first write down the equation of motion :
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and make the self consistent field approximation (SCF) by setting :

This allows to treat on an equal footing the two features : spin polarization and lattice distortion. In terms of the
41’s (2. 5) reads :

and the electronic part of the Hamiltonian is now approximated by the SCF Hamiltonian :

Defining p and 0 by 

z

and setting :

the complete Hamiltonian takes the form :

3. Solution of the SCF equations.

The electronic part of His readily diagonalized by setting:

where A,., and 8,., obey the equations of motion :

One checks easily that 8A = - 8f and that the solutions of these equations are :

or in terms of the §’s

where c is the normation constant
The ground state is now written as :

where k, is some cut-off to be specified later on.
Using equations (2. 8b) and (2. 5) one derives the self consistent equation. Let us first note that for N parti-

cles on a line of length L (L/N = Cte N -+ oo) the density of state is determined via the usual cyclic boundary
conditions. In the SCF approximation the quasiparticles are actually independent so that there is no phase shift
in the wave function. The boundary condition is therefore e ikL =1 and the density of states is a constant, namely
L/2 n. In other words the cut-off momentum equals kF i.e. k = kF = n/2 a.
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The self-consistent equation now reads :

or : O 
O

The integration is straightforward and yields :

where

The total energy is computed with the help of equation (2.9) and reads :

where :

6 is to be determined by solving equation (3. 3). Two solutions are available :
1) 6 = 0. This is the dimerized SSH-like solution for which the energy is (it corresponds to TLM results [9]

with 6 = 0) : 
.

As expe ted 1 display two mmma at yo - ± sinh A ’ o = -. We designate by the correspondingo ?1

energy :

2) 8 = 60 where

The corresponding energy is :

This energy is extremum for y = 0. We designate it by ESDW. For y  2013 this extremum is a maximum and the2

corresponding solution is unstable. For y &#x3E; 1 the extremum is a minimum, the corresponding solution is2
stable. Physically it represents a spin density wave (SDW) of amplitude 60 on a non-dimerized lattice .
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Notice that we do not find a coexistence of SDW
and dimerized lattice, as was obtained by Kivelson
and Heim. The « mixed state » has been washed out

by the continuum approximation.
Comparing the energies of the two solutions, it is

readily seen that the SSH-like state is the stablest for

y  l’ and the SDW state for y &#x3E; 1- For y = n/2 ,2 2 2
the energies of the two states coincide.

It is interesting to plot El and EZ as functions of
the parameter y for various values of y. This is repre-
sented on figure 1.
Note that the two curves are tangent for y = Yint =

n/2 sinh 7r. For y &#x3E; y;nt the self consistency equation
y

(3.3) exhibits an imaginary solution for 6, which
cannot correspond to a physical situation. This is

pictured by the dashed parts in figure 1.

Fig. 1. -- Variations of (2 Nt,)-’ El (Eq. (3 . 5)) and of
(2 Nto)-1 E2 (Eq. (3 . 7)) as functions of y for : a) y = 2,
b) y = yy/2, c) y = 1, with 11 = 2.56... as proposed by
SSH. The dashed part of E2 corresponds to the unphysical
range where 62  0. The arrow indicates the value yo
where Ei 1 is minimal.

We can now easily draw a phase diagram in the y,
q plane (Fig. 2). The frontier is the straight line y = q/2.
In terms of U, it yields the critical value :

Let us emphasize once again on the fact that there is
no mixed state in this treatment. As a result, when
crossing the boundary y = yy/2, the dimerization para-
meter drops abruptly from uo to 0 while the SDW
parameter increases abruptly from 0 to 60. This is to
be compared with the results of the lattice version in
which it is found that these parameters have an expo-
nential variation in the mixed state.

It is also worth noting that the boundary in the
continuum model is slightly above that of the lattice
version.

It is interesting to compare the value of the dimeri-
zation parameter yoL (resp. yo,) and of the SDW
amplitude parameter boL (resp. bo,,) in the lattice (resp.
continuum) version.

2 auoLYOL = 2 IXUOL is solution of the equation (Ref. [5]
to

and [12]) :

where K and E are elliptic functions of the first and
second kinds. For small values of ’1  2 n this solu-
tion is

Fig. 2. - Phase diagram in the (" - y) plane. The bold
line is the (narrow) domain found in the lattice version where
coexist a spin density wave and a dimerization pattern.
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This is to be compared with yo, namely :

The two expressions differ by the prefactor, but both
exhibit the characteristic exponential dependency (see
Fig. 3).

60L is solution of the equation (Refs. [5] and [12]) :

which for y « 2 n gives :

This is to be compared with ðoc namely :

Once again we find a different prefactor and the
characteristic exponential dependency.

Finally let us remark that the optical gap is given
in either phase by :

U 8 x2
This shows that u and il = 8Ka? play the same roleto to
as do m and Ub in the SCF Hamiltonian (see Eqs.
(2.7) and (2.9)). This is the basic reason why it is possi-
ble to build bag and kink solitons in the SDW as well
as in the dimerized phase [8].

Fig. 3. - Variations of yo as a function of q. The dotted
curve corresponds to the lattice version; the dashed one is
yo,, with the right prefactor; the solid curve is yo,. as given
by equation (3.8).

4. Conclusions.

In the above treatment we have obtained in a very
simple way the essential features of the lattice model
for the Hubbard type Hamiltonian in the presence of
chain dimerization. The results are appealing because
they appear in close form, in terms of elementary func-
tions, on the one side, and because they allow to be
confident in the continuum approximation, on the
other side. As was shown by Campbell and Bishop,
such treatment is attractive since it is equivalent to the
Gross-Neveu model and as such is amenable to use
well-known results of field theory, as we shall show
in a subsequent paper.
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