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Résumé. 2014 Nous considérons un modèle de dynamique du réseau pour une dislocation vis, rectiligne, qui se
déplace dans un réseau cubique simple avec des liaisons entre premiers voisins (modèle dit du « snapping bond »).
L’effet sur le réseau, dû au mouvement de la dislocation, est décrit par une force-source dynamique, ou force de
Kanzaki, et la réponse du réseau par la fonction de Green relative aux phonons. On introduit des défauts ponc-
tuels isotopiques répartis de manière aléatoire. La fonction de Green du réseau avec défauts est calculée dans
l’approximation de la matrice T moyenne (average T-matrix approximation). En égalisant l’énergie rayonnée
par la dislocation en mouvement au travail fait par une contrainte extérieure, on obtient la relation entre contrainte
appliquée et vitesse de la dislocation (en fonction de la concentration de défauts). Cette relation vitesse-contrainte
montre que les défauts de masse, à travers leurs effets sur la dynamique du réseau, peuvent introduire un adoucis-
sement dynamique en plus de l’effet bien connu de durcissement par solution solide.

Abstract 2014 We consider a lattice dynamics model of a straight screw dislocation moving in a simple cubic lattice
with nearest-neighbour « snapping bonds ». The effect on the lattice of the dislocation motion is described by a
dynamic source-force, or Kanzaki-force, and the lattice response by the phonon Green’s function. A random array
of isotopic substitutional point defects is introduced, and the average-t-matrix approximation of the configuratio-
nal averaged Green’s function is employed to describe the defect-lattice response. By using these quantities to
calculate the energy radiated, as phonons, from the moving dislocation, and equating this energy to the work
done by the applied stress, we obtain numerically the relation between the applied stress and dislocation velocity
as a function of defect concentration. This stress-velocity relation shows that the site mass-change, through their
global effect upon the lattice dynamics can introduce a dynamic lattice softening contribution to the usual solute
hardening effect of the interaction between dislocation and point defects.
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Introduction.

As a consequence of the great complexity of the plastic
behaviour of metals and of the unanswered questions
that this complex behaviour engenders, there is a

continuing interest in microscopic models of dis-
locations. Among the unanswered question in this
field there are those clearly involving microscopic
interactions such as the interaction between a mobile
dislocation and point defects, which suggest that we
go beyond classical elastic continuum theory and
investigate dislocations on a truly atomistic scale.
Atomistic models of dislocation motion include one-

dimensional Frenkel-Kontorova models, computer
simulation by molecular dynamics (with model poten-
tials), and analytical solution based on the theory of
lattice dynamics (with empirical force-constants).
First principles theories at the electronic level, such
as the works of Masuda and Sato [1-3], which yield
the core structure, core energy, and Peierls stress of
screw dislocations in bcc transition metals and dilute
alloys, are based on procedures leading to static

equilibrium and neglect all dynamical effects.
The idealized lattice-dynamical models of Celli and

Flytzanis [4, 5] and of Ishioka [6] lead through diffe-
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rent approaches to quantitative relations between
the applied stress and dislocation velocity. The basic
model of Celli and Flytzanis, for a screw dislocation
moving in a simple cubic (SC), nearest-neighbour,
harmonic lattice, with snapping bonds, was recast
by Glass [7] in terms of a dynamic source-force
(generalized from the Boyer-Hardy static force [8])
for arbitrary dislocation motion and of the phonon
Green’s function. One object of reference [7] was to
derive expression amenable to straightforward gene-
ralization to take into account, for example, the dyna-
mic effects of point defects, through a modified lattice
response function. An expression for the energy
dissipated by an harmonically oscillating dislocation
in a perfect lattice was derived, and then the way in
which point defects should change this expression was
outlined

In this paper, we follow up on the ideas of refe-
rence [7], by actually implementing the theory nume-
rically, for the case in which the screw dislocation
moves through the SC lattice containing a random
array of isotopic mass defects. The effect of the defects
is incorporated in the Green’s function through use
of the average-T-matrix (ATA) approximation. In
order to deal with the added complication of the
defects in a quantitative way, we simplify the disloca-
tion motion to that of constant velocity. We calculate
the relation between the applied stress and the dis-
location velocity as a function of defect concentration,
and we discuss the hardening (softening) of the crystal
in light of the results.
Of course, such a model (in which thermal pho-

nons and kinks do not exist) is strictly valid at T = 0 K.
Nevertheless, for low temperatures, in which thermal
creation of kink pairs [9] is unlikely, plastic deforma-
tion should occur only when the applied stress is

high enough to push dislocations over the Peierls
potential, and the mechanism envisaged here has
relevance. One might thus compare our results for
the effect of mass defects on the stress-velocity rela-
tion, to experimental measurements on solid solution
hardening near T = 0 K.
The present model, which neglects force-constant

changes due to the defects and lattice relaxation
around the defects, does not include those well-
known contributions to the interaction between
dislocations and point defects that are calculated

in continuum theory, namely, the size misfit and
modulus misfit contributions (reviewed in Refs. [10]
and [11]). On the other hand, the effect of the altered
masses, via the global change in the lattice dynamics,
is totally absent from continuum theory. In fact, we
find that the mass-change can add another term to
the dynamic interaction between high-velocity dis-
locations and point defects.
The organization of the paper is as follows. First,

we review some of the steps in reference [7] to obtain
an expression for the power radiated as phonons
from a moving screw dislocation, for the perfect
lattice. This leads to an expression for the applied
stress versus velocity, which is the same as the Celli-
Flytzanis result [4], and which we have evaluated
numerically for finite phonon damping (different
from Ref [4]). We then replace the perfect-lattice
Green function with the ATA Green function and

present the numerical solution of the stress-velocity
relation as a function of defect concentration.

1. The model.

In the article by Glass [7] results are derived first for
the arbitrary motion of a straight screw-dislocation,
at position R(t), and then for the case of harmonic
oscillatory motion, i.e., R(t) = ybRo cos Q, where
bRo is the amplitude of vibration. Here we shall
reproduce the most important steps of the calcula-
tion for the particular case of uniform motion (i.e.
R(t) = yvt) in order to obtain the displacements
and energy dissipation in the lattice containing one
type of atom. The case of the isotopic substitutional
alloy is treated in the next section.

Consider a simple cubic lattice in the harmonic
approximation with nearest neighbour interactions.
An infinitely long screw dislocation parallel to the
Z-axis and intersecting the centre of a cube face is
shown in figure 1. Following Boyer and Hardy [8],
the Kanzaki force necessary to create the topology
of the screw dislocation is given by :

where m, n denote the atoms at rm, Q, I is the Cartesian
direction, b is the Burger’s vector (equal to the lattice
parameter), mnij" is the matrix of force constants and :

The Kanzaki force, equation (1), in the co-ordinate system shown in figure 1, is :
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Fig. 1. - Geometry of the model considered : a simple
cubic lattice containing an infinitely long screw dislocation
along the Z-axis, moving in the y-direction, and intersect-
ing the xy-plane at the position R(t).

where v is the dislocation velocity and O(x) is the Heavyside function whose Fourier integral representation is

It is usefull to work in reciprocal space ; therefore equation (2) is Fourier transformed with respect to the
discrete varilbles ri (i = x, y, z) and the continuous variable t.

It is important to note that the condition of nearest neighbour-interactions appears through the matrix
rriz;’, reducing the sum over rx to two terms. With the origin as shown in figure 1 [the position of the atom labelled
(s, t, p) is r = (sb + b/2, tb, pb)], the Fourier transform of equation (2) is Kx(k, w) = K Qq w) = 0 and :

where yT is the transverse force constant, Ni (i = x, y, z) is the number of atoms in the direction i and Gy is a
reciprocal lattice vector, Gy = 2 xn/b, n = 0, + 1, ...

As shown in paper I the displacements can be obtained from equation (3) and the phonon Green’s functions
for the perfect simple cubic lattice :

In the particular model crystal under consideration Gij is diagonal in i and j ; therefore the displacements
produced by the Kanzaki force, equation (3), are only in the z-direction. Since there is no dependence of Kz
on z, the relative displacement of atoms along the z axis is 0, implying that there are no waves propagating along
the z axis. In conclusion, waves will propagate in the x-y plane with a3 = (0, 0, 1) polarization. For those
waves, the phonon dispersion relation entering equation (4) is :

where yT and YL are the transverse and longitudinal force constants respectively. Finally, the displacements are :
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which after some algebra becomes :

where c is the sound velocity.
As quoted in reference [7] this result is the same as obtained by Celli and Flitzanis starting from the New-

tonian equation of motion (see Eq. (2.9) in Ref. [4]).
The energy radiated in the phonon field is equal to the work done by the Kanzaki force. The power dissipat-

ed into the whole crystal is : 

From equation (6)

and from equation (3)

Using equations (8) and (9) in equation (7), we obtain :

In the limit 8 -+ 0 we can split the integrand in this formula into its real, R, and imaginary, I, parts as follows :
I

where Kl is Kx 1 + Ky y and P denotes principal value.
The integral of the first term in (1 la) is zero because of its parity while that of the second is zero because

Im GzZ(K, w) is zero for Ky = 0 (note that Eq. (4) is the retarded Green’s function whose imaginary part is
proportional to co, or to Ky in Eq. (10)).

The second term in equation (11 b), when integrated over Ky reduces to x/4 and therefore only the first
term in (11 b) must be evaluated, namely

Equation (12) can also be obtained from a generalization to a system of many degrees of freedom of the
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well known relation between the power transferred to a system by an external force F(t) = l/.ji:; f droF(co) eÎ0153’
and its response function G(m)

The function Im G== K1, v Ky in equation (12) has large values only for those K where w(K 1.) = c K)..c c
As discussed by Ishioka 6 in one dimension, and Celli et al. [4] in two dimensions, this represents a selection
rule for the excitation of lattice waves. When the phase velocity, ro(k)/ky’ and the group velocity, 04k)/Dky,
in the y-direction, equal the dislocation velocity, v, the energy transferred to that particular mode cannot escape
the dislocation core, leading to a divergence of the integral in equation (12) in the case of null damping (r - 0).

In order to impose conservation of energy, we must equate the power dissipated by the moving dislocation
to the power dissipated by an external shear stress. Forces F = (0, 0, ± F) applied to the faces zy at x = ± Nx b/2
produce the necessary shear stress Q = F / b2 N z Ny. The work done by these forces is composed of two terms :

an elastic and a plastic contribution. The total plastic work done on each surface atom is F b - ub2 b . The
number of atoms per unit time which are displaced by the moving dislocation is 2 N. v . Therefore the power
dissipated becomes

Equating equation (13) to (12) we obtain the desired relation between external stress a and dislocation
velocity v as :

The Peierls stress, ap, is the stress required under
quasi-static conditions (in the absence of thermal

motion) to move the dislocation from one stable

equilibrium position to an adjacent one. In this model
ap is just the stress necessary to produce a relative
displacement of two atoms across the slip plane
equal to b/2. When an external stress is applied to the
crystal, the atomic displacements are the sum of the
elastic deformation, s = a/14 and the strain field
of the static dislocation. When considering the core
atoms across the slip plane, for instance r 1 = (b/2, 0, 0)
and r2 = (- b/2, 0, 0), the Peierls stress should

satisfy that ri - r2 as a function of ap be equal to b/2 :

Where 1 t/t - 112 ID represent the dislocation-induced
relative displacement, given by equation (6) for v = 0
and the first term in the right hand side is the elastic
contribution.
The static configuration of the core is just that given

by the elastic continuum theory, i.e. u (xyz) = 2bn artgy/ x.
The static relative displacement for two core atoms
accross the slip plane is b/4 and then the Peierls
stress, 6P, is given by b/2 = up bly + b/4 - up = p/4.
For any pair of nearest neigbour atoms very far
from the dislocation the relative displacement is

given by I u - u’ I = (Tb and the limit of cohesion,YI 
I

(Tv is ’venb Y I u-u’ I  b = - L It b o L - u/2.
Equation (14) has been evaluated numerically for

a value of the phonon damping r = 0.001 c/b. Note
that the integrand has even parity in both integration
variables and is zero for Ky = 0 so that numerical
integration has been made for positive values of Kx
and Ky. Also Im G zz(K, m) is zero for m &#x3E; co..,,; in this

case it is zero for K = g v c . Finally the relative errorsv

in a Gauss subroutine were fixed the first variable

(Kx) and 10- 3 for the second Calculations for velo-
cities from v = 0 at stept of Av = 0.001 c were made
in order to obtain the plot shown in figure 2.
Many interesting features are shown in this figure.

Three distinctic regions appear : for high velocities
(v &#x3E; 0.4 c) the movement is well defined (Ovlaa &#x3E; 0)
and similar to that of the continuum theory (in an
elastic continuum with dissipation the v - 6 relation
is linear characteristic of a viscous damping). This
high velocity region is equivalent to that obtained
by Celli and Flytzanis [4].
At intermediate velocities, the velocity-stress curve

has regions of instability (avlaa  0) and shows
near-singularities in the stress at certain velocities

(e.g. v/c = 0.3). The precise nature of these points
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Fig. 2. - Dislocation velocity (divided by sound velocity),
vlc, versus applied shear stress (divided by shear modulus),
a/g for a screw dislocation moving uniformly in a perfect
cubic lattice.

of nearly divergent stress depends on the choice of
the phonon damping parameter r, of which the value
used here is an abritrary one. In particular, when
r = 0, there is a true singularity in the stress as

discussed by Celli and Flytzanis [4]. In reference [4]
these authors point out that these divergences occur
at the critical velocities, at which a phonon propagates
with the same phase and group velocity as the dislo-
cation velocity. The energy radiated from the dislo-
cation into such a lattice mode cannot escape from
the dislocation core and thus the atomic vibrational

amplitudes become large (infinite when r = 0), as

does the stress necessary to maintain the motion.
It is interesting to note that with an increase in the
choice of T, the divergences found in reference [4] and
the breakdown in the model that it represents, is here
removed In fact we shall see in the next section that
when additional phonon damping due to the presence
of point defects is introduced, the sharp spikes in the
stress are even further reduced
The region of low velocities, v  0.05 c, is interest-

ing since the results in this region may be compared
to experiments : for example to measurements of the
critical shear stress near 0 K (this being the minimum
stress to start moving the dislocation from zero

velocity). We notice that the limiting stress for v -&#x3E; 0

in figure 2 equals the static Peierls stress evaluated in
equation (15), in contrast to the results of Weiner [12]
and Ishioka [6] in one dimensional models, where a

dynamic Peierls stress, lower than the static one, is
found Experiments on dislocation velocity under
known stress pulses [13], near the critical stress,
reveal dislocation velocities some order of magnitude
lower than the sound velocity. At the lowest tempe-
rature reported in reference [13], 77 K, the dislocation
velocity shows a rapid rise near the critical stress,
as found here. Of course in the present simple model
there are no other dislocations, defects or thermal
phonons to slow down the dislocation, and there is
no motion by dislocation bowing ; our dislocation
is always straight The derivative avlaa - oo for
this v -&#x3E; 0 region is characteristic of a sliding friction
mechanism.

2. The influence of point defects.

The Green’s function, equation (4), which enters the
equation for the dissipation, equation (14), is the

response function of the perfect crystal. Since it is

just the imaginary part of this function that needs to be
calculated, see (12), the dissipation of energy can be
interpreted as a function of the local density of states
or frequency spectrum D((w2) :

where

The density of states for the simple cubic lattice is
plotted in figure 3. It corresponds to the acoustic

band which ends at w2 max = 4/M + 2 .
The Green’s function in equation (16) is defined

through the Hamiltonian of the perfect lattice, H, as

When impurities are present a perturbation term
appears which in the site representation and for an
isotopic substitutional impurity reads

where MB is the mass of the impurity atom, MA is
that of the host atom, A(1) equals 1 if the site I is

occupied by an impurity atom and 0 otherwise and
8(1) = (MB/MA - 1) A{I).
The formal solution for G(E) is

where now P(E) = (H - E)-1 is the perfect lattice
Green’s function. Equation (19) can be written as a
Dyson equation
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Fig. 3. - The phonon density of modes D(w2) for five
different concentrations C, of random mass-defects (mass
M,) in a simple cubic lattice (atomic mass MA = 3 MB),
as used in the calculations for the dislocation motion.

Equation (20) is unsolvable because of the infinite
dimension of the matrices and because the exact
location of each impurity is unknown.
The problem of a dislocation moving in a crystal

containing point defects should be solved for each

configuration of point defects and then the energy
dissipated averaged over these configurations. The
number of such configurations being infinite, one is
forced to use a configurational averaged Green’s
function.
For an homogeneously random system the averaged

Green’s function has the translational symmetry of P
and an equivalent Dyson equation can be written,
like equation (20), in terms of a self energy [14] :

Among the different approximations developed
for E(z), we shall adopt the T-matrix decoupling
schema (see for instance Re£ [14]) where E(E) is

given by :

where CB is the concentratiori of impurity B atoms
in this way the averaged response functions becomes :

The density of states resulting from this approximation
(i.e. - M/7T Im G.O.(co’) with G.0.1(col) given by Eq. (23))
is represented in figure 3 for MB = MA/3 and several
values of the concentration. For a low concentration
of B-atoms a band of localized modes appear which

enlarges with increasing concentration until the gap
disappears. Reciprocally, starting from CA = 0 the
inclusion of heavy A atoms produces a peak of resonant
modes in the low frequency region of the spectrum.
The consequences of the self-energy term in equa-
tion (23) is that each mode at frequency co is shifted
by a quantity Re M(ro) and broadened by a quantity
Im E(co). (Note that in a random alloy, plane waves
are no longer eigenstates.)
For CB = 1 the effect of the self-energy term is just

to change MA into MB and therefore the results is
exact. The only differences between pure crystals A
and B are the speeds of sound (J3 times greater for
crystal B) and the ro2 M.(C02 = 3 ro;axA).

With equations (23) and (22) in equation (14) we get the velocity-stress relation for a dislocation moving
in a random alloy of isotopic defects with concentration CB
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The numerical evaluation of equation (24) requires the three-dimension integral Poo v Ky 2 which explicitlyzz c -Y
reads :

Numerical evaluation of (24) for CB = 0.25, 0.5 and 1 is shown in figures 4, 5 and 6.

Fig. 4. - Dislocation velocity (divided by sound velocity),
v/c, versus applied shear stress (divided by shear modulus),
a/p, for a screw dislocation moving uniformly in a simple
cubic lattice (atomic mass MA containing a random array
of mass-defects (mass MB = MA/3) of concentration C, =
0.25.

Several important features stand out from these
figures. First, for very low velocities, v = 0.05 c any
effect of the mass-defects disappears; in particular
the value of ap is not a function of the concentration.
This fact is intuitively evident, since at very low
velocities the inertial effects should be negligible.
For the intermediate velocities, as the concentrations
CB or CA approach the value 1/2 the divergences in
the stress disappear as a consequence of the damping
of phonons. Finally at high velocities the light defects
soften the crystal (the stress necessary to move a
dislocation at a given velocity appears to be a decreas-
ing function of the concentration of the light element).
For example for v/c = 1 we find a = 0.28 J.1 for

CB=0, U = 0.20 J.1 for CB=0.25 and u = 0.15 J.1
for CB = 0.5. But it is interesting to note that the

Fig. 5. - Same as figure 4 except C, = 0.5.

minimum stress as a function of velocity (appearing
for velocities equal to z 0.5 c for CB = 0 ; z 0.6 c
for CB = 0.5 and 0.8 c for CB = 1) is constant

ami. = 0.11 g independent of the concentration.

3. Discussion and conclusions.

A point defect described within the framework of
elasticity theory may only harden a crystal (by reducing
the dislocation mobility), regardless of whether the
interaction energy is positive or negative. Also,
a mass-defect does not interact with a dislocation
in that theory.

In this work it is shown how point defects can be
introduced in a lattice-dynamics model of a moving
dislocation. Calculations have been made for a

mass-defect because of its simplicity - diagonal dis-
order. Despite this simplicity, the model allows us to
see, at least in a general way, what new effect may be
associated with a mass-change. By introducing a
general force-constant and mass defect, we should be
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Fig. 6. - Same as figure 4, except CB = 1.

able, in the future, to describe the equivalent to the
inhomogeneity interaction of continuum theory and
the effects of the mass change at the same time. Finally
it should be possible to introduce an additional
Kanzaki force to describe point defects with size

misfit ; then a complete description of all possible
interactions should be achieved, not only for the

calculation of the Peierls stress but for the entire

dynamic range.
An important consequence of this formalism is

that it allows a description of the two types of possible
modifications of the dislocation mobility due to the
presence of point defects, hardening and softening.
For instance, if a light isotopic defect increases the
mobility at high velocities, a heavy defect decreases
that mobility. This is important in the description
of the peaks in those parameter associated with the
dislocation mobility, like internal friction, as a func-
tion of defect concentration [15, 16].

In a further degree of sophistication of the model,
it should be possible to introduce point defects in
interstitial positions. In the case of the dumbbell
interstitial in f.c.c. lattices, the low frequency reso-
nances produced by the librational and translational
modes [17] could have interesting consequences on
the dislocation mobility as mentioned in reference [7].

Finally the inverse problem can be studied A
moving dislocation radiates transverse phonons with
a frequency distribution which is a function of its

velocity and the model parameters. A point defect
having peaks in its local frequency spectrum at those
particular frequencies could be excited at high ampli-
tudes. If the vibration corresponds to a diffusion
mode the diffusion coefficient could be modified in the

neighbourhood of a moving dislocation.
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