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Résumé. 2014 Le transport collectif par les ondes de densité de charge (CDW) se transforme en un courant ordinaire
dans les contacts avec le métal normal. Dans notre étude ce processus se produit par le glissement de phase (PS)
de CDW. Le CDW dans un système quasi unidimensionnel avec une surface de Fermi à « nesting » et en présence
d’impuretés est décrit par une équation différentielle non linéaire obtenue auparavant. Nous résolvons cette équa-
tion numériquement pour des échantillons semi-infinis et finis. L’analyse des solutions est faite pour des champs
électriques E et les longueurs d’échantillon L qui sont respectivement d’un à deux ordres de grandeur plus grands
et petits que les valeurs expérimentales actuelles. Il s’ensuit que les solutions PS sont fonctions du temps à une

période, avec la distance du centre PS au contact variant comme E-0,284 dans la limite des petits champs. Le
transport cohérent par CDW existe au-dessus d’un champ de seuil qui varie comme L-1,23. Nous avons examiné
aussi les pulses dans le voltage, produits par le processus de PS. Les résultats sont en bon accord avec la dépendance
en longueur des champs de seuil et certaines propriétés de bruit périodique, observés dans NbSe3 et TaS3.

Abstract. 2014 The collective transport of charge density waves (CDW) converts into an ordinary current at the con-
tacts with a normal metal. In the present work this conversion is proposed to proceed via the process of phase
slippage (PS). The CDW in the quasi-one-dimensional system with a nested Fermi surface and impurities is des-
cribed by the nonlinear differential equation derived earlier. This equation is solved numerically for semi-infinite
samples, as well as for finite samples with both edges fixed. The analysis of solutions is carried out for electrical fields
E and sample lengths L which are respectively one to two orders of magnitude larger and smaller than the actual
experimental values. This leads to the following results : the PS solutions are one-periodic functions of time, with
the distance of the PS centre from the fixed end behaving like E- 0.284 in the limit of small E. The coherent CDW
transport in the finite samples occurs above the threshold field which varies as L-1.23. The pulses in the voltage
generated by PS processes are also analysed. The results are in a good agreement with the experimental data for the
length dependence of the threshold field and with some properties of the periodic noise in e.g. NbSe3 and TaS3.
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1. Introduction.

The investigations in the trichalcogenide transition
metal compounds like NbSe3 and TaS3 are now

mostly concentrated on the so-called Frohlich conduc-
tivity mechanism and the problem of the narrow
band « noise » generation produced, speaking in

general terms, by the charge density wave (CDW)
motion as it has first been proposed (Refs. [1-3]). For
the more extensive list of references and the compre-
hensive discussion of the whole problem see, for

instance, reference [4]. Many theories have been

developed since that time suggesting both microsco-
pical and phenomenological approaches to explain
the phenomena observed All of them have met diffi-
culties in attempting to explain the very narrow,
almost coherent character [2] of the voltage oscilla-

tions generated in the sample in the presence of a
passing current, when the average applied field, E,
exceeds Et, the threshold electric field, for the CDW
motion. Recently it has been discovered experimen-
tally that these oscillations have the local origin and
are positioned near the measuring contacts where the
current carried by the collective CDW motion con-
verts into the ordinary transport current [5-7]. The
intuitive picture suggested in references [6, 7] is,
roughly speaking, as follows: There is a surface near the
contact defined by the condition that the local electric
field E(r) (the distribution of currents and fields gets
inhomogeneous near the contact) equals to the
threshold value

At this surface the CDW motion stops and the asso-
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ciated phase undergoes a sort of phase-slip process.
The picture of that process involves an ad hoc coherent
motion of vortices moving along the surface mentioned
above, and synchronizing each other strongly to

preserve the periodical character of oscillations. The
phenomenological equation for this behavior has
been borrowed from the Josephson junction theory.

Independently, another model has been proposed
by one of the authors [8] in the framework of a 3D
microscopical model. The intention was to separate
such a phenomenon as is the finite threshold field,
Etb, which is due to the bulk pinning effects by impu-
rities, from the generation of oscillations at the inter-
face with the ordinary metal. The stoppage of the CDW
phase transport in the vicinity of the contacts and its
conversion into the normal current, inevitably goes
together with the successive disappearance of CDW
wavelengths in time. With the lattice deformations
at the interface being fixed, this is realised through
the formation of the centers at which the CDW ampli-
tude vanishes and the overall phase difference in space
changes by 2 n. The aim of the microscopical model [8]
is to describe explicitly this process called the phase
slippage, and to prove the existence of the nonlinear
periodic regime. Then, if it so happens that the phase
slip (PS) occurs at a distance from the interface large
enough not to feel the roughness of the real contact
and to avoid any pinning, this would lead to the cohe-
rent (periodic) oscillation in the system. Such model
can be called « sample quality independent », and
is to be applied for samples of the good quality with
the low enough threshold field Etb and the large room
resistance ratio. The nature of the surface energy
which is connected with the interface and stops the
CDW phase transport, lies in the fact that even at
T &#x3E; Tp (T p, the structural transition temperature)
there are equilibrium atomic displacements from the
regular lattice due to the boundary separating the two
metals. These displacements of the lattice are weakly
affected by the onset of the new (Peierls) state in one of
the two metals at T  Tp. Therefore, the superstruc-
ture which grows in the lattice below Tp, is to match
the « tail » of the boundary effects at the characteristic
scale of order o - HVFITP from the border. Taking
VF - 10’ cm/s, Tp L-- 50 K (as for lower transition
on NbSe3), one gets o L--- 10-6 cm. In order to intro-
duce the homogeneous effective boundary conditions
(i.e. to forget about the roughness of the real interface)
it is necessary for the phase-slippage process to occur
on distances larger than ço. If it is so, the system of the
nonlinear equations with the appropriate homoge-
neous boundary conditions will immediately give
nonlinear periodic regime, or the so-called o cycle »
at any specific geometry of the real contact interface.
(We put aside the small amount of defects which seems
to be the only source of finite width of the harmonics
in this case.) We shall show that this picture really
works in the limit of sufficiently weak electric fields, as
it takes place in the available experimental situations.

The paper is organized as follows. In section 2 we
give a short account of the underlying microscopic
model [8, 9], and formulate the problem of the CDW
motion in the vicinity of interfaces with a normal metal.
The results of the numerical analysis of this problem
are presented in section 3. In section 3.1 we simulate
numerically the time evolution of the Fr6hlich mode
in the finite sample, while in section 3.2 we consider
PSs in a semi-infinite sample with one free end The
properties of periodic voltage induced by PS processes
are discussed in section 3 . 3. Finally, in the concluding
section 4 we make a preliminary comparison with some
known experimental data.

2. The model and the formulation of the problem.

In this section we recall shortly the main features of
the model [7]. In this model it is assumed that the
electron Fermi surface consists of two separate sheets :
the first on the right, the second on the left side of the
Brillouin zone (the chain direction is taken as the

x-axis). These sheets are of the three dimensional
character even with respect to the perpendicular
transport (to avoid the unessential complications in the
quasi-one-dimensional (Q 1 D) case) and possess the
« nesting » property s(K) = - s(K + Q) (where Q
is the 3D « nesting » vector). This type of spectrum
appears, for example, in the tight-binding approxima-
tion for the so-called one chain compounds [10]. The
topological properties which permit to map the more
realistic energy spectrum of the QID materials into
this model are, firstly, that the Fermi surfaces are open
in the perpendicular direction and, secondly, that the
longitudinal component of the « nesting » vector

Q II = 2 KF is incommensurate with the underlaying
lattice. The model with an exact nesting permits the
rigorous mathematical treatment [11], in many aspects
resembling the formalism of the BCS-theory. In order
to obtain the simplest form of equations for the order
parameter

which determines the gap in the electron spectrum of
the new phase produced by the spontaneous structural
(Peierls) deformation, this model has been simplified
using the limit in which impurities suppress the tran-
sition temperature : Tp goes to zero at the finite con-
centration of defects exactly in the same way as it

takes place for the paramagnetic impurities in the
superconductivity (by smoothing the singularity in the
density of states of new phase at zero temperature).
This has made possible to derive the thne dependent
version of the Landau-type expansion in the magni-
tude of the order parameter (1) in the region close to
the critical concentration, Tp  Tpo (T po the Peierls
transition temperature of the model in absence of
impurities). The procedure of the derivation of the
corresponding equations is described in reference [9]
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(see also Ref [8]). Before writing down these equations
let us remind that the gap parameter is connected with
the lattice distortion

by the relation I L1 I = 2 uo where d is the deformatio-
nal potential. The phase 0 reflects the possibility of
motion for the CDW in the incommensurate case.
It is also worth mentioning that because of the explicit
assumption concerning the 3D character of the Fermi
surface the threshold electric field Eb in this model
can be made negligibly small.
The resulting equations obtained in references [8, 9]

have the form

The parameters in equation (2) are dimensionless.
Thus, E is measured in terms of n2 T ðj6 vx e and
d ] in terms of I Aoo [ (I Aoo 12 = § n’ T§ ð) where
vx is the mean longitudinal electron velocity, and
5 = 1 - T2 IT. (Note that here b can be of order
of unity.) The time and space scales are respectively
defined by wo 1 and j jj i. The frequency roo is given by

where T,, = 4 T (y, Euler constant) for the concen-3 T° (v )
P

tration of defects close to its critical value (Tp  Tp°).
ç jj and ç 1. are the coherence lengths in the longitudinal
and transverse directions respectively,

with

and

For Tp  Tpo the current j is obviously mainly due
to the normal carriers

The second and third terms are small corrections

respectively due to the small decrease in a number of
carriers and to the CDW motion (E = -V’X/vl). The
measure of smallness of these contributions is given by

since Tp  Tpo near the critical defect concentration
in this model.

The expansion (3) for the current density presents
an important formal simplification : at a given current
the field E is defined by the normal conductivity and
should be considered as an external parameter in

equation (2). By solving equation (2) it is then possible
to find the electric voltage (or current) corrections
from the small terms in (3), considering them as per-
turbations in (2).
The problem of boundary conditions for 1,J I e’o

has been discussed in reference [9]. The appropriate 
°

boundary conditions for the planar interface imply
that the gradient of phase normal to the plane gets
zero at x - 0, while the amplitude I A (x) I increases
sharply to match the displacements of the atoms at
the contact which are of the order of lattice constant.
From the point of view of numerical calculations this
choice would considerably complicate the calculation
procedure. Therefore, in what follows we use the con-
dition that the phase of the order parameter in (1) is
fixed at the border (00 = 0) keeping the value of its
amplitude at the interface, 1,Jo 1, different from unity,
i.e. Jo ! 1 can exceed the thermodynamical value of I J [
at infinity (i.e. very far from the contact).
The next point is that, as we shall see, there are

reasons to expect that the phase slippage takes place
at distances considerably larger than ço(xps &#x3E; 1)
if the electric field is weak enough. The obvious phy-
sical definition of the « strong held » is that the energy
acquired by electron on distances of order of Ço, eEço
is large enough to remove it from the condensate (i.e.
to put it across the gap 2 1 A I - Tp). From this point
of view the electric fields used in the experiment
(E - 100 mV/cm) are extremely small i.e. of the order
eEçolTp 1’-1 10-4 in our dimensionless notations. We
shall therefore pay special attention to the low electric
field regime. If it so and xps is large, the geometry of
contact will not be essential and the phase slip pro-
cesses take place in the plane x = xps perpendicular
to the main conducting axis.

In the present work we limited our calculations to
the planar situation when all the quantities depend
on one space coordinate, x, only. Strictly speaking, this
approach would be exact if the thickness of sample is
small. For the thick enough sample the motion of
dislocation in the superlattice (with the new wave
vector Q) is possible as it has already been mentioned
above. However, the sample surface as a barrier for the
penetration of dislocations, and especially the exis-
tence of the strand domains [12], make it possible that
the solution with d(x, t) = 0 in the whole plane
x = xps’ can have a wider range of applicability. In
any case, the planar solution demonstrates the main
features of the phase slippage phenomena and sug-
gests an estimate for the position of xps.
Any crude analytical estimation of xps as a function

of E is not reliable since actually we have to find the
limiting cycle of the system of nonlinear equations (2).
However, for the better orientation in the problem
and in order to demonstrate the main physical mecha-



1052

nisms involved we shall briefly enumerate various
possibilities.

Let us rewritte (2) in the form in which the absolute
value of L1 and its phase are independent variables [8],

and where Q = 00IOx. Near the interface there is no
CDW motion and at E  1 one would obtain the

following solution in this region

This shows that the phase gradient Q grows up with x,
diminishing, the gap magnitude and destabilizing
locally the Peierls state. This merely means that the
electric field violates the local « nesting » conditions
involved in the definition of the order parameter (1).
The mechanism (6) would correspond to the PS-

regime at

On the other hand, at small x, Q increases as

This corresponds to the additional contribution into
the gradient squared term of the free energy expansion
Q 2 I A12. Integrating over x (from x = 0, to x = xps)
one gets the total energy loss due to increase of Q :

We can compare this energy with the energy needed
for the formation of a sort of a « kink », i.e. of a segment
in which I L1 sharply changes and goes down having
a minimum on the unit (i.e. ço) scale. The correspond-
ing energy of this « kink » is of the order of unity (in
our dimensionless variables). Therefore, this shows
that the state with the growing gradient gets metastable
already at a distance

Suppose that this strong perturbation is somehow
created, making the beginning to the further develop-
ment of the phase-slip process. However, this position
is yet not well defined with respect to the boundary.
The establishing of the final location for the phase-slip
process is due to some effective interaction with the
interface to synchronize the phase-slippage with the
phase transport due to the CDW motion at infinity.
This feed-back interaction can be, of course, quite
nonlinear, but in the linear approximation our equa-
tions correspond to the thermoconductivity (parabo-
lic) equation for the phase. If we then assume that the
phase jump [6§] = 2 a reaches the boundary and
comes back during the single period 2 n/E in the pro-

cess of linear diffusion, the position of xps can be
expected at

So far, (9) gives the most severe restrictive condition
on the distance xps comparing with the other possi-
bilities (Eqs. (7) and (8)). One should mention however
that the feed-back mechanism which fixes xps can be
strongly nonlinear, and our numerical results point
out in this direction.
We shall finish this section by the comment that the

phase slip concept immediately leads to the appea-
rance of the finite threshold field values for the finite

length samples even for the perfect material. In a large
enough sample the phase slips occur near both ends
of the sample with the CDW moving in between. In
short sample there is simply « no room » for the CDW
motion to take place at a given electric field

3. Results of numerical calculations.

We already stressed that the relevant experimental
values of external electric field are very small (E  1
in our dimensionless notations). This is just the range
of fields for which the appearance of PSs in the close

vicinity of the contacts with a normal metal is account-
ed for in the most reliable way by the model considered
here. However, the above discussion indicates that
the processes responsible for the formation of PS are
essentially of the nonlinear nature. This is particularly
so for E  1, when the linearized approach leads to
the quite extended region in the x-space which is

unstable, so that a more rigorous treatment of (2) is
required It is therefore necessary to undertake the
numerical analysis of the problem (2), i.e. of the coupled
pair of differential equations for the real and imaginary
parts (d 1 and d 2) of the order parameter d. (Note that
the pair of equations for I A I and 0 (5) is not very
convenient for the numerical integration due to the
singularity in the equation for 0 in the slippage
A I -- 0) regions).

In our numerical analysis we considered two situa-
tions which have some common points. Firstly, we
calculated the space and time variations of a CDW in
the sample of finite length L. The contacts at both ends
are modelled as effective boundary conditions due to
which the amplitude and the phase of CDW remain
fixed at x = 0 and x = L, and vary gradually towards
the interior of the sample. Our aim was to follow the
appearance of PSs inside the sample and to determine
the threshold field ET as a function of L and of effective
boundary conditions. Secondly we simulated a semi-
infinite system. In that case CDW is taken to be fixed
at the contact (x = 0), while far enough from the
contact (x - oo) it acquires the simple translational
solution
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of (2). Under such boundary conditions the CDW has
to experience PSs at some distance xps(t). We took
the right end Loo (o x = oo ») to be far enough (L. &#x3E;&#x3E;
xps) and imposed the boundary condition (10) at

x = Loo. Having checked that the finiteness of Loo
does not influence the slippage region x = xpsl we
determined the position xps as a function of E, and for
a given boundary condition at x = 0.
Other important information concerns the way in

which a CDW evolves between two successive slip-
pages. Knowing 4(x, t), we are able to determine the
time dependent voltage originating from PSs. The
relevant quantity is the internal electric field in (3) :

It is convenient to measure this field with respect to its
value averaged over a time period ( )t):

The corresponding voltage between two end contacts
(or across the slippage region in the case of semi-
infinitive sample) is then

The properties of this voltage in the two situations
listed above will be discussed at the end of this section.
We calculated numerically the solutions of (2) for

samples with lengths L up to 100, while Loo in semi-
infinite samples was taken between 10 and 30, depend-
ing on the value of E. The x-scale was usually divided
into 100 points (200 for larger values of L). We used an
inhomogeneous division of the x-scale, with the density
of discrete x-points chosen to be largest in PS ranges.
Still, the discreteness of x-scale was the main source of
the numerical imprecisions, which were kept below
about 1 % in all results for A (x, t) to be presented.

3.1 1 FINITE SAMPLES. - Let us assume that the CDW
is constant all over the sample of the length L,

and that it is not able to vary at its edges x = 0 and
x = L. At t = 0 we switch on instantaneously the
constant electric field E. How will the CDW evolve
in later times ? 

’

The numerical simulation of this experiment gives
the following overall answer. For electrical fields

stronger than some threshold field ET(L), the CDW
passes periodically in time through PSs which occur
simultaneously and are positioned symmetrically at
distances xps(E) and L - xps(E). The periodic beha-
viour

is achieved quite fastly after switching the electrical
field (usually in a lapse of time shorter than tp). For
E  ET(L) the behaviour of the CDW is completely
different. It tends to a stationary ’(time independent)
state, approaching it either gradually, or through
damped oscillations (for ET(L) - E small enough).
The dependence of the threshold field on the sample

length is presented in figure 1. Already for L Z 15,
it is well described by the power law

with ot =

Fig. 1. - The threshold field as a function of the sample
length. The arrows indicate the extreme points reached
numerically from both sides of threshold.

The bending of the curve ET(L) in the range L  15
is to be attributed to the interference between the two

slippage centres which are closer and closer to one
another as L decreases. On the other hand, the fact
that the ratio xp,/(L/2) fastly decreases as L increases
(Fig. 2) suggests that the law (15) is already asymp-

Fig. 2. - The ratio xps/(L/2) versus the sample length L.
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totic, and that it can be extrapolated to the limit
L - oo. More precisely, this law should cover the
small lengths for which ET(L) exceeds Etb. For larger
values of L the finiteness of the sample ceases to be
relevant for the threshold field In considering the
length dependence we note that the samples for which
the effect of the finite length on the threshold field is
observed, are at least one to two orders of magnitude
longer (L &#x3E; 102-103 in our units) than those of

figure 1. We therefore proceed by considering mainly
our « asymptotic » limit (15) of large values of L.
The further interesting point is the behaviour of the

CDW on both sides of the threshold field, especially
in the slippage range E - E(L) a 0. As E increases,
two PSs shift towards the sample edges. Since their
mutual distance increases, the interference effects
weaken then. Indeed, the dependence of xps on E is
indistinguishable from that obtained for a semi-
infinite system (see Sect. 3.2 and Fig. 7).
The most direct evidence that two PSs do not

overlap significantly comes from the evolution of one
PS in time. For L = 10 and E - ET N 0.0028
(ET(IO) -- 0.1722) this is shown in figure 3, which
contains the time dependence of the minima of the
CDW amplitude, L1min’ and of the corresponding
positions Xmin’ L-Xmin. The measure of the overlap
of the two PSs is the deviation of the amplitude of
CDW at x = L/2 from unity. Its value at the moment
of PS is about 0.9.

Fig. 3. - The time dependence of the minimum of CDW
amplitude Amin (full line) and of its position (dashed line) for
L = 10 and E = 0.175. The new cycles start consecutively at
t £r 200 and t N 400.

Figure 3 shows that the PS is a rather fast process,
although the well defined but rather weak minimum
in d I at xmin is present almost all the time. Especially
abrupt is the « recovery » after the PS, which is com-
plete, i.e. I d(x) I returns to unity already after - 0.05 tpl
During the PS the position Xmin moves away fastly
from the sample end Immediately after attaining
I L1 N 1 all over the sample, a « seed » of the conse-
cutive PS appears close to the sample edge, and a new
cycle starts.
The time period of one cycle in figure 3 is very long

compared to the characteristic reduced time scale

present in (2), 2 nlE. In fact, the dependence of tp
on the electric field (Fig. 4) can be fitted rather well
by the law

Fig. 4. - The dependence of the time period tp on the elec-
trical field E for sample lengths L = 10 (a) and L = 20 (b).
Note the logarithmic time scale.

in the whole range of E &#x3E;, ET, irrespectively of the
value of L. This fit suggests the singular limit E -+ ET,

with fl £r 0.5. The direct estimations on the logarith-
mic scale with the uncertainty in values of ET(L) shown
in figure 1, gave also the values of fl in this range, with
the precision of about 10 %. On the other hand, as
E - ET(L) increases, the time period approaches the
asymptotic dependence

which is also characteristic for semi-infinite systems,
as will be seen in section 3. 2.
For electrical fields smaller than ET(L), J(x) relaxes

towards a stationary state in a time which is again
longer and longer as E approaches ET. The form of the
amplitude and the phase of the stationary states is
shown in figure 5a, b for a few values of ET - E, and
L = 10. As ET - E decreases, the minimum in the
amplitude I.A(x) I deepens, while the phase O(x)
becomes simultaneously more and more twisted
By analysing the cases of small sample length

(e.g. L = 5) we easily detected that the threshold field
ET is preceeded by the range of fields for which the
relaxation to the stationary state goes through damp-
ed oscillations. The amplitude and the period of these
oscillations increase as E -+ ET. However , as L
increases this oscillation range of fields preceeding
ET narrows rapidly and becomes difficult for nume-
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Fig. 5. - The amplitude A (x) and the phase I&#x3E;(x) of the
stationary solutions in the sample with L = 10 and for two
values of electrical field (E = 0.1 (a) and E = 0.15 (b)) below
the threshold field ET( 10) N 0.1722.

rical analysis requiring a large amount of computer
time.
The symmetry x - L - x present in all above

results has its obvious origin in our particular choice
of boundary conditions (14), by which the left (x = 0)
and the right (x = L) edges of the sample are comple-
tely equivalent. It is important to discuss the effects
of lifting this degeneracy. We model the fixed asym-
metric boundaries by putting

and by choosing

as the initial CDW state. As expected, PSs in a sample
with,AO =A A L occur neither at the same distances from
respective edges, nor in the same moment. The higher
the edge amplitude, the more distant is the position of
PS. The first PS occurs at a « lower » edge, it is follow-
ed by the PS on the opposite side, etc. Due to that, the
basic property of PS, i.e. the jump of the overall phase
difference between two edges by 2 n, can be now
directly seen. O(x) for L = 10, E = 0.225, d o = 3,
dL = 1 and in different moments, is shown in figure 6.
The difference §(L) - 0(0) is 2 7r after odd, and 0
after even, numbers of PSs.
The separation in time of PSs from the opposite

sides does not seem to have much impact on the perio-
dic time behaviour of A (x, t). We did not find any
noticeable trace of e.g. double periodicity. d(x, t)
remains a simple periodic function, at least for values
of d o and d L for which the slippage centres are not
too close to one another. Even more, its time period,

Fig. 6. - The phase §(x) for E = 0.225 in the sample with
L = 10 and asymmetric boundaries, 40 = 3 and .1L = 1.

The curves (a), (b) and (c) represent respectively cp(x) before
any PS, after the first PS close to the right edge, and after the
second PS close to the left edge.

tp(E), obeys again the laws (16, 17) obtained for

symmetric boundary conditions.
The same analysis also indicates that, with the

increase of the CDW amplitude at the edges, the
threshold field ET increases, but rather slightly.
Moreover, the shift of the curve ET(L) in the figure 1

goes without any visible change of its slope.
We thus come to the suggestion that both critical

exponents, a (Eq. (15)) and (Eq. (16)) are not affected
by uncontrollable details in different sample contacts.
This is particularly promising regarding the measure-
ments of the ET(L) dependence, in which each experi-
mental point has its own boundary conditions.

3.2 SEMI-INFINITE SYSTEMS. - The problem of a
semi-infinite system with the boundary conditions
given by I A (x = 0, t) I = Jo and (10) can be analy-
tically treated in the limit E &#x3E;&#x3E; 1 [8]. The solution is
the sum of the functions

and

which respectively describe the CDW close to the
fixed edge (x  1), and at the distant free end x Z 1.
The matching of two behaviours gives [8]

(see also Eq. (9)).
Our aim was to determine how this dependence will

be modified when E falls in the physically interesting
range of small values. The trial (t = 0) function is still
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taken in the form suggested by the E &#x3E;&#x3E; 1 solution (!9,
20)

tanh (x/x2) , (22)

with x,, x2 treated as variational parameters. We then
followed numerically the evolution of this function in
time. The range of investigated fields went from
E = 10 down to E = 10-2. The scheme of this ana-
lysis is shown in figure 7, where the position of the PS
is plotted as a function of the field E for Jo = 1. While
the results for fields E Z 1 reproduce well the analy-
tical result (21), the range of small fields E  1 is
characterised by the power law

with y = 0.284 ± 0.004.

Fig. 7. - The distance of the PS-centre from the fixed end,
xps’ as a function of the elctrical field for 40 = 1 (a) and
~0 = 3 (b). The insert shows the dependence of xps on ~0
forE= 1.

The time and space dependence of J(x, t) in the
slippage part of x-space is equivalent to that obtained
for slippages in long finite samples (Figs. 3, 6). As E
decreases the process of PS becomes more and more
rapid on both, x and t, scales. Simultaneously jCpg
increases (Fig. 7). In the numerical computation this
means that we have to increase both, the density of
discrete x-points and the length Loo, which makes the
analysis of fields weaker than E,;:z-, 10-2 hardly
accessible.
As in the case of finite samples, the above results

are not very sensitive to the value of amplitude at the
fixed end, A o* Higher values of d o lead to the shift of
xps towards the free end (see the curve xps(E) for
Jo = 3 in Fig. 7). This shift saturates as d o increases,
as is shown in the insert of figure 7. The change of d o
does not affect the exponent y in equation (23) and
the time period, tp. The latter is equal to 2 n/E in the
whole investigated range of fields E and amplitudes
at the fixed end, Jo.

All numerical solutions considered until now have
one common property, namely that after some amount
of time needed for the stabilization they show a simple

periodic behaviour, with J(jc, t) being the one-periodic
function. In other words, the PSs, when they exist,
always occur at the same positions on the x-scale
and in the equidistant time intervals. The important
question which arises regarding this point is whether (2)
has some other, possibly multiperiodic, limit cycles as
its solutions. If such a limit cycle exists, there should
be some set of initial functions 4(x, t = 0) associated
with it. In order to find out whether such a set exists
among the functions (22), we varied the parameters xi
and x2 in wide ranges of values, but always got the sta-
bilization to the described limit cycle, usually after
times which are of the order of, or shorter than, the
period tp. The same happened in the case of finite
samples for initial functions which were chosen to have
a finite number of loops (§(L) - o(O) = 2 7rn at t = 0).
Before attaining the limit cycle, these functions lost all
loops in a sequence of n PSs, and then continued to
behave like solutions of section 3 .1.
Another type of initial functions which we investi-

gated is that suggested by (6). For E  1 these func-
tions are unstable in a wide range of x-values, if the
linearized version of (2) is used. However, when the
nonlinearity is retained, the time evolution brings
fastly again these functions to the limit cycle considered
in this section. Thus, all our attempts to find some
other limit cycle were unsuccessful. The suggestion
of this analysis is that (2) has very probably only one,
simple periodic, limit cycle which has been described
in this section.

3.3 THE VOLTAGE ORIGINATING FROM PHASE SLIP-

PAGES. - The PSs are the kind of edge phenomena
which do not affect the interior of long ideal samples.
The CDW in the interior of sample has the simple
sinusoidal form (10). The corresponding voltage along
the sample is constant in time and scales with the

length of the sample.
The sequence of PSs through which the CDW passes

close to the sample contacts has on the contrary a
highly nonsinusoidal time dependence, and therefore
leads to a finite time dependent voltage V(t) (13),
usually called the periodic noise. Apparently, the time
period for V(t) is determined by the time behaviour of
PS-solutions given in figures 3 and 4. Thus, for semi-
infinite sample and for finite sample with E - Er(L) »
ET(L), the fundamental frequency vf in the Fourier

spectrum of Vest) is equal to E/2 n in our dimensionless
notations.

The function Vest) for the semi-infinite system and for
a few values of the electric field E is shown in figure 8.
(In this and all subsequent figures the voltage is
divided by A, and is plotted in the reduced unit defined
in section 2. The parameter e in equations (3) and (11)
is for simplicity chosen equal to unity). Vest) raises
steeply in short time intervals in which PSs occur, and
has the overall form of asymmetric and rather broad
pulses. These pulses which are present in a wide range
of values of E, become more pronounced as E decreases.
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Fig. 8. - The voltage V vs. t/tp in the semi-infinite system
with d o = 1 and for the electrical fields E = 1.0 (a), 0.5 (b),
0.2 (c) and 0.13 (d). The PS occurs at tps.

The strength of the voltage V(t) increases with E
as is directly seen in figure 8. This increase can be
followed more quantitatively by calculating the ampli-
tude of the first harmonic of V(t),

The result is shown in figure 9, again for the semi-
infinite system. In the range of weak electric fields
(E  1) we get

with 6 = 0.56 ± 0.02. The behaviour (25) of V1
differs thus from the behaviour of Exps(E) - EO.72.
In other words, the characteristic x scale of nonlinear
PS diffusion depends on E in a way which differs
somewhat from the law obeyed by xpS(E).

Fig. 9. - The amplitude of the first harmonic of the vol-
tage, V1 (full line), vs. the electrical field E. The two contribu-
tions proportional to I A I’ E and I A 12 (Eq. (11)) are
shown by the dashed and dashed-dotted lines respectively.

The voltage V(t) is the sum of two terms, propor-
tional to I A 12 E and I AI2 p (see Eqs. (3) and (11)).
The corresponding decomposition of Vi in figure 9
shows that the later, 0-dependent term becomes

relatively more and more dominant as the electrical
field E decreases. This is also seen in figure 10, in which
the two contributions are plotted on the time scale for
E = 0.13. The term I A 12 ql not only dominates over
the term I A I’ E, but also varies more dramatically
during the PS process.

Fig. 10. - The voltage V(t) (curve (a)) for E = 0.13 and
~0 = 1, decomposed into I A 12 ;p (b) and I J I’ E (c) contri-
butions (see Eq. (11)).

The voltage V(t) of finite samples has properties
similar to those presented in figure 8. It still signi-
ficantly deviates from the sinusoidal form even for
E &#x3E;&#x3E; ET(L) (Fig 11). In the limit E - ET(L) the pulses
become markedly sharp and narrow. For asymmetric
boundary conditions (Ao =A AL), when PSs at the

opposite edges of the sample do not coincide in time,
V(t) may show two distinct and nonequivalent pulses
per period Some of the examples are shown in

figure 12.

-1 |

Fig. 11. - The voltage V vs. t/tp in the finite sample
(L = 15) with symmetrical edges (.10 = .1L = 1), and for
the electrical fields E = 1.0 (a), 0.5 (b), 0.2 (c) and 0.1 (d).
The threshold field is ~ 0.094.
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Fig. 12. - The voltage Y(t) in the finite sample (L = 15)
with asymmetric edges (do = 3, ’JL = 1), and for the elec-
trical fields E = 0.5 (a), 0.2 (b), 0.15 (c) and 0.13 (d).

4. Discussion and conclusions.

We have shown that the PS process is a strongly
nonlinear phenomenon. Our numerical results from
section 3 show that none of the expected a’s in the
behaviour xps - E-a mentioned in section 2 is realiz-
ed Instead we have got a £r 0.28, i.e. an even stronger
restriction on the distance of PS from the interface
than that suggested by (9). However we have not
numerically reached the range of very weak fields
(our lowest values for E were - 10-2), so that we
cannot completely exclude the possibility that the
regime defined by results (15) and (23) is changed for
lower values of E. Still, we hope that these results
could be considered as relevant for the interpretation
of some experiments.
Our result for ET(L) suggests that the threshold field

increases on decreasing the length of the sample. Such
behaviour was reported in works on NbSe3 [13] and
orthorhombic TaS3 [14]. The experimental range of
sample lengths was about L - 103-104 (down to
~ 20 J.1m in NbSe3 and - 60 J.1m in TaS3). Caution
is required in fitting these data due to the experimental
technique used in reference [14] and to the properties
of contacts which are far from ideal in shape and in
dimension [13-15]. Furthermore,.threshold fields asso-
ciated with contacts are not very much larger than the
bulk (L - oo) threshold fields. Nevertheless, after sub-
tracting the bulk threshold field Etb, a preliminary
comparison shows that (15) gives a good estimate of
the observed values of ET(L). The experimental ET(L)
dependence can be well fitted with the exponent a. For

a more detailed test of the present results, a further
careful investigation of the role of particular contacts
is desirable. In this respect it is encouraging that the
most important results of this work are insensitive
to those variations in our idealized boundary condi-
tions which were considered in section 3.
The characteristics of periodic voltage which origi-

nates from PS processes are clearly in qualitative
agreement with the considered experimental findings.
The experiments of Gill [5] and of Ong and Verma [6]
showed that the oscillations in V(t) are localized close
to the interfaces (i.e. to the contacts), and that Vest) is
independent of the length of the sample. Ong and
Verma [5] identified the number of fundamental
frequencies in the periodic noise [16] with the number
of segments into which the sample is divided due to the
presence of contacts. Thus, with two contacts at its
edges, and two contacts in between, the sample
presents a series of three disconnected segments. The
reason for differences among frequencies belonging
to different segments may be attributed to the different
values of local electric fields established in each

segment. This is in agreement with the observed effects
of shunting the segments [6], and with the fact that the
fundamental frequencies approach each other when
the external electric field increases [16] so that the
relative difference among local fields is suppressed
Still, we note that the division into segments is perhaps
not complete in the sense that the CDWs from the
opposite sides of a contact are fully independent, so
that boundary conditions which are more realistic
than those used in our analysis, could be needed.
The fundamental frequency of the voltage V(t) is for

E &#x3E;&#x3E; ET(L) proportional to the external electric field,
with the slope given in dimensional variables by

This value of the slope is of the order of experimental
values measured e.g. in NbSe3 [16]. The multiharmonic
nature of the periodic noise obtained in these experi-
ments is also present in our result (Figs. 8, 10-12). A
more detailed harmonic analysis of these results is in
progress. We point out that the amplitude of e.g. the
first harmonic of V(t), given by (25) and figure 9 repro-
duces well the actual V,(E) dependence in some

samples of NbSe3 [16].
We finally note that more experimental and theo-

retical work is needed for the understanding of the
vf(E) behaviour in the range of fields E -+ ET(L).
Result [16] could be applicable for short samples (or
segments), for which ET(L) &#x3E;&#x3E; Etb. Dynamical measu-
rements of this type are highly desirable. The known
dynamical data [l, 2,16] are obtained on long samples
with Ep Etb, in which the noise from PSs could be
strongly correlated with the pinning processes in the
bulk. This situation, as well as the process of PSs in
the time alternating external electric fields will be

subject to further investigations.
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To summarize, we have shown that (2) based on a
rather simplified microscopic model predicts a number
of interesting new phenomena and demonstrates the
richness of the nonlinear processes responsible for
the conversion of the collective current transported by
the Fr6hlich mode motion into the ordinary conduct-
ing mechanism at the boundary between two metals.
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