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Résumé. 2014 On étudie les corrélations temporelles entre photons sortant d’un amplificateur optique (amplification
par émission stimulée) lorsque l’état entrant comprend un seul photon. On montre que cet amplificateur n’apparait
alors pas du tout comme un « duplicateur de photons » mais plutôt comme une source de bruit statistiquement
indépendante du champ entrant (bruit d’émission spontanée).

Abstract. 2014 We study temporal correlations between photons going out an optical amplifier (stimulated emission
amplification) when the input consists of a single photon. It is shown that this amplifier thus appears not at all as a
« photon cloner » but rather as a noise source statistically independent from the input field (spontaneous emission
noise).
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1. Introduction.

Amplification of light by stimulated emission is the
basis of laser action. So the statistical properties of
such an optical amplification have been extensively
investigated during the last twenty years [1-11]. More
recently, it has been pointed out that novel questions
arise when single photon optical amplification is
considered [12-13]. These questions can be illustrated
by the experiment sketched on figure 1 : temporal
correlations are studied on the output of an optical
amplifier when the input consists of a single photon
(how such an experiment could be realized will be
discussed later).

It might be expected that stimulated emission pro-
vides a pair of correlated photons which can be dis-
criminated from spontaneous ones. If it was the case,
it would be possible to use stimulated emission in
order to « clone » (o duplicate ») photons. But stimu-
lated emission is known to produce two photons
having equal frequencies and the existence of temporal
correlations between them seems incompatible with
the dispersion inequality Aco At &#x3E; 1. On the other
hand, it must be noted that intensity correlations can
be detected on the light emitted by two statistically
independent sources (Hanbury-Brown and Twiss
effect [14-18]). Spontaneously emitted photons may
therefore appear correlated with the input photon.
In order to conclude to the possibility of the impossi-
bility of cloning photons, it seems necessary to

Fig. 1. - A single input photon (input mode Ai) comes on
an optical amplifier OA. Temporal correlations between
photons going out the amplifier are studied using two
photomultipliers PMA and PMB located behind a beam
splitter BS.

understand in more details the respective contribu-
tions of stimulated and spontaneous emission to

the correlation experiment of figure 1.
Understanding correlations which appear in single

photon amplification is also important for the discus-
sion of an experiment proposed by several authors
[19-22] which is sketched in figure 2. The optical
amplifier is now located in one of the two arms of a
Mach-Zender interferometer. A single photon is

supposed to enter the interferometer. Temporal corre-
lations are studied using two detectors located on one
hand (detector A) behind the beam splitter which is
in the same arm as the amplifier and on the other hand
(detector B) at one of the outputs of the interferometer.
If the amplifier could be considered as an ideal « dupli-
cator » (i.e. providing two output photons for a single
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Fig. 2. - A single input photon (input mode A;) comes on
the input beam splitter BSO of a Mach-Zender interfero-
meter. An optical amplifier OA and a beam splitter BS1 are
placed in the arm 1 of the interferometer and a beam splitter
BS2 in the arm 2. Correlations are studied using a photo-
multiplier PMA located behind BS1 and a photomultiplier
PMB located at one of the output of the interferometer
(BS3 output beam splitter).

input photon but no output photon in absence of
input photon), then the detection of a photon at A
would imply that the photon entering the interfero-
meter has passed through arm 1. So, interference
would be destroyed at B. This is no longer true when
one takes into account photons spontaneously emitted
by the amplifier [13, 22-24]. As the experiment of
figure 2 has been considered as challenging quantum
mechanics [19-21], it is particularly important to

know exactly what are the quantum predictions for
it.
Some interesting results have already been obtained

when the optical amplifier can be treated as a linear
gain tube [23-24]. We will choose in this paper another
model of optical amplifier : a two level atom (atomic
frequency wo) irradiated by a nearly resonant laser
(frequency cvL). Such a system is known to be ampli-
fying at some frequencies [25-26]. This amplification
can be understood as resulting from a population
inversion on a transition of the compound system
« atom plus laser photons interacting together », i.e.
the « dressed atom » [27-29]. For a non saturating
laser, amplification occurs at frequency 2 WL - cvo,
due to the non linear process sketched on figure 3 :
absorption of two laser photons and emission of two
photons having frequencies close to 2 WL - cvo and
cvo [30-32].
We will in this paper derive the quantum expressions

for the correlation signals corresponding to the two
experiments of figure 1 and figure 2 when optical
amplification is produced by the process of figure 3.
We first show that the correlation signal of the first
experiment (Fig. 1) can be expressed in terms of
transition amplitudes describing the emission of pho-
tons by the amplifier and their destruction by the
detectors (§ 2). We then compare the amplitudes
associated with the spontaneous and stimulated pro-
cesses (§ 3) and give a diagrammatic representation
of these amplitudes (§ 4). We calculate explicitly the
delay dependence of the correlation signal (§ 5). We
finally calculate the correlation signal corresponding
to the experiment of figure 2 (§ 7).

Fig. 3. - Optical amplifier studied in this paper : two level
atom irradiated by a nearly resonant laser. Amplification
occurs due to the non linear process where the atom absorbs
two laser photons A, and emit two photons A and A’. Emis-
sion of the A photon can be stimulated by the input photon
(when A = Ai) or spontaneous (when A 0 Ai).

Two other points are discussed in the paper. First
we discuss what conditions are required in order to be
sure that the experiment of figure 1 concerns effecti-
vely single photon amplification (same conditions
are valid in the case of figure 2). In other words,
what conditions are required for the « one input
photon » contribution to be predominant (§ 6).
Finally, we derive an inequality for the fringe contrast .
in the interference experiment of figure 2, which is
valid whatever the design of the optical amplifier may
be (§8).

2. Interpretation of the correlation signal in terms of
transition amplitudes.

We want to show in this section that the correlation

signal corresponding to the experiment sketched on
figure 1 can be expressed in terms of transition ampli-
tudes describing the emission of photons by the

amplifier and their destruction by the detectors.
We will closely follow the treatment developed in [33]
for the study of correlation signals in resonance

fluorescence.
The emission of photons by the amplifier is treated

by scattering theory. The « precollision » wave packet
I i &#x3E; describes the emitting atom in its ground state g
in presence of N laser photons (laser mode ÀL) and
one « input » photon (input mode Ai) :

Actually, the laser field is described more realisti-

cally by a quasiclassical superposition of Fock states
(for example, a coherent state). But its representation
by a pure Fock state N ) makes no difference in
the forthcoming discussions while appreciably sim-
plifying the notations.
The « postcollision » wave packet  ) is obtained

by action of the S matrix calculated through formal
scattering theory [34] :

This postcollision packet can be expanded on the
states where the atom is in its ground state in pre-
sence of one input photon. (N - n) laser photons and
n fluorescence photons (scattering of n laser photons).
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The scattering of the input photon is indeed much
less probable than the scattering of laser photons and
it can be neglected. For a non saturating laser exci-
tation, such an expansion can be restricted to its
first terms [33] :

i) zeroth order (ket g, NAL, Ai &#x3E;)
ii) first order : the scattering of one photon from

the laser mode AL to the mode A is described by the
appearance of the kets g, (N - 1) AL, Ai, A &#x3E; in the
first order expansion of S [ §; ). Energy conservation
implies that the emitted photon has the same frequency
as the laser one (cva (OL : elastic Rayleigh scattering) ;

iii) second order : the scattering of two laser pho-
tons is described by the kets I g, (N - 2) AL, Ai, A, A’ ).
Energy conservation implies cva + w;.’ = 2 (OL but
not cva = (0,4’ = wL (inelastic scattering). It appears
on figure 3 that such a process is resonant when the
excited level is populated by the multiphoton process
« absorption of two laser photons and emission of a
cva one », i.e. when (w. - (2 Dj, 2013 wo)) and (w., - cvo )
are close to zero (within the radiative linewidth F).
Second order scattering then explains the two side-
bands of the fluorescence triplet [33].

Higher order terms have a much smaller contribu-
tion than the previous ones to the correlation signal
discussed in this paper and they will be ignored in the
following.
Knowing the state I t/J f) of the scattered field,

we have now to calculate the correlation signal
corresponding to figure 1. It is well known that such
a signal can be expressed as a correlation function
of the electric field involving the values of the field at
the two detectors A and B [35]. In order to simplify
the notations, we will relate these fields (transmitted
and reflected by the beam splitter) to the electric field
E(r, t) which would exist in the absence of the beam
splitter. The correlation signal P (more precisely;
the joint probability P of two photon detection)
can thus be written :

where T and R are the transmission and reflection
coefficients of the beam splitter and C some multi-
plicative constant. EA and E- are respectively the
positive and negative frequency components of the
electric field E(rA, tA) taken in the Heisenberg point
of view for values of the position rA and time tA
corresponding to the detector A (the same definitions
apply to EB and EB but rB is such that its « image »
reflected by the beam splitter corresponds to the
actual position of the detector B) :

where eA is the detection polarization and Eu a com-
plete set of orthonormal field distributions, for exam-

ple the plane waves of wave vector kll’ frequency cv,
and polarization ell; all is the destruction operator of
a photon in the mode J1 and g(w,,) is a filtering ampli-
tude describing the effect of the frequency filters

placed in front of the two detectors which select the
frequencies close to (2 (OL - wo) :

Note that P can be expressed as the norm of a state
vector I qJ &#x3E; : 

with :

Now the operator EB EA destroys two photons
having frequencies close to (2 WL - wo). It follows
that only the second order terms of the perturbative
expansion of S I oi &#x3E; will contribute to the correlation
signal. In other words, I (p &#x3E; can be expanded as :

(with mi, £r (00 and cva = 2 (OL - (00).
As EB E; g, (N - 2) ÀL, A;, A, A’ ) is propor-

tional to g, (N - 2) ÀL, À’ &#x3E; (destruction of the two
photons having frequencies close to 2 cv - (00)’ I cp &#x3E;
can finally be written :

with : O

The corresponding expression for the correlation
signal :

I n

has a straightforward interpretation : A(A, A’) is the
transition amplitude from the initial state g, NAL, Ai &#x3E;
to the final one g, (N - 2) AL, A’ &#x3E; through the
emission of two photons A and A’by the emitting atom
and the destruction of two photons A and A; by the
detectors A and B. To calculate P, we have to add
the transition amplitudes corresponding to indistin-
guishable paths (various values of A) and then to
add the transition probabilities corresponding to

distinct final states (the A’ photon is not detected and
various values of A’ are thus distinguished).
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3. Comparison between the spontaneous and stimu-
lated amplitudes.

We will now compare the transition amplitudes
A(A, À’) associated with spontaneous and stimulated
emission processes. We have thus to discuss successi-

vely the structure of the term  g, (N - 2) AL, Ail Ag
A’ I S g, NAL, A; ) which describes the scattering of
two laser photons and the structure of the term

( g, (N - 2) AL, A’ I E’ B E11 g, (N - 2) ALI Ai, A, À’ &#x3E;
which corresponds to the detection of the two photons
having frequencies close to (2 WL - cvo).
We will note S2 (A, À’) the scattering amplitude of

two laser photons into the modes A and A’ by an atom
irradiated only by N laser photons (in absence of the
incident input photon Ai) :

(the structure of this term is discussed in [33]). In
presence of an incident input photon, the scattering
amplitude is not modified if the emission mode A is
different from the input mode Ai :

(the other emission mode A’ of frequency close to o)o
is always different from Ai). But the presence of the
incident input photon stimulates the scattering pro-
cesses where a Ai photon is emitted. The scattering
amplitudes corresponding to such stimulated pro-
cesses are larger than those corresponding to sponta-
neous ones by a factor J2 :

We consider now the detection amplitudes :

where :

(same expression for aB(P’) : see equation (2.4)).
When the two photons and A are distinguishable,
there are two couples (p" p’) which contribute to

(3. 5) : either p = A; and p’ = A which corresponds
to the detection of the A; photon on the detector A
and to the detection of the A one on B or vice-versa.
So the detection amplitude can be written :

When Ai and A are equal, there is only one possibility
p = y’ = A; = A but the first detection is stimulated
by the presence of the second photon :

We get then the transition amplitudes A(A, A’) by
multiplying the scattering amplitudes and the detec-
tion ones. In the cases of the spontaneous amplitudes
(A :A Ai), equations (3 . 2) and (3 . 7) give :

For stimulated amplitudes (A = A;), equations (3.3)
and (3 . 8 ) lead to :

Comparison between (3.9) and (3.10) shows that the
transition amplitude A(A, A’) has the same expression
for spontaneous and stimulated processes. The enhan-
cement due to stimulated emission (multiplication
by / for the stimulated amplitudes) is balanced by
other effects associated with the indiscernability of
the input and emitted photons.

This means that the two level atom of figure 3
behaves not at all as an « amplifier » but rather as a
noise source independent of the input photon. The
process in which a « cloned » photon is emitted in then
input mode Zi has just the same contribution as any
process where a « noise » photon is emitted in an

empty mode A. It must be emphasized that this remark
is valid only when the two photons (input photon and
photon emitted by the « amplifier ») are detected,
i.e. when a correlation signal is studied. If the intensity
of the field was measured behind the « amplifier »
(only one photon detected), evidence for amplification
could be obtained (the output intensity would be
greater than the sum of the input and noise intensities).

4. Diagrammatic representation of the transition

amplitudes.

We want to give now a diagrammatic representation
of the transition amplitudes which will be useful for
discussing the role of stimulated and spontaneous
processes in the low intensity interference experiment
of figure 2.
We associate the diagrams respectively sketched on

figure 4 and figure 5 to the stimulated and spontaneous
amplitudes. Note that transmission or reflection by
the beam splitter are now included explicitly in the
transition amplitudes. We will have therefore to dis-
cuss in more details in this section the transmission
and reflection amplitudes.
As previously, the enhancement due to stimulated

emission (multiplication by / of the emission ampli-
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tude) is not the only difference between the diagrams
of figures 4 and 5. As a matter of fact, the two detected
photons are identical for stimulated processes (Fig. 4)
but distinct for spontaneous ones (Fig. 5). There is
therefore one possibility for detecting them at the two
detectors in the first case (Fig. 4) but two in the second
one (Fig. 5). Furthermore the amplitude describing
the reflection of one photon and the transmission of
the other one by the beam splitter has not the same
value in the two cases.
When the two incident photons are distinct (À =1= Ai;

see Fig. 5), such an amplitude is simply equal to tr
(for each diagram of figure 5) where t and r are the
one photon transmission and reflection amplitudes.
When the two incident photons are identical

(Fig. 4), the correct evaluation of this amplitude
requires to symmetrize the pre and postcollision
states. Let us note :

the precollision state (photons 1 and 2 both in the
incident mode denoted here ;.,) and :

the postcollision one (one photon in the transmitted

Fig. 4. - Diagrammatic representation of the stimulated
amplitude A(Ai, A’) (experiment of fig. 1). The atom emits a
photon Ai (emission stimulated by the presence of the input
photon) and a photon A’ (spontaneous emission). One of
the two A; photons is transmitted through BS and detected
at PMA, the other is reflected on BS and detected at PMB.

mode AT and the other in the reflected one Â.R) :
101, &#x3E; is of course symmetrical and I ORT &#x3E; has been
symmetrized and normalized. One then gets the trans-
mission-reflection amplitude for two identical pho-
tons :

where Sgs is the S matrix corresponding to the action
of the beam splitter.
As a consequence, one concludes again that the

enhancement due to stimulated emission is balanced

by effects associated with the indistinguishability of
the two photons emerging from the amplifier (emission
amplitude is multiplied by.J2., transmission-reflection
amplitude is multiplied by /2- but there is only one
diagram for the stimulated process of figure 4 whereas
there are two for the spontaneous one of figure 5).

Remarks : i) The enhancement by a factor .J2
which appeared in § 3 in the detection amplitude
(see eq. (3 . 8 ) is no longer present since the two photons
are now detected in different modes. In fact, it has
been replaced by the factor / in the transmission-
reflection amplitude.

ii) For a 50-50 beam splitter (r = t = 1/,/2), the
probability that one photon is transmitted and the
other reflected is obviously 1/2 when the two incident
photons are distinct. Reading too rapidly the Feyn-
man’s lecture on « Identical particules » [36] may
lead to the wrong idea that this probability is 1/3
when the two incident photons are identical [19-22].
The previous discussion shows on the contrary that
this probability :

has exactly the same value as for non identical photons
(1/2 for r = t).

5. Delay dependence of the correlation signal.

We have demonstrated in the previous sections that
the correlation signal corresponds to the detection
of photons emitted by two independent sources, the
input source and the « amplifier » behaving as a noise

Fig. 5. - The two diagrams associated with the spontaneous amplitude A(A, A’) (A 0 Ai). The atom spontaneously emits
two photons A and A’. One of the two photons A; and A coming on BS is transmitted and detected at PMA, the other is reflect-
ed and detected at PMB.
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source. Actually, the correlation signal P is given by
(from Eqs. (2.11),(3.9) and (3.10)) :

I

(with cvi = 2 WL - (00 ; (O.’ L-- cvo) where the input
mode A; is included in the sum over A. It can thus be
written :

where &#x26; I’) and &#x26; In) appear as classical fields which
would be emitted by the input and noise sources :

(same definitions for &#x26;(’) and &#x26; (n) with r replacing t) ;
the summation over A’ in (5.1) is considered in (5. 2)
as the average over the various realizations of the
noise field. The expression (5.2) makes a clear connec-
tion with the Hanbury-Brown and Twiss effect [14-
18] which appears when intensity correlations between
two independent classical sources are studied.

Although stimulated emission is compensated (see
§ 3), photon correlations will be observed at the

output of the « amplifier ». We calculate now these
correlations, i.e. we calculate the delay dependence
of P.
We have first to perform the angular integration of

equation (5.1) (summation over shells of modes A
of frequency a),,). As usually, retardation effects appear
at this stage : the detection times tA and tB are replaced
by :

(r = 0 corresponds to the « amplifier » position).
More precisely, the angular integration gives :

n r - 

where S2(W., w;.,) contains the frequency dependence
of S2(Al A’) (C’ is a new multiplicative constant).
The variation of s2 is discussed in details elsewhere

(see in particular Eq. (5.10) of [33]). From this discus-
sion, one can write :

9(OJ,A) S2((,Okl (’OA’) =

The 6 function expresses the energy conservation in
the multiphoton process of figure 3. The second fac-
tor describes the resonant behaviour of this process
for cvi = 2 úJL - (oo (i.e. (o,,, --- úJo) within a linewidth
r. The two other resonances which appear in s2
(for (’0, = (OL and cvi = a)o) are suppressed by the
filtering amplitude g(cvi) (see Eq. (2.5)).
Now the frequency integration of (5.5) (summation

over Mj is straightforward because of the presence of
the 6 function :

with (o. = 2 (OL - co;.,. Since cv; = 2 WL - OJO, (5. 7)
becomes :

where T is the delay between the two detections :

(P depends only on r because of the stationarity of
the sources). The summation over A’ finally gives :

One recognizes the characteristic delay dependence
of the Hanbury-Brown and Twiss effect due ,to inter-
ference between the two paths of figure 5 where the
two independent sources have respectively a zero
width (for the « input » source) and a linewidth F
(for the « amplifier »).

6. Conditions for predominance of « one input pho-
ton » contribution to the signal.

Up to now, we have only discussed the « one input
photon » contribution to the signal where the two
detectors are excited by an input photon and a noise
one. We have thus neglected the « two input photons »
contribution where two input photons are detected
as well as the « no input photon » contribution where
two noise photons are detected. We want in this
section to find what conditions are required for the
« one input photon » contribution to be predomi-
nant. We have thus to evaluate, at least qualitatively,
these three contributions.
The « one input photon » contribution, studied in

the previous section, can be written :
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where I (i), I (n) are the input and noise intensities which
would be measured by a detector at the output of the
amplifier (the multiplicative factor appearing in equa-
tion (6. 1) is calculated by taking T infinite). The
« two input photon » contribution P(") and the « no
input photon » contribution P°° may be expressed
as :

where g" and g (nn) are the normalized intensity
correlation functions associated respectively with the
input and noise sources. Two conditions are needed
for the « one input photon » contribution to be pre-
dominant :

We want to emphasize that these two conditions
cannot be both satisfied if the input and noise sources
can be considered as classical. In such a case, it is

known [37-42] that :

which implies (see Eqs. (6.1), (6.2)) :

This is clearly not compatible with the two conditions
(6 . 3 ).

Either the amplifier or the input source must

therefore be non classical if one wants to study the
« one input photon » contribution. The amplifier is
a non classical source if it involves only one atom
(antibunching effect [43-49]). But if the amplifier
contains many atoms, it can be considered as classical.
The character of the input source has thus a great
importance. Let us emphasize that attenuating the
input source is not sufficient when it is classical [50].
The « two input photon » contribution can indeed be
reduced (first condition (6.3) satisfied) but the «no
input photon » contribution thus becomes predo-
minant (second condition (6.3) not satisfied).

Remark : Constructing « one photon source » is
now achievable. Radiative cascades indeed provide
couples of correlated photons [51-52] (see also [53]
and [32]). One of them can be used as the input photon
and the other for opening observation gates [54]. The
input source thus behaves as a non classical « one
photon source » [54-55]. If such a device was used,
the experiment sketched on figure 1 would become a
three events correlations set-up : detection of one
photon emitted in the radiative cascade (the « trigger »

photon), detection of the second one (the « input »
photon), detection of the photon emitted by the

amplifier (the noise photon).

7. Application to correlation signals in interference

experiments with « one photon amplifier ».

Now we come to the set-up of figure 2 where the
« amplifier » of figure 3 is put in one arm (denoted 1)
of a Mach-Zender interferometer [22]. We have to
study the correlation signal P delivered by the two
detectors A (located behind the beam splitter BSI) and
B (located at one output of the interferometer). The
quantitative calculation of P can be done in the same
manner as in former sections (which correspond to the
correlation signal of figure I ). We do not detail this
calculation but rather give the results and discuss
their interpretation.
The correlation signal can be written in terms of the

transition amplitudes represented by the diagrams of
figures 6, 7 and 8. The transition amplitudes of figure 6
correspond to the paths where the input photon is
transmitted through the beam splitter BSO and
stimulates the emission by the atom of a « cloned
photon », the two identical photons Ai being then
destroyed in the two detectors A and B. The notation
A I (Ai, A’) means first that the incident photon enters
the arm 1 of the interferometer and second that the
« amplifier » emits two photons in the modes Ai and
A’. For the amplitudes At (A, A’ ) represented on figure 7,
the input photon is still transmitted through the beam
splitter BSO and destroyed by one of the detectors,
but the photon destroyed by the other detector is
now spontaneously emitted by the « amplifier » in
a mode A different from A; (« noise » photon). As
in figure 5, two possibilities contribute to these ampli-
tudes corresponding to the detection of Ai on A
and on B or vice versa. Finally, the amplitudes
A2(A, A’) (Fig. 8) correspond to processes where the
input photon is reflected by the beam splitter BSO,
passes through the arm 2 of the interferometer and
is destroyed on the detector B. The photon which

Fig. 6. - Diagrammatic representation of the stimulated
amplitude A,(Ai, A’). The input photon A; is transmitted

through BSO. The atom emits of A; photon (stimulated
emission). One of the two Ai photons is transmitted through
BS1 and detected at PMA. The other is reflected on BS1.
reflected on BS3 and detected at PMB.
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Fig. 7. - The two diagrams associated with the spontaneous amplitude A1 (Â, A’) (A 0 Ai). The input photon Â is transmitted
through BSO. The atom spontaneously emits a A photon. One of the two photons A and A; coming on BS 1 is transmitted and
detected at PMA. The other is reflected on BSI, reflected on BS3 and detected at PMB.

Fig. 8. - Diagrammatic representation of the spontaneous
amplitude A2(Al A’). The input photon A; is reflected on

BSO, reflected on BS2, transmitted through BS3 and detected
at PM3. The atom spontaneously emits a A photon which is
transmitted through BS1 and detected at PMA.

excites the detector A is then necessarily a noise
photon emitted by the amplifier. All these amplitudes
(Figs. 6, 7 and 8) describe indistinguishable paths
from the initial state to a given final state when the
value of A’ is fixed. Consequently, they interfere. On
the other hand, the paths corresponding to different
final states (different values of A’) do not interfere.
The expression of P in terms of the transition ampli-
tudes is thus :

(C is a multiplicative constant).
Stimulated emission by the « amplifier» only

appears in AI(AI, A’) while spontaneous emission

processes occur for all other amplitudes. But, in the
same manner as previously, the enhancement due to
stimulated emission (multiplication by q5 of the
emission amplitude) is balanced by effects associated
with the indistinguishability of the two photons
emerging from the amplifier (see § 4). So the input
mode has not to be distinguished from the others in
the summation over A of equation (7.1), which means
that the two level atom of fig. 3 behaves not as an
« amplifier » but rather as an independent noise
source (when a correlation signal is studied : see § 3).
One can now make explicit the transition ampli-

tudes (as in § 3) and perform the summation over A
in equation (7.1) (as was done in § 5). One then obtains

an expression of P similar to the expression (5. 8) :

where r 1 and t 1 are the reflexion and transmission

amplitudes of the beam splitter BS1, r2 the reflexion
amplitude of BS2 (BSO and BS3 are supposed to be
50-50 beam-splitter; the corresponding factors 1/2
are included in C’); 0 is the phase difference between
the two arms of the interferometer. The two terms

containing respectively r, and r2 correspond to the
amplitudes A1 (Fig. 7) and A2 (Fig. 8). The first term
is itself a sum of two amplitudes corresponding to the
two diagrams of figure 7 (same difference between
them as in Eq. (5.8)). The relation between this first"
term and the second one can be intuitively understood.
As a matter of fact, the diagram of figure 8 and the
first diagram of figure 7 only differ by the distance
covered by the input photon from the beam splitter
BSO to the detector B. So the amplitude A2 is related
to the first part of the amplitude A, through the
phase factor eictJ.

Consider first the case of the zero delay (-r = 0 in
Eq. (7. 2)) : P varies as :

This must be compared to the intensity IB which
would be measured by the detector B in the absence
of the amplifier :

The difference between these two expressions can be
attributed to the Hanbury-Brown and Twiss effect
discussed previously : the amplitude associated with
the arm 1 is multiplied by a factor 2 because of the
constructive interference between the two diagrams
of figure 7.
When the delay is larger than the coherence time

of the noise source (i.e. when s » F -’), the Hanbury-
Brown and Twiss effect disappears (i.e. there is no

longer interference between the two diagrams of
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figure 7). The expression (7.2) of P reduces to :

The first term corresponds to the detection of the
input photon by B (same behaviour as the intensity
in equation (7.4)) whereas the second term corres-
ponds to the detection of a noise photon by B and of
the input one by A.

In the intermediate case, the expression of P can be
calculated by integrating over (J))., in equation (7.2).
One gets :

(exponential decrease with a time constant 2 F
from P(O) (Eq. 7.3) to P( oo ) (Eq. 7.5)).

8. Considerations about the fringe contrast.

The variation of the correlation signal P versus

the phase difference 0 can be characterized by a
fringe contrast y. We want to show in this section
that y obeys an inequality which has a very intuitive
meaning.
From equation (7.1), P can be split into three

terms :

with :

The two first terms, P, and P2, do not depend on the
phase difference. The fringe contrast y can thus be
written :

where Pint,max is the maximum value taken by P;n,
when varies. But Pint obeys a Schwarz type inequa-
lity :

which leads to the following inequality for the con-
trast :

In order to discuss the meaning of this inequality,
let us consider the experiments sketched on figure 9.
The output beam splitter BS3 and the detector B
are replaced by two detectors Bl and B2 located
respectively in arms 1 and 2 of the interferometer.
The correlation signal measured by the detectors A
and BI (resp. A and B2) is just the signal P1 (resp. P2)
defined by equation (8.2). Actually, the transition

amplitudes from the initial state to final states where A
and Bl (resp. B2) are excited are the amplitudes
A I (A, 1’) (resp. A 2) (see Figs. 7 and 8).

Let us now define the two quantities :

From the previous discussion, xi (resp. 1t2) can be
considered as the conditional probability for the
detector Bl (resp. B2) to be excited knowing that
either A and Bl or A and B2 are excited. The inequa-
lity (8.5) can thus be written :

This inequality has been derived here from the
expression (7. 1) of the correlation signal which is
valid for the amplifier of figure 3. But it can be deduced
directly from the expression of the signals in terms of
the electric fields EA, EB, EB1, EB2 experienced by the
detectors A and B (Fig. 2). Bl and B2 (Fig. 9). The
correlation signals can indeed be written in the

Heisenberg point of view as :

(same Eq. for P2)’ Using :

one obtains :

Fig. 9. - Experiment complementary to the experiment
of figure 2. Correlations are studied using the detector PMA
located behind BS1 and either PMB1 located in the arm 1 or
PMB2 located in the arm 2.
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with :

Now, the interference term obeys a Schwarz type
inequality which is just the inequality (8.4). The
inequalities (8.5) and (8.7) bearing on the fringe
contrast are therefore valid whatever the design of the
amplifier of figure 2 may be.

If the amplifier was an ideal duplicator, n2 would
be equal to zero, meaning that it is impossible to
detect a photon on A and a photon on B2. In these
conditions, the inequality (8.7) would imply the
absence of interference effect (y = 0). But as soon
as noise photons can be emitted by the amplifier,
1t2 is no longer zero (one can detect a noise photon
on A and the input photon on B2). So, quantum
mechanics does allow the presence of interference

(equation (8.7) does not imply y = 0).
Remark : For the amplifier sketched on figure 3,

y, 1tl and 1t2 can be evaluated from equation (7.6).
One finds :

The inequality (8.7) is of course always satisfied. The
equality between the two members of (8. 7) is reached
only for T = 0.

9. Conclusion.

We have shown that when correlations in single pho-
ton amplification are studied (Fig. 1), the results
can be analysed without referring to stimulated
emission. More precisely, the enhancement due to

stimulated emission is exactly compensated by effects
associated with the indistinguishability of the two
photons going out the amplifier. The atom of figure 3
thus appears not at all as an amplifier but rather as
a noise source independent of the input photon.
Obviously, this would no longer be true if an intensity
signal was measured or if several photons were

coming on the amplifier : amplification by stimulated
emission does exist.
The result obtained in this paper seems to be in

agreement with the experimental observations of
Scarl and Smith [4] and Blake and Scarl [8]. But
their experimental conditions were different from
those supposed in this paper : their input source is a
classical one and cannot be considered as a one

photon source : their optical amplifier is a light gain
tube different from ours. So further analysis is required
for understanding completely these experimental
observations.
When the amplifier is put in one arm of a Mach-

Zender interferometer, it behaves again as a noise
source and not at all as an ideal photon duplicator.
In particular, it cannot be expected to discriminate
stimulated effects from spontaneous ones by some
spatial selection. As a consequence, quantum mecha-
nics predicts that the correlation signal registered by
detectors A and B is sensitive to the phase difference
between the two arms of the interferometer [23].
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