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Résumé. 2014 Nous discutons le rôle joué par le désordre et la dimensionalité critique inférieure dans l’existence
d’un spectre en 1/f. Nous présentons les résultats d’une simulation numérique d’un verre de spin d’Ising bidi-
mensionel, montrant un spectre 1/f dans un domaine très étendu des températures et des fréquences.

Abstract 2014 We discuss the rôle of disorder and of the lower critical dimension in producing a 1/f spectrum.
We present a numerical simulation for a bidimensional Ising spin glass, showing a 1/f spectrum in a remarkable
range of temperatures and frequencies.
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1. Introduction.

The so-called 1/f noise (or flicker noise) deserves
careful investigations : it is found in a wide class of

physical phenomena [1, 2], apparently completely
uncorrelated, and it is very difficult to justify from a
mathematical point of view [3]. The systems we are
considering exhibit, in some physical observable, a
fluctuation T(t), whose power spectrum

for low values of the frequency ro, is found to behave
as

Originally 1 /f noise was found in the voltage fluctua-
tions across a conductor carrying a constant electric
current : moreover it exists in the fluctuations of
oceanic currents, of sunspot number, of the lumino-
sity of some stars, and the loudness of classical and

modem music, etc. In the following we will just
examine the problem in a solid state physics context
(resistors with electric noise) : it should be noticed
however that the overall picture we are proposing
(quenched disorder and self-similarity) can be even-
tually used as a general mainframe toward the under-
standing of the various 1/f effects.

Since the flicker noise was observed in a very large
class of resistors [4] (metallic films, carbon ’resistor,
many kinds of diodes and junctions) it was suggested
that a universal mechanism is needed to explain this
feature.

Therefore some attempts have been made to

explain the 1/f noise in terms of either turbulence or
critical phenomena. Indeed both these phenomena
exhibit self similarity and power law behaviour in
the spectra of the correlation functions. An explana-
tion of the flicker noise in terms of fully developed
turbulence has been given by Handel Teitler and
Osborne [5, 6] who considered the voltage fluctua-
tions as caused by velocity fluctuations of the elec-
tronic flow and used perturbative techniques (quasi-
normal approximation) and similarity hypothesis.
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This approach assumes that the 1 /f noise is a non-
equilibrium phenomenon, while the experimental
results seem to clearly indicate that it is an equilibrium
phenomenon : moreover the role of dimensionality
and defects is neglected, and the 1 /f behaviour turns
out to be independent of the spatial dimension. On
the contrary it is well known that the 1 /f noise is not
observable in the usual metallic 3-dimensional resis-
tors and is exhibited by 2-dimensional systems
(metallic films as well as carbon resistors which have
fractal dimension close to 2) and by « dirty » systems
(interaction with surfaces, absorbed systems). So the
analogy between turbulence and flicker noise does
not seem very deep.
As far as the critical phenomena are concerned, the

universality due to the divergence of a characteristic
length scale and the power laws of correlation func-
tions in a 2nd order phase transition occurs only in
a narrow range around the critical temperature.
However, the self-similarity structure of the 1/f noise
stays up to very long time scale in a large temperature
range (- 100 K).

Detailed descriptions of flicker noise in different

physical systems probably require different explana-
tions : we think however that the main mechanisms

governing what is happening in these systems could
have in common many fundamental features, and
that they have to be emphasized. Our point of view
is that the self-similar structure of flicker noise should
be connected to the presence of defects and random

interaction, and that dimensionality could play an
important role. Recently results in this sense have
been obtained : it has been showed that systems
with fractal dimension DF ~ 2 [7], as well as random
walks in random potentials obeying some scaling
laws [3], exhibit a 1/f spectrum. Here we will elaborate
further on the role of disorder (section 3) and of the
lower critical dimension (section 4), presenting nume-
rical simulations, on a bidimensional Ising spin
glass, that will support our thesis.

2. General considerations.

We will consider a statistical system S, and its dyna-
mical evolution, governed by the Hamiltonian H. We
will assume S being at equilibrium, (or possibly at
quasi-equilibrium) and we will indicate by A(t) a
generic observable. The power spectrum PA(w) of
A(t) is defined by

where

and CA(t) is the time correlation function

By we indicate a statistical average. In deriving
the second identity of relation (2.1) we have used
the invariance under time translations :

Let us neglect the possibility of systematical time
oscillations of the observable A(t) : then if the power
spectrum shows a 1/f noise, i.e.

this implies

We define 

and we find that condition (2. 6) implies

using (2.4)

for large T. So

A logarithmic divergence is very weak : it will be

completely ineffective if the coefficient of the diverging
logarithm is small on the scale of the observation
times. We can conclude that also in a situation in
which A2T &#x3E; is bounded a priori, a 1 /f behaviour of
the power spectrum can be observed in a large region
of frequencies.
We could try to consider a time dependent Hamil-

tonian H’, by adding to H the operator A(t) times a
small parameter s(t)

We define the response function in the usual way

and we get (fluctuation-dissipation theorem)

In presense of 1/f noise (2. 6) holds and
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i.e. the response function in Fourier space

Unluckily this procedure is not pratical for semi-
conductors, since it is very problematic to add to
the time independent Hamiltonian a resistivity term.
However the argument shows that all systems whose
response function has a logarithmic dependence on
frequency have to exhibit 1/f noise.

Typical systems in which there is a strong experi-
mental evidence that the response function depends
on the frequency on a logarithmic scale are provided
by real glasses and spin glasses [8].
Then we expect to observe a 1/f behaviour of

PA(w) if we identify A(t) with the total magnetization
(the energy in the canonical formalism) for a spin
(real) glass.

These considerations are of kinematical and/or
thermodynamic nature. Actually, at least as far as
spin glasses are concerned, there is a general agree-
ment that fluctuations on a very large scale are

generated by the hopping of the system among diffe-
rent equilibrium or quasi-equilibrium states [9, 10] (1).
A logarithmic frequency dependence of the response

functions may also be found in systems at the lower
critical dimension : i.e. those systems for which a
possible transition is forbidden by the appearence of
logarithmic divergences.

In the following we shall discuss in detail these
two mechanisms inducing 1//noise : disorder,
in section 3, and lower critical dimension in section 4.

3. Spin glasses.

We will consider an Ising spin glass in two dimen-
sions, with the Hamiltonian

where ai = ± 1, the sum ( i, j &#x3E; runs over all the
nearest neighbours sites on the lattice, and the cou-
plings Jij are random quenched variables which can
assume the values ± 1. They are uniformly distri-
buted according to the probability

h is a fixed external field. When not explicitly stated
h will be set equal to zero.
The model defined by (3 .1) and (3.2) was analysed

in reference [11]. Its static susceptibility x (the response
function of the magnetization in our terminology)
has a sharp peak at the freezing temperature Tf,
which depends on the observation times.

Actually, the freezing of a group of spins into
random directions is a non equilibrium, dynamic
phenomenon, rather than an equilibrium phase tran-

(1) The mechanism recalls that of point C, section 3, of
the second part of [3].

sition, in 2 and possibly 3 dimensions [12]. In two
dimensions T has to vanish at a unattainable equili-
brium, but kB Tf = 1.4 Jo [5] in the experimental or
computer observation time.
We are thus interested in the time evolution of

the system : we will simulate its dynamic by a Heat
Bath [13] and by a Monte Carlo [14] algorithm.

Let us define the two dynamics we will use in our
numerical simulations. At h = 0 the Boltzmann

weight is

We want to consider a time evolution that will even-

tually lead the spins of our system to be equilibrated
according to the probability measure (3.3). We will
change one spin at once, for example

The Hamiltonian (3.1) is local, and if we change the
spin a. just the 2d terms will change, i.e.

where the sum runs over the first neighbours of k.
In the Heat Bath procedure we will consider the

probability for Qk being +1 or -1, given its first

neighbours in our given configuration :

where

and

It is clear that if we already have a Boltzmann distri-
bution it will be transformed in itself by this proce-
dure. We will extract a random number p, uniformly
distributed in (0.1), and if p  P( +) then a’k = + l.
Otherwise a’ k = - 1. Since this procedure is ergodic
it will eventually bring any starting configuration to
Boltzmann equilibrium.

In the Monte Carlo scheme we will define a trial
new spin

Now we will compute

If AH  0 then cr’ = 6k . If AH &#x3E; 0 we compute

and extract p, uniformly distributed in (o.1 ). If p &#x3E; p

then a’ = (jJ, otherwise a’ = 6k.
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In both schemes all the lattice is updated, changing
a spin at once. For the Heat Bath method the location
of the spin to be changed was randomly chosen’ : for
MC the lattice was updated sequentially. The results
given by the two algorithms are completely equivalent.
We set Jo = 1, and T = P-1.

Although for the two dynamics we are considering
there is, to the best of our knowledge, no equivalent
of the fluctuation-dissipation theorem, the large time
behaviour is supposed to be qualitatively the same
inside a large class of reasonable dynamics.
We define a « sweep » to be a complete update of

the lattice in the sequential scheme and the updating
of twice the number of sites contained in the lattice
for the scheme in which sites are randomly chosen.
As stressed before we expect that the long time

behaviour of the magnetization is characterized by
its jumps across the barriers among valleys of metasta-
ble, quasi-equilibrium states in the phase space. In
our simulations (done on a 162 lattice) we were start-
ing from a random configuration of the spins, cooling
it down from To - 2 Tf to the T of interest in 30
sweeps. The realization of the random couplings was
quenched. Now we performed 212 sweeps, recording
the magnetization

at the end of any sweep, and eventually computing
its Fourier transform

We averaged the power spectrum (see (2.1))

over 50 different time evolutions in different realiza-
tions of the random couplings.

. 

Our results are shown in figures 1-3 : Sm(ro) is found
to behave as w-1 for Te(0.7, 1.2), where we recall
that the « freezing » temperature is ~ 1.4 on our
time scale, and for frequencies up to wmax/2. The
I/co signal is absolutely clean. Looking at the depen-
dency of Sm(w) over T we found

where C(T) - - 0.6 + 1.3 T, for T E (0.7, 1.2), see
figure 4. It is interesting to note that it is experimen-
tally known [11] that in some solid state systems,
C(T) - const. x T. Our results indicate that the
linear dependence on T holds down to T ~ 0.6. On
our observation time below this temperature the

system is bounded in a valley, and its specific heat
is very close to zero. For T Z T f the spectrum
becomes white : the phase space landscape no longer
has a self similar structure.

Fig. 1. - S(w) W/S(Wmin) Wmin versus In w/ln 2, at various

temperatures (from 0.7 to 1.2). The curves are a guide for
the eye. Heat Bath dynamics, 16’ lattice, runs of 4 096 sweeps.
50 realizations { Jij } are considered.

Fig. 2. - In S(co) (in arbitrary scale) versus In (w/romin)’ at
T = 1.0. Same features as in figure 1, but MC dynamics.
The straight line is the slope of S(w) ~ 1/co.

A finite small magnetic field h does not affect the
behaviour of the spectrum (see Figs. 5a and b) : a
slow crossover to a white noise bqhaviour seems to
be present only above h* =1= 0.

Finally, we checked the absence of finite volume
effects from our computations : no significant diffe-
rences appear when going to a 322 lattice at the
observation time we used. Globally we used the

equivalent of - 3 hours of CDC 7600.
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Fig. 3. - Same as in figure 2, but at T = 2.8. White noise
is evident here.

Fig. 4. - C(T) versus T. Sm(w) ~ C(T) 00-1. Heat Bath.

4. At the lower critical dimension.

In two dimensions (and less) a continuous symmetry
cannot be spontaneously broken. A simple-minded
argument runs as follows : consider, for sake of
clearness, the Hamiltonian

where the first sum runs over the nearest neighbours,
the index a runs from 1 to N (components of the
spin a), and the spins satisfy the constraint

H is invariant under O(N) rotations, and the symmetry
is spontaneously broken if

We can choose the direction of the breaking, let us
say

In such a situation the correlation of the transverse

Fig. 5a. - ln2 S(w) (in arbitrary scale) versus ln2 W/Wmin at
T = 0.8, in presence of h = 0.1, 0.2, 0.4. Heat Bath. A fit to
S(w) with the form S(w) ~ w-" gives a = 1 in the 3 cases.

Fig. 5b. - Same as in 5a, but T = 1.0, and h = 0. 1, 0.4, 1.0.
A fit gives a(h = 0.1) = 1.00, a(h = 0.4) = 0.90, a(h = 1.0)
= 0.69.

modes is given by

near p = 0. This behaviour is clearly inconsistent in
two dimensions : in this case we should have (2)

The extension of this argument to a more rigorous
one is not problematic.
We will argue that in such a situation a 1/w beha-

viour has to be seen. It is well known that the low

temperature expansion for rotational invariant quan-
tities like

(2) We look only at p - 0 : this is the relevant behaviour
for our argument.
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where

gives correct results. One finds that [15]

where the Fourier transform of 1/p2+ is given by’

We find

The perturbative expansion breaks down when

For N = 2, x large, it is commonly believed that

with

For N &#x3E; 2

with

In the same way when using a dynamical approach [16]
one finds that the time dependent correlation func-
tions are given by (at the first order in T)

This result implies that if we choose as the interesting
observable the total magnetization, its spectrum
will behave as w - 2, while if we consider a spin in a
given point we will find a 1/w behaviour. This holds
at the first order in T. Taking care of the higher

order corrections it is natural to guess that

with b(0) = 0, and that

in the range

We finally remark that in the one-dimensional

dynamical Ising model [17] a non -trivial behaviour
of Pt1i(W) is found. Namely from the Glauber exact
solution one finds

at low frequencies.

5. Conclusions.

In this paper we have identified two possible mecha-
nisms for producing 1/f noise at equilibrium (on the
observation times) : the jumping among different
equilibrium states of an amorphous system and the
existence of a very slow relaxation time for a system
at the lower critical dimension. These results imply
that many relatively simple ’systems display 1 incise.
As far as 1 /f noise in resistors is concerned, a model

for the conductivity should be studied in detail.
However it is our belief that 1 /f noise should be
connected to general properties. It would be not

surprising if very simple models, like a site dependent
random potential, would turn out to display I/f
noise at finite temperature, in presence of electron
interactions, in two and possibly three dimensions.

Acknowledgments.
The numerical simulations have been done on the
CDC 7600 of Saclay and on the VAX of the INFN-
Sezione di Roma : we want to thank Mme N. Tichit
for the precious support given to us at Saclay. One
of us (G. Paladin) acknowledges useful discussions
with G. Toulouse. We thank H. Hermann for a
critical reading of the manuscript. We thank Mme B.
Parent for a very efficient typing.



663

References

[1] DUTTA, P. and HORN, H., Rev. Mod. Phys. 53 (1981)
497.

[2] PRESS, W. H., Comment Astrophys. 7 (1978) 103.
[3] MARINARI, E., PARISI, G., RUELLE, D. and WINDEY, P.,

Phys. Rev. Lett. 50 (1983) 1223 ;
MARINARI, E., PARISI, G., RUELLE, D. and WINDEY, P.,

Comm. Math. Phys. 89 (1983) 1.
[4] WIDOM, A., PANCHERI, G., SRIVASTAVA, Y., MEGA-

LOUDIS, G., CLARCK, T. D., PRANCE, H. and
PRANCE, R. J., Phys. Rev. B 27 (1983) 3412.

[5] TEITLER, P. and OSBORNE, M. F. N., Phys. Rev. Lett.
27 (1971) 912.

[6] HANDEL, P. H., Phys. Rev. A 3 (1979) 2066.
[7] BENZI, R., PELITI, L. and VULPIANI, A., Lett. Nuovo

Cimento 36 (1983) 471.
[8] BALIAN, R., MAYNARD, R. and TOULOUSE, G., Ill Con-

densed Matter (North Holland. Amsterdam) 1979.
[9] MACKENZIE, N. D. and YOUNG, A. P., Phys. Rev. Lett.

49 (1982) 301.

[10] PARISI, G., Phys. Rev. Lett. 50 (1983) 1946.
PARISI, G., J. Physique 44 (1983).

[11] MORGENSTERN, I. and BINDER, K., Phys. Rev. B 22
(1980) 288.

[12] CASTELLANI, C., DI CASTRO, C. and PELITI, L., eds. of
Disordered Systems and Localization (Springer
Berlin) 1981.

[13] CREUTZ, M., Phys. Rev. D 21 (1980) 2308.
[14] METROPOLIS, N., ROSENBLUTH, A. W., ROSENBLUTH,

M. N., TELLER, A. H. and TELLER, E., J. Chem.
Phys. 21 (1953) 1087.

[15] DAVID, F., Phys. Lett. 96B (1980) 371.
DAVID, F., Commun. Math. Phys. 81 (1981) 149.

[16] DE DOMINICIS, C. and PELITI, L., Phys. Rev. B 18 (1978)
353.

[17] GLAUBER, R. J., J. Math. Phys. 4 (1963) 294.
[18] JENSSEN, H. K., Z. Phys. B 23 (1976) 377.


