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Résumé. - On définit ici les coefficients élastiques locaux LEC linéaires et quadratiques de structures non pério-
diques. L’hypothèse d’isotropie macroscopique nous affranchit de distinguer l’orientation des axes de symétrie
locaux ce qui limite à 9 le nombre des LEC pertinents. Cette analyse effectuée sur la structure amorphe ML montre
l’uniformité de la contrainte hydrostatique p sur chaque couche d’atomes ; p prend 5 valeurs distinctes seulement
pour les 525 premiers atomes. On définit ainsi 5 catégories de sites et de couches. L’analyse des autres LEC confirme
l’existence de ces 5 catégories qui définissent des bandes de valeurs permises pour chacun des LEC. De plus cette
analyse donne lieu à une structuration des couches en sous-couches. Les catégories de sites correspondent à des
types de symétrie et de topologie locales. L’étude de la dynamique des atomes pour. des modes, pratiquement
localisés et donc de courte longueur d’onde montre un adoucissement de la fréquence de ces modes sur une couche
qui ceinture un domaine d’environ 270 atomes. Ceci définit un seuil de stabilité de la taille de germes. Ces remarques
sur la structure en couches, du point de vue de la statique et de la dynamique, nous permettent d’évaluer assez
précisément les nombres magiques et les limites de leur évaluation. Les propriétés élastiques globales de la structure
ML nue ou dont les interstices sont remplis par de petits atomes, légers, sont calculées grâce au théorème d’addi-
tivité. On montre que le rapport C11/C44 égal à 2,22 dans les calculs de la structure ML est indépendant de la nature
des interactions de paires, tant qu’elles restent à courte portée et favorisent cette structure. Cette mesure est bien en
accord avec les résultats expérimentaux. Enfin, un calcul de moyenne locale montre que la taille des fluctuations
gelées est d’environ 2 à 3 distances interatomiques. On suggère l’extension de ces résultats à d’autres types d’inter-
action, comme les interactions molécule-molécule ou nucléon-nucléon.

Abstract 2014 Linear and quadratic Local Elasticity Coefficients (LEC) of non periodic structures are defined here.
Assuming a macroscopic isotropy, the directions of local symmetry axes need not be considered, thus only 9 relevant
LEC remain. This analysis applied to the ML amorphous structure shows that the local hydrostatic constraint p is
uniform on each shell of atoms surrounding the centre of the structure, and takes only 5 different values for the 525
central atoms. Thus p defines 5 categories of sites and shells. The analysis of their other LEC confirms the exis-
tence of these 5 categories of shells which define bands of values for each of the LEC. Some internal structuration
of the shells, i.e. subbands of LEC, is found Site categories are analysed in terms of local symmetry and topology.
Atom dynamics are considered for possible localized modes with evidence for a softening of the frequencies of the
modes more or less localized on a shell which encloses some 270 central atoms. These static and dynamics points of
view enable us to make simple remarks on the magic numbers which are usual for shell structures. Global elastic
properties such as bulk modulus and sound celerity for the ML structures, bare or filled with small, light atoms are
derived, result in a ratio C11/C44 = 2.22, which is independent of the details of a short ranged pair interaction.
This ratio is in good agreement with experimental data. Finally the size of frozen fluctuations is shown to be two
or three interatomic distances: Applications to different kinds of interactions such as molecule-molecule or nucleon-
nucleon interactions are suggested
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Introduction.

Studies of amorphous structures are so numerous that
they have to be counted in thousands per year [1].
Moreover the variety of elastic properties of metallic
glasses is known to be very great, which is very pro-
mising [2]. This is at least one good reason to study the
elastic properties of a new theoretically built amor-
phous structure ML [3], as Srolowitz and Egami [4]
did for the model build by Maeda and Takeuchi [5].
In fact, elastic coefficients can be defined from a local
analysis in different ways [4, 6], and in the following
we shall derive an approach which demonstrates
additivity theorems and takes advantage of the

macroscopic isotropy to restrict the number of relevant
Local Elasticity Coefficients (LEC) to 9. The analysis
of these local elasticity coefficients can provide an
accurate numerical picture [7] of the amorphous
structure, because these coefficients measure the local

symmetry even if all the distances between neighbours
are not exactly the same. In other words, LEC take
into account all possible distortions of the amorphous
network, and thus, shun the difficult problem of

classifying distorted polyhedra into one category
or another. Thus the question of existence of different
categories of sites becomes a question of statistics and
not of direct geometrical observation. However,
further geometrical and topological comments can be
given to the definition of existing categories. Expe-
rimentally, the idea of categories, i.e. of different sites,
comes from the measurement of crystalline fields such
as hyperfine fields [8] or anisotropy fields. So it could
be tempting to derive such a classification not from
elasticity coefficients but from crystalline field coeffi-
cients. However the connection between interactions

responsible for the structure and elastic coefficients is
simpler and more direct than that between interactions
and local magnetic properties. So it is both easier
and more convincing to study the typical sites starting
from elastic properties than from magnetic ones.

Thus LEC provide a very appreciable amount of
infotmation on local structure.
Moreover knowledge of such local elastic coeffi-

cients enables us to. obtain much information on long
wavelength and short wavelength phonons. Further-
more there are many experimental data on both types
of phonons and on elastic moduli in amorphous
materials [1, 2, 9], to which our numerical data can be
compared As will be seen from the additivity theo-
rems demonstrated for elastic properties, when consi-
dering long wavelength effects and even static beha-
viour, the local coefficients inside a cell of unit volume
must be averaged. This leads to many results, with or
without filling off large holes by light atoms, for
realistic amorphous structures. On the other hand,
LEC can be used to estimate the high frequency
phonons by assuming a localization of these modes.
Thus the displacement of one atom is sought in the
elastic field of the others which remain fixed in this

approximation. This assumption enables us to obtain

the orders of magnitude of frequencies and especially
to see where soft modes can be localized.

Now we are brought back to the very first question,
what model structure is to be analysed ? A LEC
analysis has been done for the Maeda Takeuchi
structure [5] by T. Egami and co-workers [4, 10], but
none for the numerous other theoretical structures.
As a matter of fact the ML structure [3] has been
derived from energetic considerations,by means of a
variational method [11], and thus has a rather correct
density and energy. Usually, other models involve
more or less randomization and deserve the name of
DRP, dense random packing [8, 12]. The special
interest in the construction of the ML structure lies in
its determinism. The analysis of LEC for the ML
structure has for goals to show the presence of a chaos
and the determination of the nature of this chaos,
if any. Chaos is expected in this ML structure because
there is a conflict between different structures : the
initial germ structure, which is the structure of an

icosahedron, cannot propagate in the whole space
without conflict, i.e. without frustration. At the very
location of these conflicts, there are bifurcations
between different structures, and chaos may occur
from the large number of these bifurcations. However
this chaos is rather specific, it does not involve all the
LEC in the same way. Moreover results on DRP
simulated structure [4] show such specific chaos
which does not involve all the elastic parameters
in the same way.
From the analysis of LEC in the ML amorphous

structure, many results are obtained. First there are

only 5 different hydrostatic constraints p for the
525 first atoms which belong to 14 concentric shells,
and all atoms on the same shell experience the same p.
This is a proof of order along the radial distance, i.e. a
proof of shell order. Similar proof of shell order has
been observed in DRP constructions [9] with more
fluctuations but with the same significance of a basic
shell structure : the (RDF) Radial Distribution Func-
tions of compressed or dilated atoms were shifted
between them over at least 5 or 6 interatomic dis-

tances, which is a very large distance. Thus the shell
order which appears in the ML structure, is realistic
in DRP structures and is the proof of a partial order
well analysed by LEC data. The 5 categories of sites
are associated with bands of allowed values of each
of the LEC, these bands being distinct for each of the
categories and more or less wide according to the
LEC under consideration. In some cases a subshell
division can be made, when the bands are divided into
independent sub-bands well-defined for several LEC,
and especially for C, 1 and C44, the main elastic

parameters. From this analysis a series of shells and
subshells can be defined and we thus can introduce
a list of magic numbers which define the completion
of successive shells and subshells. These magic num-
bers are compared with those obtained for clusters of
rare gas atoms [13], metallic atoms [14], or mole-
cules [15]. A comparison may even be risked with
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clusters of nuclear matter because of the generality
of the short-ranged potential here introduced; the
shell model is known to be efficient for nuclear mat-
ter [16], appears as well for the ML structure, and the
dynamic effect described by quadratic LEC such as
Ci l and C44 shows a weak stability for clusters of
about 270 particles.
Knowledge of the LEC enables us to estimate the

frequency of short wavelength modes and to show
where localized modes can occur. Such localized
modes are obtained on a shell which encloses some
270 atoms. On this shell the local symmetry is oblong.
The detailed motion of such localized modes may be a

displacement of the shell only such as a rotation,
or a rotation of the whole internal sphere without
any other external motion. This mode, called a roton
mode, was predicted by Landau for liquids a long
time ago [17] and Heritier et al. proposed a similar
mode, for amorphous materials [ 18], which was called
solidon because of the rigid central unit. Such a
connection between localized modes and local topo-
logy was recently proposed by Kleman [19]. Hence,
one question is raised. If the structure is restricted to
this shell and its internal particles, we have a cluster of
about 300 particles, which is still metastable statically
because our variational arguments of reference 3
are still valid. But the LEC’s of this cluster are expected
to have a smaller value than those of the ML structure
because of the relative lack of neighbors for peripheral
particles. Hence the poor dynamic stability of such
shells in the ML structure is aggravated for these
300 particles clusters. So this size of about 300 par-
ticles is expected to be critical. This remark can be
compared to the observation of a maximum size of
about 300 molecules for clusters of various mole-
cules [14,15]. Moreover this size of about 300 particles
is that of the nucleus of actinide elements, which is a
well known critical size. As nucleons interact mainly
via a short-range potential, the Yukawa potential [16],
this comparison even if rough is a correct first approxi-
mation. Moreover the tunnelling character of natural
radioactivity corresponds well to the glassy state and
its numerous tunnelling effects.
In the present work these problems of dynamic

stability are not solved but only introduced. But
already they show their generality and their common.
aspects, on the basis of a pair potential or pseudo-
potential approach. And the introduction of the

dynamic instability made above raises the problem
of the stability of realistic amorphous materials.
Either the stability of the ML amorphous structure is
restricted to the domain of very low temperatures, or
the ML structure must be stuffed with small atoms in
the big holes in such a way that atomic motions

during soft mode propagation will be quite small and
tunnelling effects strongly forbidden. Giving this,
the additivity theorem enables us to calculate the
elastic macroscopic properties from the LEC. They are
compared to experimental data with a very good
agreement on the ratio of the averaged values of Ci l

and C44 [20]. This ratio does not depend on the detailed
interaction as long as it is still short ranged Thus the
microstructure depicted by the ML structure, has
macroscopic consequences which correspond to the
existing date. In order to make this result easily
understandable, it can be said that the ML structure
simply solves the conflict between a local stable

structure, i.e. the icosahedron and its spatial propaga-
tion which cannot occur without frustration [21].
And the ratio Cll/C44 depends less on the solution
of the frustration problem than on the local structure
of the unfrustrated part.

In section 1 will be defined the linear coefficients
which are typical of the low symmetry of amorphous
structures, then the quadratic ones, i.e. the stiffness
coefficients and the additivity rule will be derived.

Section 2 is devoted to the results for ML structure :
shell model, classification of the sites, size of fluctua-
tions.
The generality of the shell model, elastic parameters

and detailed considerations of normal modes will be
shown in section 3.

1. Local elastic coefficients LEC : definitions.

The Lennard-Jones potential U used as pair potential
is :

where r is the pair distance.
With such a potential the ML structure predicted in

reference 3 is stable when using suitable boundary
conditions, i.e. fixed atoms at the periphery. In the
following, literal equations suppose only a radial

pair potential, i.e. U depends only one I r 1. Local

phenomena are considered, thus one central atom 0
can be taken as fixed and the vectors which define its
neighbours will be called Ai. A local deformation
defines the strain tensor E by :

where Ai’ is the new vector. Classically [4, 6], one
defines a 6 dimension strain vector E by :

Thus the variation of ri = Ai in the deformation can be
analysed in two parts of increasing order in powers of :

where higher terms are neglected With a, fl and y as
coordinates of A, the corrective terms are :

where E is a column vector.
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And

where et is the transposed row vector.
The variation A Ui of the potential, due to the deformation can be written (up to terms of second order in F.) :.

This can be translated into

with an obvious notation which enables us to sum over all the neighbours i of the central atom 0 where local
elastic coefficients LEC are to be defined.

Matrices -.ae, B and C are easily deduced from equations 5 and 6 :

In the matrices and 1B there are only six independent
quantities which are nil if all the ri’s are equal to ro
where U(r) is minimum. In ML structure numerous
interatomic distances show a contraction : r  ro and
so U’  0, while some ones show a dilation r &#x3E; ro
and U’ &#x3E; 0. The stability of the structure implies
more contractions than dilations and this will be
confirmed in the numerical analysis, by the negative
sign of the 3 first coefficients of A.
The symmetries of matrix C are wellknown [6] and

give rise to the 6 Cauchy relations, thus there are only
15 independent parameters involved in C. When the
total local energy U is derived as a function of the

strain, the stress Y is obtained :

where k labels the kth column of the matrix in these
covariant notations. The following comment is
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obvious : Ak is the stress due to frozen fluctuations
while (3 + e) is the matrix of stiffness coefficients.
e looks like the classical stiffness matrix, thus 3 is the
correction due to frozen fluctuations.

There are two additivity rules for elastic coefficients.
First, there is an additivity rule for local elastic coeffi-
cients if the holes are filled with small atoms, or if
there is a vacancy. In both cases the change in LEC
for other sites results from the uniformity of the strain 8
in elasticity theory and the additivity of the two body
interactions. Thus LEC are additive with respect to
atoms filling an interstitial site or leaving a vacancy,
under the assumption of no rearrangement, which is
a first approximation. The second additivity rule deals
with the change from local elasticity coefficients to
global elastic coefficients. Now are added the energies
d Ui for all the particles i which belong to the same
unit volume. This additivity is simple for pair poten-
tials and leads to add the matrices Aij, Bip Cij, over
both the indices i and j, because the strain vector E
is always uniform. The forces on the unit volume, i.e.
the stresses, are derived from an obvious generaliza-
tion of equation 13, where E, which is the local strain
vector in this 6d linear space, is also the global strain
vector because of the central assumption of uniform
strains in elasticity theory. Thus elastic coefficients
result from the sum of LEC, for sites belonging to a
unit volume. Statistically an isotropic averaging of
these elastic coefficients can be expected, while in
crystals, symmetry rules infer direct conditions on the
LEC.

2. LEC numerical results.

Each site is represented by 21 coefficients : 6 for the
matrices A and B and 15 for the stiffness matrix C.
A systematic study of these coefficients involves many
figures and simplification is useful. One can note from
the tensorial nature of A and C that these 21 LEC
involve the definition of different local symmetry
axes. These local symmetry axes vary from site to site,
and following the classical observation of random
anisotropy [21], one can easily admit that these direc-
tions are randomly distributed on any macroscopic
scale. This remark enables us to leave out this direc-
tional character and thus 9 relevant parameters
remain. The careful observation of direction distribu-
tion will be described in an other paper.
The choice of ML structure is due to its determi-

nistic nature, as already said in the Introduction, and
thus the LECs will show the nature and the values of

any disorder in such a deterministic structure. It
should be recalled that the ML structure is obtained
from a variational method which leads to the equation
of structural propagation [11] :

where nx is the Fourier transform of the density while
Yk is the Fourier transform of the pair potential.

This equation of structural propagation is integrat-
ed [11] :

where the kjs are the nodes of Vk. The cjs are deter-
mined from boundary conditions, i.e. commensura-
tion with an icosahedral germ and 3d propagation [3,
11, 21]. The resulting density n(r) is a continuous
function of which the peaks define the ML network.
Naturally we exclude too close peaks by selecting the
highest one. This kind of conflict is responsible for
bifurcations and, finally chaos, because any choice
leads to a series of subsequent choices [21 ].
A preliminary study of LEC on ML structure has

been carried out [7]. It emphasizes the central symme-
try of the ML structure which enables us to classify
the particles according to their distance R from the
centre. One can count them in this way and classify
each of them by an unambiguous number N. N = 1
means the centre, N = 2 the nearest neighbour of the
centre, and so on. This defines two ways of classifying
the particles, either along R or along N 1/3 as will be
used in the following figures. The classification accord-
ing to R, i.e. the radial distance, emphasizes the shell
structure, while the other classification emphasizes
the distribution of LEC.

In the practical calculations, we account only the
interaction between nearest neighbours and thus
assume a strong screening of the long range interac-
tion. This approximation does not perturb the prin-
cipal significance of the results. Computations were
carried out on IRIS 80, a CII Honeywell Bull computer
at the Paris, Jussieu University Centre.

2.1 SHELL STRUCTURE AND LINEAR LEC. - By
linear LEC it is meant the 6 coefficients of matrices A
and 93, which reduce to 3 : p, i and p’ when the direc-
tional character of the main symmetry axis which is
randomly varied, is omitted.

p is the hydrostatic pressure of Srolovitz and Egami [4],
T their shear stress. As already stated p is the negative
measure of the contraction of the particle, while i
measures the anisotropy of the contraction-dilatation.
Figure 1 shows p(R) for the 500 central atoms : with
strong evidence for a shell structure and 5 values of the
local pressure with different contractions of the consi-
dered sites. Figure 2 shows p(N 1/3) with the same
evidence which is now weighted by the number of
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Fig. 1. - Local hydrostatic pressure p as a function of the
radial distance R for the 525 central atoms of the ML
structure. 14 shells with about 5 different values of p can be
noticed, i.e. five typical sites. p is also called « constraint »
throughout this paper.

particles in the shell. Figures 3 and 4 show 7:(N 1/3)
and p’(N 1/3 ). They define the isotropic shells, width r
and p’ nearly equal to 0, and measure the intensity
of anisotropy of the others shells, because i measures
the intensity of anisotropy of diagonal terms while p’
measures the intensity of off-diagonal terms. Nume-
rous shells are structured into subshells with different
subbands of values of i and p’. On the other hand one
can see the large scale of variations of the parameters i
and p’ which confirms the amorphous nature of the
ML structure.

2.2 QUADRATIC LEC : STIFFNESS COEFFICIENTS SITES.
- The matrix elements of lB are in fact much lower
than these of, which means the frozen fluctuations do
not strongly alter the stiffness coefficients, as can be
expected from well relaxed amorphous samples.
We take advantage of this feature by computing only
the matrix elements ofC. Always leaving out the direc-

Fig. 2. - Local hydrostatic pressure p as a function of
N 1/3 for the 525 central atoms of the ML structure.

Fig. 3. - Local shear stress i as a function of N 1/3. There
is a large distribution with isotropical sites (r N 0) and
anisotropical sites. Different sublayers of anisotropical
shells can be distinguished : T  1.2 or T &#x3E; 1.2. The sepa-
ration is fairly clear.

tional character which can be expected to be randomly
distributed as for the anisotropy direction of amor-
phous materials [22], several relevant coefficients
remain :
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Fig. 4. - Local constraint p’ as a function of N 1/3. The
already defined isotropic shells have a p’ nil, while for the
other shells p’ is widely distributed from 0 to 1.0.

In this classification C11 and C44 resemble the usual
parameters [6], with here an obvious symmetrization,
which forbids the definition of C12. Figures 5, 6 and 7
show respectively Cl l, C44 and C’, 1 as a function of
N 1/3. The order of parameters C 11 to c’ listed in equa-
tions 17 is that of decreasing magnitude from C, 1 to c’,
which confirms the rather strong spherical symmetry
on each site, because C’l, C’, C44 ’ and c’ measure
different deviations from this symmetry. These results
can be compared with those for the shell assumption
as in table I, where the values of p, r, p’, Cl l, C44 and
so on, are noted for the different shells. The conver-

Fig. 5. - Local stiffness constant C 11 as a function of
N 1/3. The following shells appear : the isotropic ones with a
uniform value, the anisotropic ones with a rather wide
distribution of values. The sublayers defined on figure 3 are
clearly seen, for instance very large i values are correlated
with small C 11 value especially for the second shell where
this remark is used to select a stable layer. For N 1/3 near
6.8 there is a catastrophe in the C 11 values which are very
low. This is correlated with a low value of p. It is a critical
size for small clusters which are badly elastically coupled
to others.

Fig. 6. - Local transverse stiffness coefficient C44 as a

function of N 1/3. Shells and subshells appear. The catas-
trophe at N 1/3 = 6.8 is less strong than for C 11’

Fig. 7. - Local stiffness coefficient C11 as a function of
N 1/3. This coefficient sensitive to the anisotropy clearly
shows the catastrophe at N 1/3 = 6.8.

gence of the different data for the evidence of shells and
of a few typical sites should be noted. There are two
general categories of sites, the isotropic ones which
have a correct coordination number N c and are under
hydrostatic pressure, and the anisotropic ones which
have a lower Nc and thus are frustrated. Inside these
categories, there is a further classification into several
classes : A : isotropic, D : very isotropic, B : modera-
tely anisotropic, C : anisotropic, E : oblong and very
anisotropic. In other words sites A and D are unfrus-
trated while sites B, C and E are more or less frustrat-
ed Figures 1 and 2 show the natural order of succes-
sive shells, where the pressure oscillations correspond
to the altemance of frustrated and unfrustrated shells.

Figures 3 to 7 demonstrate the kind of chaos which
observed for the different LEC but there is no one-to-
one correspondence. Each shell defines a band of
values for each LEC, and mixing of shells is rare : even
the shell D’ which is rather particular has a « D class ».
There is a chaos which seems typical of amorphous
structures, because of the partial order which can be
expected in this 4th state of matter, and because of the
comparison with other results on models [4].



298

Table I. - L.E.C. for different shells classification and name of the shells according to N.

The local stiffness coefficients can be used to define

approximate local modes, as global stiffness coeffi-
cients define long wavelength modes [23]. For these
approximate local modes the Nth atom or particle is
mobile while the others are assumed to be fixed. Two

typical Einstein modes are defined by Cll and C44.
C, 1 is the spring constant of a rectilinear motion where
displacements and forces are parallel, while C44 is the
spring constant of a circular motion where displace-
ments and forces are orthogonal. These motions are
the local translation of longitudinal and transverse
phonon modes [23]. Of course soft modes can be
observed when Cll or C44 tends towards 0. This
occurs for N 1/3 ,...., 6.5, i.e. N - 276 for the shell
called E, ie. with oblong symmetry.

The ratio of softening, i.e. (CE/CA) which compares
the two classes of sites is nearly 0.5, as can be seen
on figures 5 and 6 for Cl 1 and C44 and in table I.
This is real softening. As already said, if the size of the
previous clusters is restricted in order to have only
300 particles with the same ML structure which,
because of the variational principle, is still a fairly
stable cluster, the additivity theorem 1 shows that
there is a decrease of LEC at the external shell ;. thus
the ratio of softening (CE/CA) here becomes lower
than 0.5. The dynamic stability of such a cluster then
becomes a problem. Comparison with nuclear matter,
i.e. the radioactivity catastrophe for actinides, sug-
gests itself. There is the instability of pentagonal
structures [ 13] too. Of course this is not a demonstra-
tion but a mere connection which can be improved
by further analysis. When speaking of a comparison
with finite cluster, one has to introduce the « magic
numbers » [15]. These magic numbers have been

defined for the shell model. But the present discussion
reveals the value of an analysis of dynamics, i.e. of the
dynamic stability which has to be checked for each
shell.
The first shell, D, is complete with N = 1. The

second shell, A, is fairly homogeneous and is com-
plete when N = 13, which is the second magic num-
ber. The third shell, C, is complete for N = 43, but
is not homogeneous, especially for C 11 : 16 particles
have a Cll equal to 80. Thus one can admit the low
stability of these particles for a real small cluster
and then assume as a true magic number : 43 - 16 =
27. This discussion shows the accuracy of the defini-
tion of these numbers to a few units. The next shell A’
contains the 20 particles N = 44 to N = 63. Thus the
new magic number would be 27 + 20 = 47 if the
16 atoms of the previous shell are not stabilized by
the existence of the new shell. If the previous subshell
of C is more or less filled when this shell A’ is filled,
the realistic magic number lies in the range 47-63.
The 55-atom cluster of Farges [13] corresponds to
this range, and 55 is also a well-known magic number
for clusters of atoms [13] or molecules [14, 15]. Such
as for nuclear matter where the abundance of Fe and
Ni is associated with this magic number of nucleons.
The next shell, B, contains 26 atoms. Thus reasonably
the next magic number lies between 81 and 89, because
this shell is rather stable. The D’ shell which is quite
stable follows with a magic number of 91 to 99. Then
the next shell, C’, will lead to a magic number 147 to
155, but as already observed for the C shell, there is a
weak dynamic stability of one subshell, the Cll’S
go down to values of 80 for the extended cluster. This
low stability is associated with the nucleon numbers of
rare earths, and probably explains their rarity.
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2.3 MEAN VALUES AND SIZE OF THE FLUCTUATIONS. -
From the second additivity rule, mean values are
important to know and easy to obtain. It is more
difficult to estimate that of the typical size of the
frozen fluctuations which can be thought of as a
superstructure such as that observed in some theore-
tical structures [5]. A first analysis consists in averag-
ing the LEC over the nearest neighbour sites. This has
been done for all the parameters which gave as a result
a very short fluctuation length as can be seen on
figure 8. Figure 8 shows the averaged values Vp, Vi
and’ V C 11 of p, i and Cl 1 respectively, which are
averaged over nearest neighbouring sites, as a func-
tion of N 1/3.
The efficiency of the averaging can be seen even if

the soft mode catastrophe remains apparent. Practi-
cally this means that the wavelength of the frozen
fluctuations, i.e. of the superstructure, is about two
or three interatomic distances, with an altemance
of frustrated layers and unfrustrated layers, or shells.
By frustration we mean lack of neighbours, aniso-
tropy and so on, while unfrustration means isotropy,
high level of coordination, hydrostatic pressure and
so on.

3. Further analysis of the results.
3.1 OTHER EVIDENCES FOR A SHELL STRUCTURE. -

First of all it can be noted that though the ML struc-
ture is easily seen to have a shell structure, ML is not
the only one. For instance Srolovitz and Egami [10]
noticed that in the MT structure [5] the averages of
radial distribution functions taken at sites of low or

high hydrostatic pressure, are similarly distributed
over distances of several atomic distances. This means
a rather regular structure centred over contracted
or dilated atoms with no rapid damping of the shell
structure. So this is a strong numerical proof for the
shell structure of this MT model.
The present theory works with amorphous mate-

rials, i.e. large clusters, and its application to small
clusters where boundary problems occur, is far from
perfect. But it is not quite unfit, at least when N &#x3E; 13.
This explains the agreement of magic numbers with
experimental work on metal clusters [14] or molecule
clusters [15]. The next step is to go from the Lennard-
Jones potential to nuclear interactions, which leads to
the well known shell models [16] of the nucleus. As
nucleons are fermions they experiment a strong
repulsion at short distances while Yukawa potential
is attractive at larger distances and very strongly
screened. So the effective pseudopotential of nuclear
forces does not have a shape very different from that
of the Lennard-Jones potential. This explains the

similarity of the results even if many details are neglect-
ed

3.2 ELASTIC PARAMETERS. - One has here a calcu-
lation of the averaged elastic parameters which are
those of an isotropic sample, with C12 = C44 because
of the Cauchy relations.

Fig. 8. - The average values Vp, VT and VC1 i of p, T
and C11 1 as a function of N 1/3; The averages have been
taken over the nearest neighbours of each site (d  1.3).
The amplitude of variation is shown to exhibit a strong
decrease compared with that of the non averaged values
given on curves 2, 3 and 5. The N 1/3 = 6.8 catastrophe
is damped but still evident.

and the bulk modulus

where the unit u is the size of the potential well-divided
by the cube of the atomic distance, according to the
definition of U by equation 1. The ratio C11/C44 =
2.22 is dimensionless and thus has a universal cha-
racter for this type of structure and for the interaction
which is strongly restricted to first neighbours. This
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ratio measures the ratio of sound celerities for longitu-
dinal and transverse vibrations and has been experi-
mentally measured by Bellessa and Bethoux [20] to be
nearly 2.22 at 0 K in Pd8oSi2o, N’80p2o and COsoP 20
in very good agreement with the present work. It has
to be said that the experimental work showed a linear
variation of Cl 1 and C44 with temperature which is
evidence for low lying excited states. These low lying
excited states are not in contradiction with the ML
structure [3], but their contribution is out of the scope
of the present paper.

This experimental agreement is not due to chance,
and can be explained in more detail. First the ML
structure contains many large holes, about 20 % of the
number of particle if the lowest hole radius is taken
as 0.6 times the atomic radius [3, 7]. Thus the ML
structure contains many large holes, about 20 % of the
amorphous alloys where M is a large metallic atom
and m a small metalloid atom. Similar remarks have
been made by Polk for other models with the same
density of large holes [24]. Then assuming the ML
structure stuffed with metalloid atoms for the structure
of amorphous samples studied by Bellessa et al. [20],
one can derive the elastic constants from the additivity
rules. The main part comes from the 80 % of metallic
atoms or ions which are the more numerous and the
heaviest. At the acoustic low frequencies light metalloid
atoms follow instantaneously the heavy metallic

atoms, and thus their contribution to LEC is weaker
than their atomic density. Moreover this stuffing of
holes leads to a homogenization of LEC throughout,
and especially for the E shell. Thus the changes in C, 1
and C44 due to this stuffing will be nearly proportional
to C11(A) - Cl l(E) and C44(A) - C44(E), on the
basis of linear behaviour. All these arguments show
that the resulting changes of the averaged values
of Cll and C44, of the averaged values of Cll and C44,
when holes are filled with light metalloid atoms, are
rather weak and then C11 &#x3E;/ C44 ) does not vary
at all. This explains the experimental data.
One main effect is the catastrophe for R = 3.6

atomic units, which is probably balanced by the pre-
sence of defects in real materials, and these defects
being vacancies which can be occupied by small
atoms. This explains the lowering of Cll and C44 or
of Young’s modulus and the Poisson ratio as observ-
ed [9]. Because of the additivity rule, the adjunction of
suitable components modifies these properties in an
understandable way [9].
3.3 NORMAL MODES. - The LEC are useful to des-
cribe strictly localized modes as in this paper. On the

other hand the long wavelength modes are deduced
from the average of the LEC’s. Moreover the shell
structure of the ML model leads us to expect « shell
modes » where the different shells keep their indivi-
duality. For instance, one can localize a motion in a
shell or one can consider the relative motion of shells

turning around each other as a block. This last concept
is due to Landau [17] when speaking of superfluidity,
because of the low frequency of these « rotons » which
involve rotation of a large mass of matter. This con-
cept has been actualized by Heritier et al. [18], which
coined the name solidons when speaking of normal
modes of amorphous solids or of viscous liquids. Here 
one cannot but focus its attention on the catastrophe
region at R = 3.6 atomic units where the amorphous
solid is weaker, and where such a motion will be easier.
Other normal modes exist and can be quite useful
in order to interpretate glassy melting, with the

appearance of more or less large free clusters.

4. Concluding remarks.

As a concluding remark we wish to emphasize the very
special chaos of the ML structure. This disorder is
revealed by the analysis of LEC data. The geometrical
distribution of sites shows the altemance of frustrated
and unfrustrated shells i.e. local layers in the general
meaning of the term. Moreover, it must be said there is
another cause of chaos which has to be taken into
account. In mbre realistic macroscopic materials
variations from this ML structure are admitted as well
as this ML structure because they lead to nearly the
same energy per site, they are obtained by a hopping
motion of atoms into big holes, i.e. are very close to the
ML structure [3]. This packet of states leads to a
broadening of the bands, but does not change the
main results because no more than 1 % of the sites,
at most are shifted. Thus the alteration of LEC cannot
be very strong. There is only a further modulation of
the 5 typical categories. Finally, the general stability
of the ML structure is due to its « self similarity » : :
far from the centre the structure is quite similar to
that at the centre.
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