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Résumé. 2014 Nous étudions le modèle de Tomonaga pour un système de chaînes parallèles avec les interactions de
Coulomb de longue portée, en utilisant la méthode de bosonisation. Les rôles respectifs de l’interaction écrantée
à longue portée et de l’interaction nue à portée intermédiaire sont examinés dans la fonction de corrélation 2 kF
CDW/SDW. Nous obtenons l’expression complète pour cette fonction dans la limite du couplage faible.

Abstract 2014 The Tomonaga model for a system of parallel chains with the long range Coulomb interactions is
investigated by the bosonization technique. The respective rôles of the screened long range and the bare inter-
mediate range interactions are examined in the 2 kF CDW/SDW correlation function. The accurate expression
for this latter function is derived in the weak-coupling limit.
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It is now well established that the results obtained
on the one dimensional models with short-range on-
chain interactions bear relevance for the understand-

ing of the phase transitions in some quasi one-dimen-
sional conductors [1]. This stimulated the attempts
to give a clear physical interpretation to the effective
couplings which appear in the one-dimensional theo-
ries. In particular it turned out [2] that the attention
should be given to the reduction of the long range
intra and interchain Coulomb forces to the effective
on-chain coupling constants. Recently, one of us

approached [3] this problem by the summation of the
parquet diagrams, using the RPA screened forward
scattering and neglecting the backward interchain
coupling [3] (henceforth referred to as paper I). The
main complications appeared in the forward, Tomo-
naga [4], part of the diagrammatic approach. This
led us to investigate the corresponding Tomonaga

model, using the bosonization method [5] in parallel
with the diagrammatic summation. The bosonization
is one among several techniques [6] which in principle
can give the exact solution of this model. We shall
use it here to determine the 2 kF-CDW/SDW corre-
lation function in the weak-coupling limit, adding
this piece of knowledge to the already existing expres-
sions for the long-wavelength CDW spectrum and
the electron self-energy [7]. The bosonization was
previously used [5, 6] to solve the Tomonaga model
with the constant forward coupling and our approach
represents a physically interesting generalization of
these results to the case of long-range interactions.
Our results support and complement those obtained
in I by the parquet summation.
As in I we shall consider the system of equivalent

parallel conducting chains which are regularly spaced
in a square array, with lattice constants dl, and dL.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphys:01984004502018500

http://www.edpsciences.org
http://dx.doi.org/10.1051/jphys:01984004502018500


186

Interchain hopping and electron-electron interaction
via phonons are neglected i.e. only the forward Cou-
lomb intrachain and interchain interactions are

assumed to be important We are concerned with
the long range interactions which are correctly
described in the point charge approximation. The
corresponding Coulomb matrix element multi-

plied by the density of states per atom and spin,
17F = dli /2 nh VF is

where

and

Here g is the transverse reciprocal lattice vector;
q is the component of the wave vector along the chain,
q1. is the component perpendicular to the chain axis
in the first Brillouin zone of transverse reciprocal
space.

In order to study the role of the strong singulari-
ty (1), which falls in the region of forward scattering
processes assuming that kF &#x3E; dl 1 (cf. I), we write.
the Hamiltonian H in terms of the density opera-
tors [5, 6]

Here PI,2(q, q1.) are the usual Fourier transforms of PI,2(q, I) the density operators for the electrons on the chain
with index I. L is the length of the chain and integration over q1. is to be taken in the first Brillouin zone. In the
Hamiltonian (2) we have omitted the constant terms which are irrelevant for subsequent calculations. Specific
features of the Tomonaga model are that

i) the Hamiltonian is bilinear in the density operators pl(q, qj and p2(q, ql),
ii) spectrum of the free system is assumed linear in q, and independent of q,,
iii) the following commutation relations are valid

(N is the number of chains in the system).
By the straightforward generalization of the usual procedure [6, 8] the Hamiltonian (2) can be diagonalized

by the unitary transformation exp S, where

and

The resulting plasmon spectrum of the system is [7, 9]

The characteristic wave vector in equations 4 and 5 is the Thomas-Fermi value kiF = 8 xv/d £. For) q + q1.l  kTF
the plasmon has strong anisotropic three-dimensional dispersion. For q + q1. I &#x3E; kTF this dispersion merges
into the usual acoustic-like dispersion VF q familiar from the constant-interaction theories [6].
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A suitable method of calculating the response functions of the Tomonaga model is based upon the boson
representation of fermion fields [5]. Following Luther and Peschel these operators can be bosonized as follows

where a is the cut-off parameter of the bosonization. In order to calculate explicitly the CDW/SDW suscepti-
bility form ! I 2 kF at T = 0 which is defined by ixij(x, t) = 0(t)  0 1-[O+(ri, x, t) 02(ri, x, t), t/i;(rp 0, 0)
0 , (rj, 0, 0)] I 0), where 10 &#x3E; is the exact ground state of the system and field operators are in Heisenberg picture,
the boson representations Oli(x), Ó21(X) of the field operators ,(rl x), 2(ru x) are used Following further
Luther and Peschel we obtain after a lenghty but straightforward calculation

Here

and 0, (op are given by (4) and (5) respectively. It can be easily shown that the integrals in (7) are divergent (- oo)
for 0  I ri - rj I  k - I due to the contribution of the q2 + q 2 &#x3E; k 2 integration range. On physical grounds
we can thus conclude that the susceptibility (6) is diagonal in the chain indices [8]. The physical content of the
i = j functions F(x, t) can be seen from the following representation

where u = vF(1 + 2 V0152c)1/2. The dielectric function of the- Tomonaga model

appears explicitly here and the functions (7) contain the screened Coulomb interaction. This agrees with the
use of this interaction in I. For further analysis it is thus convenient to follow I and divide the transverse reci-
procal space into three regions

In the regions B, and B2 the dielectric function is approximately equal to unity, that is, the interaction is
bare in these regions. In the region S (o screened region ») the interaction is either statically or dynamically
screened

Expanding in terms of small v the contributions to the functions (7) of the regions Bland B 2 are respectively

where is the maximum three-dimensional plasma

frequency [9]. The functions (7a, b) are Lorentz invariant (i.e. depend on x + VF t) due to the fact that in the
regions BI and B2 the spectrum cop is a linear function of momentum i.e. mp m VF q.

In order to calculate contributions of the region S to the functions (7) we transform the integration over ql
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into the integration over cup . Integrating by parts in the region defined above and retaining the

leading, Lorentz invariant term we obtain

where q is a constant of the order of unity ( q z 1 ).
We proceed by treating separately the contributions to F [l, 2] from B, and S and from B2. They dominate at

large and intermediate distances and times respectively. Adding (7a) to (7c) and performing the integrations over q
we obtain, using equation 6, the susceptibility for d1,2 = x ± VF t I &#x3E; kTF

Fourier transforming (8) at I k I = 2 kF and taking the limit m - 0, a well known [5, 6] singularity of the power
law type is recovered

The first term in the exponent of (9) comes from the region BI and agrees with the result of I. This term domi-
nates in the weak coupling limit mo « EF (v  1 and/or dl &#x3E; dll). The second term of the exponent in (9) is
provided by the screening range and becomes relevant on approaching the intermediate couplings mo % sF
(v % 1, dl &#x3E; dll). Although it was possible in I to estimate roughly this contribution by the diagrammatic
analysis, the present approach shows that the contribution of the screened range S can be exponentiated in the
correlation function. This in spite of the fact found in I that the contribution of S to ladder diagrams is much
smaller than to the mixed diagrams, relative to the constant interaction case. This means that the mixed dia-
grams dominate the correlations in both cases. On the other hand they are particularly sensitive [10] to the
transverse hopping t 1.’ neglected here by assumption (ii). The result (9) is thus restricted to ro &#x3E; t 1.’ Further on,
B, and S contribute the terms of the same sign to the exponent. The screening thus does not result in an effec-
tive attractive interaction although it reduces considerably the bare interaction (1). The superconductivity
requires other mechanism than Coulomb interaction even in one dimension (cm &#x3E; ti).

Next we calculate the contribution of the region B2. For this purpose it is convenient to replace

exp) by the modified Bessel function Ko(q/kF) on noting that the bosonization method requi-
res [11] a  kg 1. In such a way the logarithmic singularity at small q is properly treated and the integrations
are easier to perform. With q &#x3E; kTF (i.e. q2 + qi &#x3E; kTF) we obtain the following expression for the suscepti-
bility at k.rF &#x3E; I d1,2 &#x3E; k; 1

where

When calculating the Fourier transform of the susceptibility at [ k I = 2 kF we encounter the integrals of
the type
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with z = kF I d, I kF d2 1. The singular part of the Fourier transform of the susceptibility is thus determined
essentially by

The asymptotic expression of the susceptibility for coo  W  BF is in consequence

It shows a power law singularity with the power which itself is logarithmically singular. The result (11), was
first obtained by means of the bosonization method (ct: Ref. 22 of I) and agrees with the calculations made in I
by the diagrammatic technique.

In summary the results of the bosonization method agree with the results of the diagrammatic summation.
Moreover, the bosonization method is simpler and allows us to derive the more precise expressions for the 2 kF
CDW correlation function, which extrapolate better towards the intermediate couplings. This improvement
is obtained at the expense of the backward scattering, which is neglected in the Tomonaga model. As to the
physical relevance of such results, the TTF-TCNQ family seems to be closest to the limit of large forward scatter-
ing [ 12,1 ].
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