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Résumé2014 Une méthode simple pour les calculs des structures électroniques et d’alliages complexes est présentée.
Cette méthode comporte deux étapes : dans l’approximation du cristal virtuel (VCA) nous avons établi un schéma
général d’interpolation des propriétés physiques de l’alliage en fonction de celles de ses constituants purs et des
effets de non-linéarité intrinsèque dans leurs alliages les plus simples (pseudobinaires). Dans la seconde étape les
effets de non-linéarité liés au désordre dans l’alliage sont pris en compte par une paramétrisation d6pendant de k.
Cette m6thode est appliquée aux alliages isovalents ternaires et quaternaires de composés III-V, établissant des
expressions générales de leurs paramètres cristallins et des transitions optiques aux points de plus haute symétrie
de la zone de Brillouin.

Abstract. 2014 A method for simple calculations of the electronic structure of complex crystalline alloys is presented
This method is twostepwise : within the virtual crystal approximation (VCA) a general interpolation scheme is
achieved for the determination of the physical properties of the alloy in terms of those of its pure constituents and the
intrinsic (VCA) bowing effects of their related simplest (pseudo binary) alloys. The second step of this method is an
extension of the Dielectric Method to account for disorder effects in the general alloy, including a k dependent para-
meterization of the extrinsic bowing effects. Applied to the III-V compound-based materials, the general expressions
of lattice parameter and higher symmetry points optical transitions as functions of compositions are derived for
these isovalent ternary and quaternary alloys.
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1. Introduction.

The III-V compounds based isovalent alloys play a
central role in semiconductor physics. The interest
devoted to these materials is due to the wide range of
their applications to opto-electronic devices. Among
them, the quaternary alloys are of great technical
interest due to their flexibility for the realization of
high quality material required for these devices. Such
requirements are fulfilled by an epitaxial growth
yielding lattice matched to the substract for crystal
layers and high quality interfaces in heterostructures.
Yet, in the ternary A1 _ xBxC alloys the electronic
structure (optical gap Eg) and the lattice parameter (a)
are functions of the composition and hence are related
by a unique relation E,(a). The dual requirements of
independent variations of Eg and a require an addi-

tional degree of freedom for adjusting the alloy compo-
sition, i.e. the use of a quaternary alloy. Such flexible
behaviour makes quaternary alloys good candidates
for various applications : Gai _ xlnxAsi _ yPy to detec-
tors [1] and emitters for optic fibre [2] systems, and
solar cells [3], Ga1- xAlxAs1- )’Sb)’ to DH laser [4],
infrared emitting and photo-diodes [5], CCD’s [6].
A general theory of the electronic structure of these

material is still needed Yet, for such complex systems,
direct and simple methods, for the estimation of

important physical properties, may be a useful tool
for the prediction and the realization of required
properties for specific applications [7]. The Dielectric
Method [8] (DM) has been proved to satisfy these
constraints in the case of ternary alloys. However, for
III-V or 11-VI quaternary or more complex alloys,
no such definite method exists. In fact, various schemes
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have been used to evaluate alloys properties [9-11,12].
However most of these methods are based on a purely
geometrical view of the alloy problem hiding some of
the physical assumptions they involve [9-11]. Recently,
pseudopotential band structure calculations have been
performed for the optical gaps of Al1_x_yGaxInyAs
alloys [12] with a pseudo Hamiltonian constructed
within an extended VCA framework. The purpose
of the present paper is to formulate a method based
on the DM idea for the calculation of electronic

properties of general alloys. To this end, an inter-
polation scheme is given which allows the deter-
mination of the physical properties of general alloys
from those of their pure constituent compounds and
of their related simplest (pseudo binary) alloys. The
disorder effects arising from the statistical nature of
the alloying process are treated using a second order
approximation. When the only disorder-produced
intraband interaction is considered the present appro-
ach can be reduced to a parameterized theory of these
effects analog to the DM [8].
The paper is organized as follows : in section 2,

the notation is clarified (subsection 2.1), and the VCA
alloy (2.2) and disorder effects (2.3) are studied The
formal theory description in this latter section is then
applied to III-V compound based ternary or qua-
ternary alloys. Discussions and conclusions may be
found in the last section.

2. Formal theory.

2.1 NOTATION AND ALLOY REPRESENTATION. - In
this section, we consider a general alloy with an
arbitrary number of sublattices and substituents on
each sublattice. This alloy is, thus, based on multinary
compounds, denoted (MC) = (A (1) ... A (i) ... A (s», s

being the number of sublattices. On each sublattice
(i), a given site may be occupied by one of the substi-
tuents A(i’); k = 1, K(’). K(i) is the number of substi-
tuents on the ith sublattice. The atomic distribution,
on each sublattice, is given by the type of solid solution
dealt with. Let X(i’) be the macroscopic composition
of the alloy associated with the A(i)k species.

In the present work, we shall represent the disorder
state in the alloy by the ensemble of all possible values
of the fluctuating composition within cells of a priori
size paving the actual crystal.
The local concentration of the substituants Ar),

say, C(i)k is, in general, different from its macrosco-
pically observed concentration denoted by X(ki). The
crystal potential in this cell is, then, approximated by a
linearly averaged one where the respective weights of
atomic potentials (Vi) associated to the substituants
A(i’) are Ck(i). Such a potential is equivalent to the
potential one should obtain in a macroscopic mixed
crystal in which the concentration of A(i’) is Ck(’), and
which is treated in the virtual crystal approximation.
This latter macroscopic crystal will be referred to as a
subcrystal and is defined by the fluctuating compo-

sition matrix IC,(i)]. The crystal potential in a given
subcrystal is, hence, given by

where I runs on all sites and Ti is the displacement of the
ith lattice with respect to the chosen origin.
He may be rewritten as

where

and

with

Here A£I denotes a chosen substitued element on the
ith sublattice associated with the composition given
by

Ho denotes the ordered macroscopic virtual crystal
approximation of the Hamiltonian, while V depends
on the subcrystal and characterizes the disorder state
in the alloy. These contributions of Ho, and V will
be treated separately in order to clarify the physical
assumptions involved in both treatments.

2.2 GENERAL INTERPOLATION SCHEME IN THE VCA
FRAME WORK : ; INTRINSIC BOWING EFFECTS. - Our

purpose in this subsection is to express in the VCA
framework the intrinsic bowing effects (6’) [8] on the
physical properties (here, electronic) of the general
alloy defined in A, as combinations of those of the
simplest alloys based on the same group of pure
compounds ((MC)).

It must be first noted that the parameters used in
parameterized electronic structure calculation methods
are generally characteristic of the compounds rather
than atomic species. Therefore, it is more useful to

interpolate alloy internal parameters (Q) between
those of its pure constituents rather than those of
atomic species as suggested by equation 2.2a. There-
fore a given parameter Q of the alloy may be written as

where Q((MC)) is the value of the corresponding
parameter in any pure multinary compound (MC)
involved in the alloy formation, P((MC)) is its sta-
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tistical weight This weight is, of course, related to the
concentration x(k) in the alloy of the respective atomic
species A(’) forming the multinary compound (MC).
It can be easily found that

This decomposition (Eqs. 2.5-6) is sufficient for

interpolating the linear alloy parameters such as the
lattice parameter (Vegard Law). For optical transi-
tions (E), a higher (second) order approximation is
needed To achieve this, we shall assume that, under
the VCA, the general alloy is a superposition of the
simplest alloys based on the same group of multinary

compounds (MC). Let {(MC), } be the ensemble of
pure (MC) where all species on the sublattices other
than the ith are flxed and where the ith sublattice is

occupied by any one of the substituents A(k). Secondly,
let ((MC)i, Am(’i)) be any pure multinary compound
formed from any one of the (MC)i’s and where the
ith sublattice is occupied by the only Am(i) substituent
Therefore ((MC)i, A(k), Am(i) may be thought of as any
pseudo-binary alloy where alloying effects occur on
the only ith sublattice using two of the possible
substituents. It is obvious that these pseudo-binary
alloys are the simplest alloys based on the same
(MC)’s as the general alloy. Hence this latter alloy
will be decomposed as a superposition of such pseudo-
binaries. Any parameter Q, thus may be rewritten as

where

The prime means that each (k, m) pair must be encountered only once. Qk,. ((MC)i) is the linearly interpolated
value of Q in the pseudo-binary ((MC)i, A(k), Am(i). 

An optical transition (E) of this pseudo binary alloy displays an intrinsic non linear behaviour 6’ as given by

and

ðtm(MC)i) being the deviation from linearity of E in the considered binary alloy. Therefore, using the decom-
position (Eqs. 2.5-6), we obtain the VCA value E in the general alloy

From equations 2.8, equation 2.9 may be decomposed into a linear part given by

and an intrinsic deviation bi from linearity

P((MC),) is given by (2.6) where x(k) = 1.

Equation 2. l0a yields, as expected, a linear interpolation between the pure constituents. While, (2. lOb)
describes the intrinsic bowing effects in the general alloy in terms of those in the pseudo binaries. It must be
emphasized that the assumption of the decomposition (Eqs. 2.5-6) is consistent with the VCA. However, no
such decomposition is justified when dealing with disorder effects. We shall come back on this point later. Before
closing this subsection let us express 6’ as function of the compositions. To this end, we recall the parabolic
behaviour of 6’ in the pseudo binaries :
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where CI((MC);, Ak‘(i), Am(i) is the so-called intrinsic bowing parameter [8] associated to the pseudo binary alloy
((MC),, Ar), Am(1). Then bi may be rewritten as

This, completely, describes the VCA alloy, at least, within a second order approximation. Let us now turn to the
disorder effects problem.

2.3 DISORDER EFFECTS : ; A GENERAL DIELECTRIC

METHOD FOR EXTRINSIC BOWING ESTIMATION. - In

addition to the intrinsic bowing effects a further
deviation from linearity for the physical properties
(electronic structure) of alloys as functions of compo-
sition must be considered. This arises from the statis-
tical disorder state in the alloy. It is generally referred
to as extrinsic bowing effects. For ternary (pseudo
binary) III-V or II-IV alloys, the dielectric method
(DM) of Van Vechten and Bergertresser [8] has been
proved to be a useful tool for estimating the optical
band extrinsic bowing. Note, however, that the physi-
cal information embodied in the bandwidth parame-
ter in this latter theory was not clearly analysed. This
method can be easily extended to the case of qua-
ternary alloys. This latter approach (Reí 8) assumes
a short ranged fluctuating potential. In the present
section we shall derive an analog but somewhat
different method for complex mixed crystals. The
disorder effects to be studied have been experimentally
proved to be very small compared to the pure crystals
bandwidths [8]. Therefore using a self-energy forma-
lism these effects may be accounted for by the second
order term in the self-energy expansion as a function
the perturbating potential Y defined in equations 2.2-
2.3. The disorder effects are, then, given by the self
energy M(E) as [ 13J.

where GO(E) stands for the VCA green function and
 &#x3E; for the averaging operator upon the ensemble
of subcrystals representing the disorder state in the
alloy. From equations 2.2 and recalling that the only
subcrystal (disorder) dependent quantities in V are
the ç)’s we have

Now let ck ) and vk ) be the conduction and valence
band states associated to the VCA eigen values E,(k)
and Ev(k) respectively co k ) and vo k ) denote
the lower conduction and the upper valence bands at
the same k point of the Brillouin zone. In the following,
we assume, as in the usual DM a short range potential
difference between substitued atoms [8]. We also
assume that disorder induced s-p mixing between
valence and conduction is negligible compared to the

intraband mixing which mainly controls the gap
downward bowing in III-V alloys [14]. The respective
displacements of band extrema co k &#x3E; and [ vo k )
are, thus, given by 

-

Fl’) is the core potential difference between A,(’) and
A(’) i. L1Ev(k) and LBEé(k) are given by similar for-
mulas. We have

where

The BGn(k)’s are momentum eigenfunctions associated
with the nth band and the reciprocal vector G at the k
point. 0 is the unit cell volume. Note that from

(2.14c-d) AEc(k)is negative, yielding a lowering of the
conduction band minimum. Similar equations for

L1Ev(k) should show that the valence band maximum
is raised. This, finally, give a shrinkage of the band
gap. The disorder induced band gap variation is given
by

where the geometric average band width of’valence
and conduction bands AE(k) is given by

for the direct gap semiconductor.
In order to have an explicit expression for bE as a

function of composition, some further approximations
must be made : the virtual lattice hypothesis [8] is
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assumed. i. e., all sublattices are undistorted. In such
cases, it is reasonable to assume (although not neces-
sary) that these sublattices are statistically uncorre-
lated i.e., the composition fluctuations on different
sublattices are uncorrelated We, therefore, have

Furthermore, in an ideal solid solution equation 2.16
may be explicitly calculated (see Appendix) yielding

Yet, when no assumption about the solid solution
type is made, these statistical factors ( çi). ç &#x3E; may
be taken as disorder characteristic parameters [13].
In the present work, we introduce such parameteri-
zation as follows : 

Such that cxl(li) = 1 for ideal solutions and (a(’) - 1)
stands for the deviation from random disorder and

may be though of as a disorder measure. Therefore, for
any direct transition bE becomes

where

are adjustable bandwidth parameters.

These parameters may be chosen such that they
only depend on the substituted atomic species (I, m)
for each gap transition (Table I). When the B "I (k)’s are
assumed to be independent of atomic species and of
the k point (i.e., Bf2(k) = B = 0.98 eV) equation 2.19
reduces for III-V or II-VI alloys to a simple extension
of the dielectric method for the general alloy based
on these compounds. However, in the present work,
we shall fit the Bf2(k) to experiments to include the
variation of disorder effects as function of k.

Table I. - Bandwidth parameters (eV) associated to
each substituek pair for higher symmetry points in the
Brillouin zone (r, L, X w - 

The above described theory will be only applied
to III-V alloys, although it is obvious that all equations
in this section 2 are valid for alloys based on any type
of crystalline multinary compounds.

3. Applications to III-V alloys.

3.1 TERNARY (PSEUDOBINARY) ALLoys : A1-xBxC.-
The III-V compounds form one of the simplest group
of multinary compounds. They possess only two
sublattices (metallic, and metalloid). The simplest
alloys based on them are generally referred to as
ternary alloys though they may be taken as pseudo
binary alloys. These alloys have been previously

Table II. - The intrinsic bowing parameters ( Cl) are calculated from ref.14 and the extrinsic bowing ( C) is obtained
from the present theory. The total bowing to be compared with experimental data (CiExP) is given by Ci = cl + Cr.
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studied using the dielectric method of Van Vechten
and Bergerstresser [8]. This method has been proved
to be a useful tool for determining band gap variation
as a function of composition though the parameterized
scheme used in it might use some improvements as
described in section 2. From the general results in this
latter section the variation of a direct transition Eg,i
is given from equations 2.10, 2.19 by

Here i refers to T, L, X respectively. The BaA are
adjustable bandwidth parameters as defined in sec-
tion 2. For the sake of transferability from one
ternary to another, they are chosen to characterize
the average statistical and optical effects of the
substitution (A, B) for each transition Eg,i. Therefore
these parameters depend only on the pair (A, B) for a
given transition. In what follows, we use the theory
established in reference 14 to determine the optical
transitions of pure constituents and the associate
intrinsic bowing parameter CI(ABC) in the related
alloys. The parameter used in this calculation are
taken from reference 8. The fluctuating potential rms
FB(’) are calculated using the DM formula :

where b = 1.5 and ZA, rA are the valence charge and
covalent radius associated with the atomic species A
respectively. ks is the Thomas Fermi wave vector,
and R is the average covalent radius. The B,(,A) have
been determined from existing data for each pair (A, B),
and are in table I. Some of these parameters need to

be recalculated when more extensive experimental
data is available. From this, the intrinsic and extrinsic
bowing parameters for ternary alloys are fully deter-
mined (Table In and compared with existing expe-
rimental data. It must be emphasized that instead of
determining the B IAI one could attempt to fit the disor-
der characteristic parameter a (A). However, the present
accuracy of bowing experimental determination does
not reasonably allow this. Therefore, the DM view
has been adopted and extended to include the extrinsic
bowing variation as function of k. This k dependence
is analog to the one obtained from single site CPA
calculation which results from the dependence of

E°(k) [15]. Other physical quantities are generally
needed to study semiconductor alloys. These are the
distance between the top of the valence band and the
bottom of the conduction band i.e., EX, EL. The bowing
parameters of these gaps are intimately related to those
of the direct transitions Eo, El, E2. The bowing
parameters of Ex and EL are respectively given by the
half sums of Eo and E2, and Eo and Ei. Hence they may
be calculated using table II.

3.2 QUATERNARY ALLOYS. - The quaternary III-V
compound based alloys are being widely studied,
due to the flexibility they offer for technical applications
to opto-electronic devices. In fact, in these materials
both electronic structure and lattice parameter can be
separately optimized yielding the lattice matching
and the opto-electronic properties required for specific
applications such as multispectral (tandem) solar cells.
These alloys are of two forms : the trimetallic or
trimetalloid (A 1 -,, - YB.,CYD or DA 1 - x - yBxCy) and
the dimetallic-dimetalloid A1-xBxC1_yDy. These two
cases present some difference mainly, when disorder
effects are dealt with.

3.2.1 A1-xBxC1_yDyalloys. - The most widely stu-
died quaternary alloy Ga, -.,In,,As, -YPY belong to this
class. The direct transitions Eg,i in these alloys are
always given by (3. 1 a) where using (2.10) and (2.19)
we obtain

Two things are worth mentioning. First, due to the statistical decoupling of the two sublattices which results from
the virtual lattice hypothesis, the statistical disorder effects becomes additive with respect to sublattices. The-
refore, the total bowing effects in these quaternaries are completely determined once the rms of the fluctuating
potentials in this alloy are determined That is only two calculations using equation 3.2 are required to extend
the results obtained for the ternary to the quaternary alloys of the present type. On the other hand, in these
quaternary alloys, there exists no physical justification to assume that the disorder induced bowing parameters
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Table III. - General expansion of optical gaps (E) as a function of the composition in A, -.,BxC I - yDy. The y( 1 - m)
I r(m) 12

parameter for each sublattice are obtained from (2.19) : y(1 - rn) = Bim The last row corresponds to the!m

lattice parameter expansion.

for the pair of substituents (A, B) is a linear average of the bowing parameter in the ternary alloy A1-xBxC and
A1-xBxD with respective weights (1 - y) and y. The same is true for the pair (C, D). This linear interpolation
for disorder effects is, in fact, incompatible with the general disorder effect behaviours. All coefficients of the
composition products in equation 3. 3 are determined for the test material Ga1- xInxAs1- yP y (see Table III).
In figure 1, are shown the 0.94 eV-isogap contour in the (x, y) plane (curve a) together with the y(x) relation for a
perfect lattice matching ofGa1-xlnxAs1_yP yon InP (curve b) and GaAs (curve c) substrates.

3.3 A,-x-yBxCYD (oR DA1-x_yBxCy) ALLOYS. - To this class belongs AI1_x_yGaxInyAs which potentially
is of great importance for optical communication devices [12]. From equations 3. la, 2.10, 2.19 we have for each
direct transition Eg,¡

Once gain, equation 3.4 is different from the corresponding one in reference 11. Where the intercorrelation
between the fluctuations of the substituents B and C is not statistically coherent with the assumptions underlying
the DM type calculations. As in the preceeding subsection the determination of rms of fluctuating potential
yields the coefficients of the composition in (3. 4) (see Table IV). In figure 2, are drawn the 0.94 eV-isogap contour
in the (x, y) plane (curve a) together with the y(x) relation for a perfect lattice matching of AI1_x_"GaxInyAs
on InP (curve b).

Fig. I - - Gal-xlnxAs1_yPy isogap contour (Eo = 0.94 eV)
in the (x, y) plane (curve a). The perfect lattice matching of
this alloy on a given substrate (a(x, y) = ao, ao is the sub-
strate lattice parameter) yields the relation y = f (x) shown
in curve (b) for InP and curve (c) for GaAs substrates.

Fig. 2. - AI1_x_yGaxIn,As (x + y  1) isogap contour

(Eo = 0.94 eV) in the (x, y) plane (curve a). The perfect lattice
matching of this alloy on a given substrate (a(x, y) = ao, ao
is the substrate lattice parameter) yields the relation y =f(x)
shown in curve (b) for InP.

4. Discussion and conclusion-

In the present paper, we have presented a complete method for calculating the physical properties of general
crystalline alloys. The main approximations have been studied : in the virtual crystal approximation an inter-
polation scheme for alloy internal parameters (Q) (e.g., lattice parameter) and physical properties (E), here
fundamental optical gaps, between those of the pure constituents is described This scheme allows us to determine
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Table IV. - General expansion of optical gaps(E) as a function of the composition in A1
r IDB r,,,

parameter for each sublattice is obtained from (2 .19) :

row corresponds to the lattice parameter expansion.

(*) Due to the lack of experimental data, the bandwidth parameters for the Al-In pair are taken as 1.0 eV.

the VCA or intrinsic bowing effects from those of the pseudobinary alloys based on the same group of pure
compounds. This interpolation scheme is quite general since it does not refer to any specific band structure
calculation method for the determination of the relation E(Q). On the other hand a second order alloy model
has been used to describe the disorder induced (extrinsinc) bowing effects for the general alloys. Though this
method shares it parameterized nature with the well known dielectric method (DM), it is different for the latter
on two points : first, the adjustable parameters involved in our calculation are given a clear physical significance
as embodying the information about the disorder state in the alloy. Secondly, in the present method, the disorder
state is shown to affect differently the alloy band structure at different k points in the Brillouin zone. This effect
is proved to exist even when a short range fluctuating alloy potential is assumed This finally leads to the adoption
of three bandwidth parameters (B) for the higher symmetry r, L, X points, instead of a single one as in classical
DM. This approach has been applied to the III-V ternary (pseudo binary) alloys where the B parameter has
been determined using the existing experimental data. This determination have been made such that they only
depend on the substituents pair dealt with (e.g., Ga-Al ; Ga-In ; ... etc.). It must be emphasized that the accuracy
of such a determination was limited by two factors : (i) the scatter in the reported experimental bowing (ii) the
lack of data for some pairs to which few experimental studies have been devoted e.g., AhIn or P-Sb. The present
calculations gives a better description of the band structure (Eo, El, E2) of ternary alloys than previous calcula-
tions based on the classical DM. The present theory has also been applied to the quaternary alloys. In this case,
the calculations are greatly reduced since most of the needed parameters have been previously obtained in the
ternary alloys. However, all these simplifications are still based on firm physical grounds including a more
correct description of disorder effects with respect to previously published theories [9-11], where a purely geome-
trical approach has lead to somewhat inconsistent assumptions.

Acknowledgments. 

This work was partially supported by the Ministero della publica instrugione (Italy).

Appendix.

The statistical parameters ( k m &#x3E; are explicitly known when a given solid solution type (probability distri-
bution law of the Ck(i) is assumed For instance in an ideal solid solution the respective probabilities of occupancy
of a given site on the sublattice (i) by the Ak(i) atomic species are xk(i). This is a consequence of the assumption
of statistically independent sublattices. Therefore, one can explicitly calculate the average composition at a
given site for all species Ak(i). For instance the site concentration of any Ak(i) is 1 if the site is occupied by A(i) and 0
otherwise. Then, in this case,

and

In this case, one can also calculate the correlation parameter associated with the composition fluctuations
 ç). çi). We obtain
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These equations A. 2 may be written in a compact form as

ðkm is the Kroenecker delta. The factor 2 on the right hand side of (A. 3) arises from the fact that in (2 .13)
each pair (k, m) is considered once in the sum. For non ideal solid solutions, the statistical parameters are
unknown and thus may be taken as disorder characteristic parameters. See section 2.3.
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