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Résumé. 2014 Nous avons mesuré l’aimantation M(H) du verre de spins CuMn 1 at. % à des températures comprises
entre Tc et 4 Tc et dans des champs allant jusqu’a 7 teslas. Un effort experimental particulier a été fourni afin d’éli-
miner au maximum les causes d’erreurs systématiques et de gagner en precision relative. Il a été alors possible
d’étudier la dépendance en température des trois premiers coefficients A1, A3, A5 du développement de M(H) en

puissances impaires du champ $$ . A3 et A5 augmentent respectivement de 3 et 6 ordres
de grandeur quand T varie de 4 Tc à 1,1 Tc. Nous avons pu exprimer ces variations à l’aide d’exposants critiques
(03B3~ 3,25, 03B2~ 0,75 ± 0,25) que l’on peut utiliser pour décrire l’ensemble de nos résultats dans des diagrammes
universels. Le succès de ces lois d’echelle pèse fortement en faveur de l’hypothèse d’une transition de phase verre
de spins à trois dimensions dans les systèmes RKKY.

Abstract. - We present experimental data on the magnetization M(H) of a CuMn 1 at. % in the range Tc~ T ~ 4 Tc,
0  H  7 teslas. We took special precautions in order to eliminate systematic errors and improve the reliability
of the data. It was then possible to study the temperature dependence of the first coefficients A1, A3, A5 in the

expansion of the low field magnetization data in terms of odd powers of $$ ,  in the

range 1.1 Tc ~  T ~ 4 Tc. From the divergence of A3 and A5 (which vary over 3 and 6 orders of magnitude res-
pectively in this range), we derive two exponents (03B3 = 3.25, 03B2 = 0.75 ± 0.25) which allow the rescaling of all
our data points onto a universal function. The success of the scaling argument is strong evidence in favour of the
existence of a phase transition in three dimensions for RKKY spin glasses.
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1. Introduction.

The problem of the spin glass transition [1] arose
when a pathological cusp was observed in the a.c.

susceptibility data at a temperature Tc(w) when
measuring at frequency m [2]. For a long time, experi-
mental efforts focused upon the description of this
anomaly which indicates the onset, at T  T,(w),
of irreversibilities which hamper the determination
of an equilibrium response [3]. These irreversibilities
scale in TI TG with

which implies an Arrhenius law and activated pro-
cesses [4] (Wm. is an activation energy, t is the time
of measurement and T. ’ is an attempt frequency
of the order of iol2 s - 1). T c( ()J) however varies
much less rapidly than would be expected from
equation 1 and its dependence on to has been inter-
preted in terms of a Fulcher law (5) :

The present point of view seems to be that the Fulcher
law describes the frequency dependence of the tempe-
rature of the susceptibility cusp in the high tempe-
rature (i.e. high frequency) range only. For low fre-
quencies, the temperature of the cusp reaches a stable
limit T. larger than the limit TF predicted by the
Fulcher law. This temperature T, is thought to be
associated with the spin glass transition. In CuMn,
it differs by less than 3 x 10- 3 [6] of the value of
Tc(w) measured at 10 Hz.
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The theory has been of a little help for these dyna-
mical studies. With great conceptual and mathe-
matical difficulties a mean field theory (S.K.) was
developed [7]. This theory is faced with unexpected
complications (such as a negative entropy) in the
relevant domain T  Tc. At about the same time
when these problems were apparently overcome [8]
through the introduction of a new concept (an order
parameter which is a function), some authors [9]
attracted the experimentalists’ attention to the fact
that the mean field result was in principle correct
in the domain T &#x3E; Tc(H) (Tr ,(H) is the De Almeida-
Thouless instability line [10]). In this range the theory
predicts non-trivial results which can be checked
in a regime where the experimentalists are not bothered
with the irreversibilities and have therefore access
to the true thermodynamical response. According
to this theory a usual development of the magne-
tization in terms of odd powers of the field:

yields in spin glasses a first order susceptibility A I
which follows the standard Curie law (A 1 = C/T).

But all the higher order susceptibilities A3, As, ...

diverge at T c where the magnetization becomes very
anomalous, its development involving both odd and
even powers of the field H :

More general expressions can be phenomeno-
logically derived [11] which allow the possibility for
the exponents which control the behaviour of M to
differ from those expected for the mean field theory,
while obeying the usual sum rules :

where O(x = oo) = 1 (i.e. for T = T,). In the S.K.
model, P = y = 1 and 6 = 2. The comparison of
these predictions with the experimental data has
been very interesting. In the insulating spin glass
Tii _xVx03, Chikazawa et al. [12] observed an ano-
malous enhancement of the second and third order

susceptibilities (A3 and AS) on approaching Tc by

Table I. - The values of the critical exponents in CuMn’(columns 2 to 6) as determined experimentally are compared
with expectation from the S.K. theory (column 7). I n the lines 3 and 4, we specify the actual range of RITe and T/T,
values utilizable in this determination. The numbers which are underlined have been determined either directly
(Nagata et al., our work) or through a best fit to the scaling law. The other numbers are deduced from the application
of the sum rules which relate the different exponents. The values 6’ and 6" are derived as explained in the text.
The maximum value of the field for which the relation M - Xo H = H1 + 21ð’ remains valid is indicated in brackets.
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studying at 3 OJ and 5 OJ the amplitude of the magnetic
signal associated with a field monitored at frequency to.
In AgMn, Bouchiat and Monod [13, 14] showed,
using an MIH vs. H diagram, that the magnetization
is not described by the same analytic development
at T, and above Tc. Barbara et al. [ 15] using a squid
magnetometer and Berton et ale [16] studying the
magnetocaloric effect have derived scaling laws for
the CuMn and the AlGd systems involving critical
exponents which are compared in table I with the
values predicted for the mean field S.K. model. The
difficulties which explain the scarcity of quantitative
results in such a controversial field are seen at a

glance in figures 1, 3 and 5. The M vs. H data in
CuMn 1 at % shown in figure 1 appear rather trivial
to the eye and suggest paramagnetism. But high field
deviations from strict paramagnetic behaviour are
visible on the M vs. HI T plot of figure 3.
These deviations themselves do not suggest any patho-
logical behaviour, but a plot of MjxH vs. H2 of the
same data (see Fig. 5) directly shows the divergence
of the coefficient of H3 (the initial slope in this diagram,
which is A3 (Eq. 3), varies by several orders of magni-
tude between 4 T, and 1.1 Tc). Notice on this figure
that, in order to determine with confidence the ampli-
tude of the coefficient of the H3 term, we need to
analyse deviations which represent a fraction
of N 10- 2 of the total magnetization. A very good
control of the magnetization, the field, and the tem-
perature is thus necessary in traditional magnetization
measurements [17].

Fig 1. - The magnetization M of a CuMn, .,. % vs. the
field H at different temperature T &#x3E;, T c’ 

°

We will first describe the experimental technique
(chapter 2) which we have developed using our classi-
cal apparatus (extraction technique) in order to

obtain data sufficiently accurate to investigate the
character of the deviations from the Curie law. The

experimental data are presented in chapter 3 to

illustrate in a pedagogical way the main features
of the transition. A scaling law is derived and critical
exponents are determined in chapter 4. The data are
discussed in chapter 5,

2. Technical aspects.

2.1 SAMPLE PREPARATION. - Three ingots of CuMn
(1 at %, 5 at %, 8 at %) were prepared by melting the
constituants in a semilevitation induction furnace
and by quenching the melt in a rotating cylindrical
copper mold 7 mm in diameter.

Samples 20 mm long were then machined out of
the ingots. They were annealed one hour at 1200 K
in Ar + H2 atmosphere and then cooled slowly to
room temperature.

2.2 MAGNETIZATION (AND SUSCEPTIBILITY) MEASURE-
MENT CIRCUIT. - The magnetization was measured
by an extraction method: the sample is moved between
the centres of two counter-wound copper coils

(- 20000 turns) in a constant magnetic field. The
magnetization is obtained by integrating the amplified
emf induced by the flux variation during the extrac-
tion. As we use a very reliable galvanometric amplifier
(gain 103-104) and a high resolution integrating
digital voltmeter (IDVN 521) we only have to deal
with the problems associated with any measurement
of low level dc. voltages. An electrical and thermal
shield protects the room temperature circuit : this
circuit is composed of a voltage divider made with
a few precise ( ± 10- 4) and stable (5 ppm/K) low
noise resistances, a Tinsley switch, and the galvano-
metric amplifier; a low thermal emf solder was used
for the contacts. The resistance of the pick-up coils
and of the leads were measured for each data point :
this allows to accurately determine the gain of the
circuit in the conditions (external field, temperature,
He level...) of the experiment 20 to 30 measurements
were performed for each data point in order to correct
for stray inputs and eliminate statistical errors. The
absolute residual error due to the effect of the mecha-
nical vibrations in the presence of the field and to the
effect of the thermal e.m.f., is less than 10-4 e.m.u.
The resolution is of the order of 10-4.
The pick up coils can also be used as the secondary

signal of an a.c. susceptibility circuit In this circuit,
the primary signal is produced by an additional copper
coil wound inside the superconducting coil which,
gives the main static field is then determined
(with the same conditions of thermometry as for the
magnetization measurement), as the difference between
the two signals which are observed at the two positions
of the extraction.
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Z . 3 MAGNETIC FIELD. - The external field (0-80 kOe)
is produced by a multifilamentary Nb-Ti super-

conducting coil. This device is very stable in the persis-
tent mode and shows only small hysteresis. However,
in order to avoid distortion of the spatial dependence
of the field due to the hysteresis, the present experi-
ments have all been performed in the first magnetiza-
tion regime of the coil. A Hall generator is used to
measure the lower values of the field and to control
its stability over the whole range of field values.
The absolute error is less than 0.3 Oe.
We have taken into account the effective local resi-

dual magnetic field due to the metallic surroundings
and which includes the earth field component along the
z-axis of our magnetometer. Its value is 0.7 Oe. It is
easily determined in the low field, high temperature,
paramagnetic limit when the magnetization of our
sample is very accurately proportional to H (to better

than 10-1). A plot of H vs. I /M then yields a straight) p M / Y

line whose intercept with the H/M axis gives x -1
and whose slope gives the effective value of the residual
field along the z-axis.

2.4 CRYOGENICS. - The sample together with a

capacitance, a carbon resistor and a heater is tightened
by a braid made of copper wires which is connected
by a heat leak to the helium bath. The capacitance
is the field independent reference of our regulation
which ensures temperature stability within 1 mK.

All these devices are contained in an epoxy high
vacuum cell which is slowly extracted pneumatically.
The contribution of the cell and of the addenda, which
in low fields can represent as much as 1 % of the sample
contribution, was determined in a separate experiment
in the same conditions of field and temperature, and
was subtracted from the data.

3. Experimental results.

With the precautions described in chapter 2, it has
been possible to match the difficult conditions defined
in chapter 1 on a properly chosen sample in an appro-
priate range of temperature, and to obtain data which
compete with those obtained with more sophisti-
cated techniques. Most of these data refer to a

1 at. % CuMn sample. This is a typical spin glass
system and the concentration is small enough to
avoid most of the complications which would be
associated with clustering or with the occurrence of a
too large chemical short range order. The concentra-
tion is high enough, though, to ensure a sizeable signal
in a range of normalized T/Tc and HIT, values larger
than those used in previous experiments (see Table I).
We have chosen to identify and measure the tempe-

rature dependence of the three first terms A1, A3 and
As of the expansion of the magnetization in terms of
the field In general two exponents determine com-

pletely the behaviour of thermodynamical quantities
near a transition. In our case, no information can be
obtained from A 1 which is trivial, hence the necessity
to measure A3 and A5’ With two exponents known
it is in principle possible to directly check a scaling
law. Our method permits a total control of what
is being done since we compare terms which have to
correspond to each other in the scaling. This is not
totally obvious when, as in previous work, a best fit
involving many coefficients is matched to a scaling
law which does not present very dramatic variations
in terms of the scaling variable.
The price which we have to pay is a restriction of the

range of the measurement : our accuracy did not
allow us to perform this analysis (i.e. the identification
and measurement of A 3 and A 5) for T/Tc ratios
smaller than 1.1. Admittedly, we thus loose the range
which would have been the most promising with a
traditional phase transition. However a surprising
feature of the spin glass transition which is evident
from the data now available is the unexpectedly large
range of fields and temperature over which a scaling
behaviour is observed.

All the results which we will discuss in the following
correspond to the magnetic contribution of the Mn
atoms. This contribution was deduced by subtracting
the diamagnetic contribution of the Cu matrix from
the total magnetization (Mmatri.,/e.m.u./g = - 0.88 x
10-’ H/Oe [8]).

3.1 PRESENTATION OF THE DATA (QUALITATIVE
APPROACH). - The a.c. susceptibility cusp occurs

at Tco = 10.05 ± 0.05 K in our 1 at % sample (see
Fig. 2). The initial d.c. suceptibility vo = M/H,
measured between T c and 4 T c’ follows quite accura-
tely a Curie Weiss law in this range. We have

xo = C/( T + To). The value of the effective moment
which we can deduce from the Curie constant

(C = N,u2 /3 kB) is equal to 5.45 pB/Mn, i.e. slightly
larger than usually accepted values [19-21]. The

presence of a negative Curie temperature To
(To = - 0.8 K for our sample) is not predicted by the

Fig. 2. - The reverse initial susceptibility xo 1 is a linear
function of the temperature in the T c to 4 T c range. The a.c.
susceptibility data Xac(T)/Xac(Tc) shown in the insert, exhibit
the well known cusp at the temperature T c’
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mean field theory when positive and negative inter-
actions are present with exactly the same probability
(Jo/J = 0). This, by the way, indicates a defect of the
theory and not of our sample. Experiments on very
dilute systems interacting through the RKKY inter-
action show that, in the limit of vanishing concentra-
tions (i.e. when we can insure an exact balance between
positive and negative interactions1 To is negative and
of the order of T.0, both quantities being proportional
to the concentration [21].
The origin of the negative value of To is quantum

mechanical [22] and associated with the fact that

M.2 ff changes from S(S + 1) to S 2 for increasing values
of the moments of the clusters which are responsible
for the paramagnetic susceptibility (see chapter 5).
It is therefore not surprising that the classical S.K.
theory does not account for it. Indeed To depends to
some extent upon the range of temperature used for
its determination [21]; i. e. the Curie Weiss law is
itself an approximation valid over a restricted range of
temperature. However, for increasing concentrations,
an unbalance between positive and negative inter-
actions occurs when the average distance between

impurities becomes of the order of the interatomic
distance. This effect favours the type of order which
ultimately exists in the magnetic material (i.e. ferro-
magnetism in Fe, antiferromagnetism in Mn) and
occurs at about the percolation threshold (- 15 % in
AuFe). However, at much lower concentrations, short
range order creates an unbalance between the statis-
tical occupation of the 1 st and 2nd neighbour shells
which favours the ferromagnetic 2nd neighbour inter-
actions in the alloys of Mn with the usual noble
metals [14, 23]. As a result T o changes from - ac to
+ ac in those systems with an accidental cancellation
at a concentration which is of the order of 1 at % in
CuMn (and much lower in AgMn and AuMn). This is
the reason for the small magnitude of To with respect
to T c in our sample. As far as we know, the magnitude
and the sign of To have no influence on the spin glass
transition itself
We will in the following take account of these facts

by assuming that the Curie Weiss law experimentally
determined in our sample describes the paramagnetic
regime. In practice, therefore, the reference paramagnet
to which we compare our data follows a B,(,uHlkT*)
law with T* = T o + T (BS is the Brillouin function).
The logic of our argument therefore leads us to use

diagrams where our magnetization data enter always
in combination with the reduced variable H/T *. We
therefore introduce instead of (3) the following deve-
lopment of the magnetization :

or alternatively

where Msat = Nu (N is the total number of Mn atoms),

are the numerical coefficients

which enter in the series expansion of the Langevin
function (in the case of a paramagnet: a1 = a3 = as =
a2n + 1 =1). Since, in such reduced diagram, the refe-
rence paramagnet would appear as a unique curve, all
the deviations apparent for example in the figures 3, 4

Fig. 3. - Plot of the magnetization M vs. H showing theT

deviations to a simple paramagnetic behaviour (dashed
line).

Fig. 4. - Plot of M H vs. H . The data depart from the°/rT.) T* 
’

Curie constant C which is obtained in the limit of small
H/T* values. The dashed curve represents the Brillouin
behaviour expected for a paramagnet Notice the change in
initial curvatures which is observed on lowering T towards
Tc’
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and 5 are to be attributed to the spin glass effect. It is
already obvious on the M vs. H/ T * plot of figure 3 that
deviations from paramagnetic behaviour become more
and more apparent for a given H/T *, when T approa-
ches T co. The singular character of these deviations is
emphazised in the M(H/T*)-l vs. H/T * plot of figure
4. The isothermal curves, there, sweep the plane from
a high temperature limit fixed by the theoretical
Brillouin function to the measured limit at T c. Well
above T c the curves exhibit initially the quadratic
behaviour which is expected for a magnetization which
can be developed in terms of odd powers of the field.
But the range in H/T * over which this initial quadratic
behaviour is dominant shrinks on lowering the

temperature, and ultimately vanishes when T reaches
T c. The dramatic character of the variation of the
coefficient a3 of the (H/T *)3 term in the development
of M(H) is best seen in the figure 5 where M(HIT*)-’
is plotted vs. (H/T*)2. This coefficient is thus the slope
of the initial straight line which is seen in our scale to
vary from quasi-horizontal to quasi-vertical near T c. At
the same time the strong curvatures which appear
stress the necessity to include HS terms and higher
powers of H in the expansion of M in order to account
for the magnetization in a given H/T * range when T
approaches T co.

Fig. 5. - The same data as in figure 4 are represented in a

diagram. The slope of the initial

straight line is the coefficient of (H/T*)3 in the development
of the magnetization. It is seen to vary by orders of magni-
tude in our range of temperature.

3.2 COMMENTS ABOUT THE ACCURACY. - The se-

quence of figures 3, 4 and 5 illustrates the somewhat
obvious fact that the lower order terms may be deter-
mined more precisely if higher order terms are taken
into account. For example, figure 3, which directly
presents the initial susceptibility, allows a less accurate
determination of this quantity (the slope of the enve-
lope) than the other two figures. In a M/H vs. H2

plot (Fig. 5), we benefit from a linear extrapolation
from measurements in high fields (where the relative
error is less important) which allows the determination
of Xo to within a relative error of 10- 3. This admittedly
could be done with a linear regression using a compu-
tor. But, unless we are very cautious in this procedure,
we can easily lose knowledge of the range over which
a given limited development is valid and of the way in
which this range varies on approaching T c. Thus the
term in H3 is dominant up to 40 k0e at 40 K and only
up to 400 Oe at 1 l.15 K. Thus, also, figures 3, 5 and 7
show, in a pedagogical way, how more and more terms
in H/T * are requested to fit the magnetization in a
given window of H/T * values when we approach Tc’
This suggests that, at Tc’ it may be necessary to use the
total infinite series with diverging coefficients in order
to fit the M(M) curve over any finite range of H. This is
an essential result of the S.K. equations which state
that both even and odd terms in H are requested in the
development of the magnetization at Tr.

Benefiting from the accuracy gained on Xo we can go
a step further and plot (1 - MIXO H)IH2 vs. H’ to
obtain a straight line of intercept a3 and slope as (the
coefficient of the (H/T*)S term). Small adjustments of
xo (within a fraction of 10- 3) will permit us to reach the
best linearity. a3 is known within a few percent and as
within 30 % (see Table II). A normalization to a3 of
these data in a (1- M/xo H)/a3(H/T*)2 vs. a3(H/T *)2
plot allows us to present these straight lines (Fig. 6) with
intercept 1 and slope a5l(a3)’ by making use of the fact
that a3 varies by 3 orders of magnitude when as varies
by 6 orders of magnitude.

3.3 QUANTITATIVE ANALYSIS. - The values of the

parameters a1, a3 and as determined for the different
temperatures of measurement have been compiled in
table II and their variations with temperature are
shown in figure 7 (right hand side). On this figure it is
seen that ai keeps a constant value (equal to one by
definition of the effective moment p (5.45 /lB») as

expected for paramagnetic behaviour. On the contrary
a3 and as deviate very rapidly from their paramagnetic
value of one on decreasing the temperature. They vary
by 3 and 6 orders of magnitude respectively between
4 T c and 1.1 T c’ and seem to diverge on approaching T c
at a rate which cannot be accounted for by any power
law of the temperature in this range (see insert).
Notice on the same figure (left-hand-side) that as
can be expressed as a power law of a3 : as = a Z*22± 0.05
suggesting that the same variable governs the diver-
gences of both as and a3.
The log a3 vs. log as line extrapolates to a point

where both a3 and as = 1 on the high temperature
side. This is consistent with the fact that the high
temperature limit of the magnetization should be that
of a paramagnet, i.e. it should be represented by the
Langevin function for which a, ’= a3 = as = "’ 1
(see Eq. 6).
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Table II. - T emperature dependence of the first coeficients at, a3, as involved in the series expansion of the
magnetization M in terms of odd powers of H / T* :

Fig. 6.

On this plot, the slope of the initial straight line is propor-
tional to as.(L3 a3)-2. The use of L3 a3 units allows us to
present on a single figure data which vary by 6 orders of
magnitude.

4. Comparison with theories at T &#x3E; ll§

4.1 CRITICAL EXPONENTS FOR THE FIRST THREE TERMS

OF THE DEVELOPMENT. - Our data illustrate in a

spectacular way many of the predictions of the S.K.
model (Eq. 3). Namely, while the first order suscepti-
bility is that of a paramagnet, the terms of higher order
in H in the development of the magnetization (a3 and
as) seem to strongly diverge (see Fig. 7) at the same
temperature T c. The high temperature limit of these
coefficients is the paramagnetic value as predicted
However the observed divergence of a3, can obviously
not be accounted for by the (T - T c) -1 term predicted
by the mean field theory which would also predict as
to vary like (a3)3 near T c’ in disagreement with the
observed a 2.22+0.05 variation.

Fig. 7. - The coefficients al, a3, as involved in the series

expansion of the magnetization in terms of

are represented vs. the temperature in a semi-log plot on the
right-hand-side of the figure. On the left hand side, Log as is
represented in terms of Log a3 at the same temperature.
Notice that the data extrapolate to a point where a3 and as
are both equal to 1 and which should be associated to the high
temperature paramagnetic limit. For T &#x3E;, 1.1 T,, we have
as = a3 2.25 ± 0.05 . The log a3 vs. Log T plot shown in the
insert stresses the failure of any attempt to represent the data
which a power law of the temperature.

As suggested by Suzuki and Chalupa [11], we are
tempted to search for empirical exponents able to fit
the a3 variation. We then seek a function a3(TIT,,) such

in the vicinity of T c.

Unlike previous authors we are not very close to T,.
Figure 7, where the paramagnetic limit a3 = as = ai = 1
appears very close to the data points, suggests that
we might, even, be in a situation more appropriate to
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check the high temperature behaviour of the function
a 3 (T / T c) rather than its divergence art T c. We request in

this limit Restricting the

expansion to its first two terms we write :

which suggests a plot of Log a3 (and of Log as) in
T - r

terms of Log T -:;, Tc. The figure 8 shows the linearity
which is obtained for both our a3 and as data if we
take for Te the measured temperature Tr = 10.05 K
of the susceptibility cusp. We find y’ = 3.25 ± 0.10,

and the exponent derived for the a5 depen.

dence is 2.22 y’ (in agreement with Fig. 7). The fact that
the truncated expansion [7] can fit the data reasonably
well from T -&#x3E; oo down to 1.1 Tc is already surprising.
More surprising even is the fact that the value which we
derive for y’ is the same, within the experimental error,
as the value y that Odin et al. have derived in the same

system using the usual linear scaling variables

(T - T,)ITC and HIT, (rather than (T - Tv )IT and
H/T ) in the close vicinity of T c (down to 1.007 T c) [26].

Fig. 8. - Log-Log plot of a3 and as vs. We have

Of course near and below 1.1 T c the non-linear

variable cannot be distinguished from the

usual linear variable , The use of the former

however apparently allows the extension of the validity
of the simple scaling law from temperatures within
7/1 000 of Tc to the highest temperatures.

This behaviour contrasts markedly with that observ-
ed in ordinary phase transitions where scaling argu-
ments are valid only in a very restricted range near T c.
In any case, from our data only, the divergence of well-
identified coefficients of the expansion of the magneti-
zation in terms of H is well represented by a single
power law over several orders of magnitudes (3 for
a3, 6 for as). Inasmuch as this fact can be considered as
a sufficient proof for the existence of a phase transition.
we surmise the existence of a phase transition in spin
glasses.

4.2 HIGHER ORDER TERMS IN THE EXPANSION OF M.
TOWARDS A SCALING LAW. - We have written the
Taylor expansion of the magnetization in the form [6]

where L2n + 1 is the coefficient of order n of the Taylor
expansion of the Langevin function. We have found
that the multiplicative coefficients a2,,I,l which are
all equal to 1 in the limit of high temperatures, diverge

(at least for n = 0, 1 and 2) like I with

Y1 = 0, Y3 = 3.25, Y5 = 7.5 = 2.22 y3. These coeffi-
cients were derived in a restricted domain of field and

temperature but we may wonder whether it is possible
from the knowledge of these three terms to guess
something about the behaviour of those which follow.
The logic of our argument suggests that we should
iterate the procedure developed in 4.1 in order to
write the higher order terms in the form :

where

and the magnetization therefore as

We have defined and

have introduced the non-linear scaling variable

We have also introduced the quantity

In the scaling argument of Susuki

and Chalupa, this quantity plays the role that the
magnetization plays in the standard argument of
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Widom-Kadanoff [21J for usual phase transition while
h = H 2 plays the r61e of the field associated with the
order parameter q =  Jl2B). In other words, we have
for 9t(h) the classical expression of Widom-Kadanoff :

yielding

with and

i.e. as in equation 5. The exponents a, /3, y, 6 which

govern the behaviour of the thermodynamic quantities
. , ,.,

I - 

T c») stay related by the classical equalities :

We can develop equation 9 as :

The success of the expansion of a3 and as in terms of

. suggests as a working hypothesis the possibi-

lity that equation 10 (with its linear variables
and H/Tc) could be an approximation valid near T,
of our expression 8 in terms of the non linear variable

and HIT*. Equating 10 and 8 near T,

imposes :

The two exponents and y which completely deter-
mine the magnetization can be deduced from the
knowledge of y3 and y5 using equation 11. We have

Within our hypothesis, i.e. on substituting the

v riables H * T - T for the variables H andvariables H/T* and T for the variables T andc

, our version of equations 5a and 5b becomes

respectively :

with

Fig. 9. - Universal plot of [1 - M/xo H] I
11

showing the success of the scaling argument
, , , , ,

for all our data points (H up to 70 kOe, T up to 4 TJ with y = 3.25 and P = 0.75 as deduced from the temperature depen-
dence of a3 and as. The continuous curve 1 and the dashed curve 2 give the asymptotic behaviours predicted by equations 14
and 16 respectively. For P = 1, we obtain a better fit to the expression 14 and an improved scaling.
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Fig. 10. - On the left hand side, Rt - 0 from the experiments is compared to its theoretical value fag(X) = 1 - L, X (asL1 X
derived from the high temperature regime X = 0) in a Log-Log plot for different values of fl. Despite a relative insensitivity
of our data to the values of fl (for 0.5  p  1.05), we observe on this figure a degradation of the validity of the scaling and,
at the same time, of the fit to the asymptotic expression if we try to decrease below 0.7. It is in fact near T, (for X &#x3E; 5
where our asymptotic expression is no more valid) that we may hope to reach a more accurate determination of P. Further

details are seen on the error curves which is shown on the right-hand side for P = 0.95.

or otherwise

The success of the scaling argument is impressive : all
our data ( 1.1 Tc  T  4 Tc, 0  H  7 teslas)
superimpose to fit a unique function of the scaling
variable X which we derived from the two exponents
determined in the (H/T) - 0 limit as may be verified
from the figure 9.
Moreover the method which we used implies that

equations 13 hold in the high temperature limit

where the magnetization

obeyed a Langevin function. In this limit, we can there-
fore make use of equation 11 b which, together with
equation 10, provides us with an asymptotic explicit
expression of the function f(X). We have

This high temperature expansion accounts for the data
in the entire range X  5 as may be seen from figure 9.

On figure 10, we have plotted Log I
given by equation 14, for several values of P within the
limits of errors in equation 12. This figure allows us to
improve the accuracy for the values of B determined
from data with X  1.5 by making use of the data in
the range 1.5  X  5. We observe on this figure that
both the agreement with the theoretical expression 14

and the dispersion are improved if we choose values of
fl closer to the upper limit fl rr 1 of our previous error
estimate. Compare also the scaling of the plots for
B = 0.75 and B~ 1 in figure 9.

4. 3 THE MAGNETIZATION AT Tc’ - The version 13b
of the scaling equation imposes :

where H -&#x3E; 0 at T c (i.e. in the limit t - 0 or X -&#x3E; oo).
This in turn requires

in the same limits.
From the magnetization at T = Tc, it is thus pos-

sible in principle to obtain 6 and hence a relation
(b-1 = B/(y + B)) between and y independent of
our previous determination at T &#x3E; T c. Experimen-
tally we have all the necessary accuracy to obtain a
precise value of 6 from which a precise value of fl-
could be deduced Unfortunately, this determination
seems sensitive to the higher order terms in H which
may follow the initial term in H21ð. This can be seen
on figures 11 and 12 where we have represented the
same data in plots of M(H, Tc)/H vs. H21ð’ and

Log (M(H, T,)IH) vs. H21ð" respectively for the values
6’ and 6" which correspond to the best linearity in
each case. In these figures M jH is expressed in units
of the initial susceptibility at T,(X’ 0 and xo respectively)
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Fig. 11. - M(T,)IX’ 0 H vs. A’(c).(M, HlkTc)0.3S for 3 CuMn
alloys with A’(c) as given in table III. A power law
1 - MIX’ 0 H - H2/ð’ can describe the magnetization at T,
over a large range of field values as predicted by the theory.
Notice the systematic deviations which appear for the three
samples in large fields.

Fig. 12. - The same data as in figure 11 in a

plot with A "(c) given in table III. An exponential law
MIX" 0 H = exp(- A" H 211") can describe the magnetization
at T c in all the range of field values for the 1 at %. Deviations
to this law are observed in the highest fields for the two
other samples.

which is obtained by extrapolating the initial linear
part of the plots to the H = 0 limit Note that in both
cases, the same values 6’ and 6" fit not only the data
for our 1 at % sample but also for two higher con-
centrations (c = 5 and 8 at %), with the values X’(c)
and x"(c) reported in table III. The deviations from
the linearity (for H &#x3E; 20 k0e in 1 at %) in the

MIX’ 0 H vs. H21lJ’ plot are quite small; it is thus not

surprising if an exponential function produces a good
fit in still higher fields (up to 70 kOc for the 1 at %).
The bad point is that the values we obtain for 6’
and 6" are somewhat different With the accurate
determination of y = 3.25 being given, we calculated
p’ = 0.7 and P" = 0.95 i.e. two values which lie
within our previous error for P (see Eq. 12). In fact
we have no real reason to prefer one development to
the other in the absence of a theoretical prediction.
A point in favour of the plot of figure 12, which assumes
MIH - exp(- H 211") for small H, is that it extra-

polates in zero field to a value X" 0 closer to that deduced
from the high temperature determination of the Curie
constant (i.e. xo = 0.579 x 10-6 emu/g rather than
X’ 0 = 0.592 x 10-6 emu/g as compared with the
value 0.568 x 10-6 emu/g which was determined from
the T &#x3E; T, data for our 1 at % sample).
The scaling diagram 9 has been calculated with

y = 3.25 and P fixed somewhat arbitrarly to 0.75.
The asymptotic form (16) of the function f(X) for the
t -&#x3E; 0 (X -&#x3E; oo) limit is represented by a dashed line
on the figure 9.

Table III. - Values of the parameters Xo (initial sus-
ceptibility) and A involved in the development of the
magnetization at T c :

for three different Mn concentration c in CuMn system.

4.4 DiscussioN OF THE METHOD. - Barbara et al.
in reference 15 search for the phenomenological
exponent a(7J which best fits their data (in a fixed and
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relatively broad window of field values H  Ho)
according to an expression of the form

In the framework of the scaling theory this procedure
makes sense at T = Tc where a(7J - 2/6 and at high
temperatures where .a(T) should tend towards 2.
This is precisely what the data show. Between these
two limits equation 17 is more qualitative since as
we saw in chapter 3 more and more higher order terms
become necessary to account for data in a given
window of fields on approaching Tc. Consequently,
no conclusion can be drawn from the temperature
dependence of a.(7). This appears clearly in refe-
rence 25 where Binder and Kinzel analysing their
numerical data for the 2-dimensional short range
Ising model in the same way find a coefficient a«(T)
which apparently diverges at T, = J. One could be
mislead to a wrong conclusion in this system which
does not present a phase transition. To be fair, one
should realize, though, that the claim about the
existence of a phase transition in reference 15 is not
based upon the temperature dependence of a«(T);
it is based upon the success of the scaling argument.
It would certainly be very instructive to everybody
to know whether such a scaling can also be reached.
(within the same experimental uncertainty) using the
numerical data of Binder and Kinzel [25].
Our method has been different and, we believe,

more convincing since two exponents are derived
from the study of the divergence of two well identified
coefficients of the expansion of M(H). The scaling
law is then constructed without further fitting or
assumptions. This imposed a gain of more than one
order of magnitude in the relative accuracy with

respect to previous experimental or numerical data
(compare our Fig. 13 to Fig. 4 of Ref. 25) and, as we
already stressed, a restriction to the T &#x3E; 1.1 T range.
Notice that the range where the scaling was found
to be valid within our accuracy has been considerably

T T

extended through the use of (rather

as the variables of the scaling
v i

argument 
Another method, still, is used in reference 16. The

advantage of the thermal analysis technique which is
used is that it permits a more direct access to the
singular magnetization : y is accurately determined
in the close vicinity of T. Then the scaling law is
reached using reasonable assumptions for p.

It should be stressed that all experiments seem to
agree in their conclusions. A puzzling feature of this
transition (if it is accepted that the observation of a
scaling is a sufficient proof) is the large domain where
this scaling is observed with exponents which differ
from the mean field predictions.

gram shows that an accuracy better than 10-3 on M/H is
necessary in order to conclude on the temperature depen-
dence of the H3 term of the magnetization. Compare this
plot with the figure 4 of reference 25.

We have stressed, on several occasions, the impor-
tance of using non linear scaling variables in order to
improve, as we did, the success of the scaling plots
(compare Fig. 9 to the equivalent plots in Ref. 15).
The critical exponent for the function f (E) is A if

f(8) - A8Â when the dimensionless variable

(T - Tc )/Tc = 8 tends to zero. It is natural to use 8
in the spirit of the scaling procedure which aims at
describing the dominant divergence only. The same
exponent would be obtained with any other non linear
variable which like t = E/(1 + 8) tends to 8 when 8
tends to zero. For example equation 13a which is
illustrated by the figure 9 can be written in terms of
the usual variables

The prefactors A" = (1- E)B and a = (1- e)1-(1+/J)/2
account for non pathological temperature dependences
which do not affect the scaling result They however
permitted to extend the validity of the scaling in a
range between 1.1 Tc and 4 T c where, among other
advantages, the results are less dependent on an
accurate choice of T,. Notice that this does raise a
serious question about the previous evaluations of
the range of validity of the scaling which obviously
should not depend on the choice of the variable.
We have several arguments, none of them totally

convincing, to support our choice of the non linear
variables
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i) It seems natural, in the spirit of the Boltzman
factors, to weigh any field (H or T - Tc) in units
of the actual temperature T and not of the fixed
temperature T,.

ii) We have, on this basis, developed our experi-
mental analysis from figure 3 to figure 6. These plots
conserve the paramagnetic response which appears,
not as an additional contribution of a different nature
from the spin glass anomaly, but as the natural
T -&#x3E; oo limit of this anomaly. Now the well known
scaling equation for the magnetization (our Eq. 9)
can be written :

or otherwise

u(e) = I s I-ly’ll has the dimensions of the moment

associated to the field h a real moment if h H HT T.
as in usual transitions, and the square of a moment if

as in the spin glass transition) ;

vll(I) - [l I (y + 2/1) is the correlation volume ( çd
in dimension d if ç is the correlation length). Observe
that this expression fails to provide the paramagnetic
limit when T -&#x3E; oo while with E and H replaced by

-1 e and -1 H respectively this limit is automatically+ 8 + e 
Y Y

obtained We have

for usual transitions (or Eq. 13 in the spin glass case)
with finite values Jl(t = 1) and vol (t = 1) which can
be ascribed to the atomic limits of the corresponding
quantities.

iii) The remarkable success that we had when we
identified f(X) in its asymptotic limit with the cor-
responding expression deduced from the Langevin
function suggests that we have made more than a

simple interpolation (see Eq. 14 and Fig. 9).
iv) Finally notice that the high temperature limit

is reached with a law which to first order in h can be
written as

which tends to

For usual phase transitions when h = H/T, we
obtain the mean field result

For the spin glass transition where h = (HI T)2
we obtain the S.K. results

In both cases the high temperature Curie tempe-
rature (presumably the mean field limit) TM’F’ is equal
to y T c.

Table IV shows some cases where this relation
accounts for the calculated results with a surprising
success. We are not supporting the conjecture that
TM’F’ - yTc is an exact result but simply suggestions
that our choice of variables might be very pertinent
in cases other than the spin glass transition.

Table IV. - Comparison of y to the Tm-’-/Tr ratio for
the Ising model. The data can be gathered from Stanley
H.E. in « Introduction to phase transitions and critical
phenomena ». Clarendon Press Oxford 1971 and the
references therein (notice that in the case d = 1 we have

I -.

with our variables and y therefore

is undetermined ).

5. Discussion of the results.

The main point of this paper is the confirmation of the
validity of the particular scaling that equation 12

implies : the quantity which is coupled to the field isimplies rather than Ey+B as in usual phase transitions.
We find a similar idea in Neel’s description of the

superparamagnetism of antiferromagnetic particles
[27]. In the superparamagnetic regime, Neel writes
the magnetization of N/n grains, containing an average
of n individual moments each, as

If vacancies or defects affect the internal order of each
sublattice in the grain, Neel proposes to estimate the
giant moment Sn of the grain through a random walk
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calculation, yielding Sn -qip. Equation 18 can

then be developed as

The first order susceptibility is then the same in the
high temperature paramagnetic regime as in the

superparamagnetic regime, when the individual spins
have ordered to form a giant moment, and does not
depend on the size of this giant moment which can be
estimated from the higher order terms in the deve-
lopment of the magnetization. The argument would
then of course remain valid if the size of the moments
was temperature dependent : the argument is a

statistical one, and comes from the fact that the field
is coupled to a quantity which increases as the square
root of the correlation volume (and not like the total
volume as would be the case in a ferromagnet).

Similarly, in the scaling argument of Suzuki and
- 

Chalupa, the field is coupled with ( E 2 rather
than I c I - (0 + I), while the correlation volume increases
in principle like 8 ,- ()’ + 2/J). With large y and small P
values, the condition is not far from being realized.
In fact equation 19 is strictly the fl = 0 approxi-
mation of this model. Since the fl parameter enters.
only at the level of the term of order H 5 in the expan-
sion of M, this « critical superparamagnetic » approach
in terms of non interacting moments diverging like
(T - Tc) -)’ is bound to be valid in the low field high
temperature limit anyway.
The similarities between the two types of argument

seem interesting to us. They call attention upon the
fact that our parameter a3 is closely connected with
the extension of the correlations in the system. It

directly measures the number n of individual moments
which are correlated at this temperature (see Eq. 19).
Notice that this same argument of Neel has also been
used by Cyrot to justify the Fulcher law (28).

6. Conclusioa 

The main result of this paper is the confirmation in
CuMn 1 at. % of the validity of a scaling equation of the
form

with

We have drawn in the (H, T) plane (see Fig. 14)
two lines which each correspond to a particular value
of the scaling variable X. The most important is the
X = 5 line which indicates a cross-over between two

Fig. 14. - Cross-over in the (H, T) plane. In the region I
(x  5) the magnetization can be interpreted in terms of a
Langevin function of magnetic moments which increase
on lowering the temperature and diverge at T,. In the region
II (x &#x3E; 5) the behaviour of the singular magnetization is
dominated by its limits at T c where it has the form X21ð in
low fields. Our isothermal measurements explore the range
of fields (0  H  70 k0e) which is schematized by the
vertical dashed lines at the different temperatures
T,  T  4 Tr. All the data in this range superimposed
on a single universal function which was entirely determined
with the data of the X  1.5 range (Ia).

regimes. For X  5, we may use an explicit approxi-
mation for f(X) which comes from the high tempe-
rature limit when X - H/T and the magnetization
tends to a Langevin function. We can use, in this
regime, a physical picture in terms of superparama-
gnetic clouds, increasing in size on lowering the

temperature and tending to diverge at T, (region I).
For X &#x3E; 5, in contrast, the behaviour of the singular
magnetization 3t(H2) is governed by the limit of

f(X) at T = Tc where it has the form of a power law
X 21ð in low fields : this traduces possibly the defor-
mation of the diverging clusters under the effect of
the field in the saturated regime (region II). In the high
temperature regime, the line X = 1.5 limits the

range of the (H, T) plane (region Ia) where M(H)
js sufficiently defined by the first three terms of its
series expansion in terms of H/T. We have determined
the exponents fl and y of our scaling equation in this
range. With the values found, it was possible to rescale
all our data (T,,  T  4 T,, 0  H  7 teslas)
onto a universal function.
We believe that this is strong evidence in favour of a

phase transition occurring at finite temperature in
three dimensional RKKY spin glasses. The coefficient
a3 of the (HIT)3 term in the expansion of the magne-
tization is a measure of the number of correlated Mn
atoms in the p &#x3E; 0 model which we discussed in
chapter 5. In this approximation, the effective cluster
radius varies by a factor 10, increasing from 3a to 20a
(where a is the dimension of the atomic cell in the fcc
lattice) in our range of measurements. If we include
the data of Odin et ale [26], this number is increased
to 400a when we approach 1.007 Tc.
Our conclusion is not in contradiction with the
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evidence which may be obtained from the low tem-

perature data. We are aware of the fact that many of
the effects which dominate the properties in the
T  T, phase (such as the field, temperature and time
dependence of the remanences and the TLnt scaling
which prevails at low temperature [4]) can be described
in the model of independent particles. These properties
are not characteristic of a phase transition, but they
do not disprove the possibility of a phase transition
(see the discussion in Ref. 4). On examining the
detailed aspects of these properties, we even find
features such as the presence of energy relaxations [29]
at T  T,, or the existence of a Fulcher law [5] (and
the discontinuity that it suggests between two regimes
with different dynamics) which do not fit easily into
a description in terms of paramagnetism.

It is however in the T &#x3E; Tc regime that we reach
more easily reliable time independent data showing
a behaviour which is definitely singular. It is worth-
wile to recall in this respect that there exists a good
quantitative agreement between the experimental
determinations of critical exponents which have been
performed in this range and rely upon the verification
of the validity of a scaling equation.
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