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Résumé. 2014 Des versions améliorées des formules utilisées pour estimer les durées de vie de la désintégration 03B1

(Fröman, Wapstra et al., Viola-Seaborg, Hornshøj et al., Taagepera-Nurmia et Keller-Münzel) ont été obtenues
en modifiant les paramètres additifs pour annuler la valeur moyenne des erreurs absolues. Une nouvelle relation
semiempirique est obtenue en utilisant la théorie de la fission. Elle dépend explicitement de l’écart du nombre de
protons, ainsi que du nombre de neutrons, aux nombres magiques voisins et permet d’obtenir un meilleur accord
avec les résultats expérimentaux.

Abstract. 2014 Improved up to date versions of the known 03B1 decay half-lives formulae (Fröman, Wapstra et al.,
Viola-Seaborg, Hornshøj et al., Taagepera-Nurmia and Keller-Münzel) are obtained by changing the additive
parameters in order to have a vanishing mean value of the absolute errors. A new semiempirical relationship is
derived on the grounds of the fission theory of alpha decay. It takes into consideration explicitly the dependence
on the difference from magicity both of the neutron and proton numbers. allowing us to obtain better agreement
with experimental data.
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1. Introduction.

During the last few years, the number of known alpha
emitters has been increased, mainly by measuring the
activity of new neutron deficient nuclei produced in
heavy ion reactions [1-6]. A new island of alpha
activity in the neighbourhood of the double magic
nucleus 100Sn was studied [7].
Alpha decay competes usually with fission and beta

decay in the disintegration of the heaviest nuclei

synthesized up to now [8]. It is expected to be often
encountered in the superheavy region [9].
As far back as 1911, Geiger and Nuttall found a

simple dependence of the alpha decay partial half-
life, T, on the alpha particle range in air. Now the
disintegration period can be estimated, if the kinetic
energy of the emitted particle, Ea, is known, by using
semiempirical relationships [10-15]. Some of these
formulae were derived only for a limited region of the
parent proton and neutron numbers Z and N = A - Z.
Their parameters have been determined by fitting a
given set of experimental data.

Since then the precision of some measurements was
increased and new alpha emitters were discovered.
Consequently it is interesting to have from time to
time the possibility of changing some of the parameter
values. A better agreement with experimental results
can be obtained by changing the parameters { Ck}
of the various formulae presented below.

In an attempt to improve the description of data
even in the neighbourhood of the magic neutron and
proton numbers, where the errors of the other relation-
ships are large, a new formula with six parameters
{ Bk }, based on the fission theory of alpha decay [16]
have been derived and was briefly presented in refe-
rence [17].
A corresponding computer program [ 18] allows

us to improve automatically the parameters {Ck}
and { Bk } mentioned above, each time a better set of
experimental data is available.
The purpose of this paper is to present the derivation

of our formula and to compare the results of estima-
tions with the measured half-lives.
Our set of 376 data on the strong (favoured) alpha

transitions of 123 even-even, 111 even-odd, 83 odd-
even and 55 odd-odd nuclei, are presented elsewhere
[19].
The released energy Q, is related to E by the equa-

tion 

where Ad = A - 4 is the mass number of the daughter
nucleus. Except in a small number of cases (some iso-
topes of Te, I, Xe, Cs, Hf, Ta, Os, Ir and No), the
Q-values were determined from the masses tabulated
by Wapstra and Bos [20].
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To find the partial decay life time of the most

probable alpha transition

we have used the total disintegration period, T,, the
alpha branching ratio, ba, and the intensity of the
considered alpha transition ip (in percent) compiled
by Rytz [21] and also references [1-4, 6, 7, 22, 23].
The experimental values of T will be denoted by
T exp.

2. New additive parameters in the known formula.

The formula given by Froman [10]

is limited to the region of even-even nuclei with

Z J 84. Q-values are expressed in MeV and T in
seconds throughout in this work.
Almost all parameters { Ck} are negative. Hence

the values - Ck are given in table I. The original
parameter value is called « old » and the new one is
obtained from the condition that the mean value of the

n

absolute error (1/n) L log (Ti/Ti,,.,,)- vanishes in each
i= 1

group of the nuclei mentioned above. The very simple
relationship of Wapstra et al. [11] :

is also valid for even-even nuclei with Z &#x3E; 85.
The formula presented by Taagepera and Nur-

mia [12]

(where Zd = Z - 2 is the atomic number of the

daughter nucleus and CT was allowed to vary for
different groups of nuclei) was improved by Keller
and Miinzel [ 14] to

where HK = 1.61 for even-even (e-e); 1.65 for even-
odd (e-o) ; 1.66 for odd-even (o-e) and 1.77 for odd-odd
(o-o) nuclei.
The equation given by Viola and Seaborg [13]

is of the form

Fig. 1. - The errors of life-time predictions with Taagepera-
Nurmia’s (a), Keller-Münzel’s (b), Viola-Seaborg’s (c) and
Hornshoj et al. (d) formulae for even-odd nuclei.

Table I. - Initial and improved values of the parameters (- Ck).
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Hornshoi et al. [15] have proposed the formula

in which x = 0.538 243 QAd l3/Zd and CH is not

changed in various groups of nuclei, like Cr. of equa-
tion (3) and Cw of equation (4).

In spite of the strong influence of the neutron shell
effects, in equations (3)-(8), the Z dependence was
stressed. The neighbourhood of the magic number
of nucleons is badly described by all these formulae;
in T ¡ T exp diagrams there are negative peaks larger
than one order of magnitude at N = 126 for even N
and at N = 127 for odd N nuclei (see as an example
Fig. 1 for even-odd alpha emitters).

Extremely large negative errors are obtained for
Z = 83, N = 127 (5.6; 5.2; 6.4 and 5.8 orders of

magnitude). For clarity, the consecutive isotopes of a
given element in figures 1, 3 and 4 are connected by a
line segment, and a dashed line is used if one or more

isotopes of a sequence are missing. From N = 60
to 82 there is a gap in the yet discovered a-emitters or
nuclides which are stable against alpha decay. Up to
now only a few components of the new island of alpha
activity, close to the double magic 100Sn, have been
found.

3. A new formula.

By applying the phenomenological fission theory
with the Myers-Swiatecki [24] variant of the liquid
drop model to the alpha decay, it was shown [16]
that the potential barrier, for the split of a particular
parent nucleus into its daughter component and an
alpha particle, is of the shape shown in figure 2,
where E’ = Q + EVib and EVib is the zero point
vibration frequency. For EVib = 0.4 MeV one has

The WKB formula of penetrability leads to

Fig. 2. - The barrier shape for alpha decay.

in which g = (4 ADIA) m is the reduced mass, m is the
nucleon mass and h is the Planck constant.

By choosing two intervals of integration (R., RJ and
(R,, R’) the action integral is split in two terms
K = K; + K5 corresponding to the overlapping and
the separated fragments respectively. The main contri-
bution, Ks, comes from the separated fragments, where
the potential energy is the Coulomb interaction

in which e is the electron charge and Rd = ro AJ/3,
ro = 1.224 9 fm. With the substitution R = R’ cos2 ç,
the integration of K’is performed easily and leads to an
analytical relationship. It is approximated by a larger
quantity obtained by replacing E’ by Q and conse-
quently Rb by Rb = 2 Zd e2/Q. Now K = Ki + Ks
and

The contribution of the nuclear potential is given by
Ki’ which has been computed numerically [16]. It can
be approximated as a small percentage of K,, giving us

where X is different for various nuclides, and it can be
either greater or less than unity. For each of the nuclei
of our set of experimental data one can determine an
« experimental » value

where, after replacing the numerical constants, one
has from equation (12)

Equation (9) becomes

The figures 3a, b, c, d, show the variation of the quan-
tity xexp for e-e, o-e, e-o and o-o groups of nuclei

respectively. For e-e nuclei (Fig. 3a), there is a syste-
matic saw-tooth variation : xexp increases slowly when
N is increased between two successive magic numbers
and decreases steeply from magic to magic-plus-two
neutron numbers. The same thing happens for o-e
nuclei (Fig. 3b), though the dispersion of data is more
pronounced. For e-o (Fig. 3c) and o-o (Fig. 3d)
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Fig. 3. 2013 The experimental values of the coefficient

x = KIK, for even-even (a), odd-even (b), even-odd (c)
and odd-odd (d) nuclei.

nuclei the maximum values of Xexp’ reached at the
magic-plus-one number of neutrons is greater. The
e-o nuclei (Fig. 3c) show a very sharp peak at N = 127.
The very special behaviour of the data for Z = 83,
N = 127 which was observed when the known for-
mula had been analysed, is also present in the figure
3d.

The variation of Xexp’ plotted in figure 3, suggests
that the rising part of x could be approximated by
some simple laws of variation with Z and N : e.g. a
constant value, a first order polynomial or a second
order polynomial. The saw-tooth is obtained if N and
Z are replaced by the reduced variables y and z :

expressing the distance from the closest magic-plus-
one number Ni (or Zi ) :

The parameters { Bk } are found from the fit with our
set of experimental data.

4. The fit with experimental data.

The value of the parameter B1 for the simple constant
approximation of x = B1, can be obtained straight-
forwardly by using the least squares method. The sum
n

L log (TiexpjTi) is minimized with respect to X
i= 1

giving

in each of the four groups of nuclei (n = 123 for e-e,
83 for o-e, 111 for e-o and 59 for o-o nuclei). In this
way the following figures have been obtained :

B1 = 1.002410 for e-e; B1 = 1.016046 for o-e;

B1 = 1.019 613 for e-o and B, = 1.049 592 for o-o
nuclei.
For the first order and the second order polynomial

x = X(y, z) a numerical procedure [18] has been used
in order to find the parameters B = { Bk I minimizing

Table II. - Parameters Bk for the first order and second order polynomials.
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Fig. 4. - The errors of life-time prediction with the present
formula when x is approximated with (a) a constant; (b) a
first order polynominal; (c) a second order polynominal
of 2 variables for even-even nuclei; (d) as (c) for odd-even
nuclei; (e) as (c) for even-odd nuclei and (f) as (c) for odd-
odd nuclei.

the sum of the squares of the deviations. The para-
meter values obtained in this way are given in table II.
The capacity of our formula to describe the experi-

mental data can be judged from figure 4. For even-
even nuclei, figure 4a shows the constant approxima-
tion, figure 4b (the first order polynomial approxima-
tion) and figure 4c the second order polynomial
approximation. The increased error in the vicinity of
the magic number of neutrons N = 126, which is pre-
sent for all known formulae and for the constant X
(Fig. 4a) is practically smoothed out by the second
order polynomial approximation. This behaviour
is only partly achieved for o-e (Fig. 4d), e-o (Fig. 4e)
and o-o (Fig. 4f ) nuclei. Even the very large error of
5-6 orders of magnitude mentioned in section 2 for

Z = 83, N = 127, is greatly reduced, below 0.4 of an
order of magnitude.
An overall estimation of how well various formulae

can describe the experimental data could be quantita-
tively obtained by introducing the standard rms

deviations of log T values :

Even the constant x approximation of our formula
has 0’ somewhat lower than the best of the known

relationships [14]. Of course the second order poly-
nomial approximation leads to smaller standard
deviations.

5. Conclusions.

A relatively reliable estimate of the alpha decay
partial half-life can be made by using semiempirical
relationships. After changing the additive parameters
of the examined formulae in such way that the mean

n

value of the errors (1/n) Y log (Ti/Tiexp) vanishes in
i=l 1

each group of the nuclei (e-e, o-e, e-o and o-o), the
standard deviation, 0’, of log T values is usually
reduced. In this way an up to date version of the known
formulae has been obtained. The Keller-Miinzel

relationship is the best of all formulae, but even this
has an increased error in the vicinity of the magic
number of neutrons N = 126.

This is practically smoothed by the present formula
for e-e nuclei. The shell effects have been taken into
consideration by introducing explicitly the depen-
dence on the reduced variables expressing the relative
distance of neutron and proton from the closest

magic-plus-one numbers. In this way one can obtain
the smallest errors in all groups of nuclei. The new
formula was obtained by splitting the contribution to
the WKB action integral into two parts for the over-
lapping and for the separated fragments. The main
contribution is given by the Coulomb interaction
(separated fragments) and is calculated easily by a
closed relationship. The nuclear force term (over-
lapping region) is approximated as a small percentage
of the Coulomb part with the parameter values deter-
mined from a fit with experimental data. In the future
when a better set of experimental data (more accurate
or more complete) shall be available, the parameters
{ Bk } and { Ck } could be better approximated using
a computer program [18].
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