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Critical wetting : the domain of validity of mean field theory

E. Brézin, B. I. Halperin (*) and S. Leibler

Service de Physique Théorique, Orme des Merisiers, 91191 Gif sur Yvette Cedex, France

(Reçu le 21 décembre 1982, accepté le 16 mars 1983)

Résumé. 2014 En dessous de la température de démixion d’un mélange binaire la présence d’un mur qui adsorbe
préférentiellement l’un des deux liquides peut induire une nouvelle transition, le mouillage. Aux températures
supérieures à la température de mouillage Tw la phase adsorbée par la paroi forme un film macroscopique. Cette
transition a été analysée récemment dans le cadre de l’approximation du champ moyen et, pour certaines valeurs
des paramètres, on observe une transition continue. Nous construisons dans ce travail le critère de Ginzburg relatif
à cette transition, afin d’analyser la dimension critique supérieure dc (au-delà de laquelle le champ moyen reste
quantitativement valable). A cet effet nous caractérisons les corrélations au voisinage de Tw (T ~ Tw) ; en parti-
culier des corrélations à grande distance parallèles à la paroi apparaissent avec une longueur associée qui diverge
à Tw comme 1/(Tw - T). Des problèmes délicats se présentent pour déterminer les interactions effectives des modes
donnant lieu à des corrélations à longue portée. Il résulte de cette analyse que dc = 3 (c’est-à-dire un volume tridi-
mensionnel avec une paroi bidimensionnelle).

Abstract. 2014 Below the consolute point of a binary mixture, the presence of a wall which adsorbs preferentially one
of the two liquids may induce a new transition, the wetting transition. Above the wetting temperature Tw the phase
adsorbed by the wall forms a macroscopic film. This transition has recently been analysed in the framework of
mean field theory, and for a range of values of the parameters one observes a second order transition. In this work
we construct a Ginzburg criterion for this transition in order to determine the upper critical dimension dc (above
which mean field theory remains quantitatively correct). For that purpose we study the correlations near Tw
(T ~ Tw); long range correlations parallel to the wall appear with an associated length which diverges near Tw as
1/(Tw - T). The determination of the effective interactions of the modes responsible for long range correlations
gives rise to delicate problems. The analysis reveals that dc = 3 (i.e. three-dimension bulk, with two-dimensional
surface).
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1. Introduction and summary.

The physics of phase separation in a binary fluid
mixture in the vicinity of an adsorbing wall is very
rich. In particular for some temperature Tw below
the consolute point T, (i.e. in the phase-separated
system) a new transition takes place : the formation
of a film of one of the phases in contact with the wall.
This transition from partial to complete wetting, first
studied by Ebner and Saam [1] and by Cahn [I], has
been observed recently in a few beautiful experi-
ments [2].
The theoretical description of this transition pro-

posed in the original article of Cahn and developed by
numerous authors [3] is based upon mean field theory.
The influence of the wall on the binary mixture can be

(*) Also at Groupe de Physique des Solides, Ecole Nor-
male Sup6rieure, 24, rue Lhomond, 75231 Paris Cedex 05.
Permanent Address : Physics Department, Harvard Uni-

versity, Cambridge MA 02138, U.S.A.

schematized in the following way : (i) the semi-
infinite geometry of the system changes the interactions
experienced by the molecules of the surface layer.
This may be taken into account by an incremental
surface temperature field c localized on the surface
of the wall; (ii) the preferential adsorption of one
component of the mixture induces a difference in the
chemical potential of the two components at the wall.
This effect can be described by a local chemical

potential h1 on the surface. In this paper we consider
only the ideal case, where the conditions far from the
wall are precisely on the coexistence curve for the two
fluid phases. (Hence, we neglect such effects as the
gravitational potential, which complicate the situa-
tion in a real experiment.)

If we use instead the equivalent magnetic language,
we can say that the effect of the wall is described by
the surface temperature c and the surface magnetic
field hl. In particular, if the bulk boundary conditions
far from the wall favour one phase (for instance down-
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spins), and if hj is positive then, at sufficiently low
temperature, a layer of up-spins with a finite thickness
(determined by hi, c and T) may « partially wet »
the surface. For some value of the temperature Tw
the thickness of the wetting layer diverges : up-spins
« completely wet » the surface (1).
The phase diagram obtained in the mean field

approximation as a function of the physical para-
meters hl, c and T (and eventually a bulk field h)
is rather complicated. The (partial to complete)
wetting transition can occur as a continuous or dis-
continuous transition according to the values of the
parameters, with an even more complicated tricritical
point in between as noted recently by Pandit, Wortis
and Schick and by Nakanishi and Fisher [4]. In this
work we focus our attention on the behaviour near a
critical point M of the critical wetting line OA (h = 0)
of figure 1.

Fig. 1. - The phase diagram for a fixed given positive c
and hbulk = 0_. The line of critical wetting OA corresponds
to continuous transitions. The dotted line is the locus of
first-order transitions; A is a tricritical point.

Our main goal was the determination of the upper
critical dimension, above which mean field theory is
also quantitatively correct. The specific results of
mean field theory that we have considered are :

(i) the correlations in the directions parallel to the
wall which diverge with a characteristic length

(ii) the distance of the interface to the wall, which
diverges as 

(iii) the additional surface tension of the interface
ð.E(T), due to its binding to the wall, which behaves as

(1) In using the magnetic analogy, one must disregard
effects which arise from the discreteness of the underlying
lattice. Thus, for d &#x3E; 3, there will be no capillary waves at
the interface of the discrete magnetic system, and our calcu-
lations, which depend on capillary fluctuations, would not
be applicable to that system. For d = 3 the discrete system
is probably equivalent to the continuum system considered
here, provided the temperature is well above the roughening
temperature of the magnetic interface.

We show that the upper critical dimension de is

three, i.e., a three-dimensional bulk liquid with a
two-dimensional interface. In three dimensions, there-
fore, one would expect corrections to the above mean
field theory results sufficiently close to Tw. The ana-
lysis for three dimensions will be presented in a sub-
sequent publication [5].
By way of comparison with the mean field formulae,

we quote the results for a two-dimensional system
(one-dimensional interface) obtained from the « solid-
on-solid » model [6]

It should be emphasized that the analysis in this
paper presupposes that all interactions are short-

ranged. The van der Waals forces present in real

systems are not short-ranged in this sense. Sufficiently
close to T w the van der Waals forces will become
important, and then even the mean field behaviour
will be modified.

1.1 OUTLINE OF THE METHOD. - The procedure which
we have followed, is quite standard. We first cha-
racterize the mean field correlation functions.

Specifically, we take a continuous Landau-Ginzburg-
Wilson Hamiltonian for the system; the mean field
profile is the stationary point of this Hamiltonian, and
correlations are obtained from the second variation of
the Hamiltonian at the mean field solution. The dia-

gonalization of the corresponding Green function
operator may be done explicitly. In the vicinity of the
wetting temperature Tw (in the region of partial
wetting T  TW) long wavelength excitations of the
interface appear (the so-called capillary waves) which
are responsible for a diverging correlation length C;w.
This length goes to infinity as C;w = C;o(T w - T)-1;
this shows already that the wetting transition is
somewhat different from usual critical points, where
the correlation length diverges as T - Tc ,-1/2,
in mean field theory.
The next step consists of the use of a generalized

Ginzburg criterion which reveals the upper critical
dimension [7]. Let us review how the argument goes
for an ordinary Curie point. The first correction to
mean field theory is given by

Taking into account the shift of T(’) due to fluctuations
(i.e. we redefine Tc by ç-l(Tc) = 0), we obtain
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which shows that above four dimensions v remains
fixed to 1/2, since the integral in (2) converges at low
wavenumber down to Tc (it also gives an estimate of
the size of the critical region below four dimensions).
This calculation relies on two ingredients : (a) the
mean field Green’s function [q2 + T - Tc]-I; (b) the
order-parameter self-coupling uo. For the wetting
problem we have determined the Green’s function,
and in particular its singular long wavelength modes
near T w. In addition, we had to determine the effective
interaction of these singular modes. A naive calcula-
tion, which would take into account the singular
modes only, would lead to conclude that the upper
critical dimension is five. However, it is shown below
that it is incorrect to consider only the singular modes,
even near Tw. The non-singular modes have the effect
of modifying the self-coupling (or effective interactions)
of the long-wavelength modes and these effective
interactions vanish as (Tw - T)2. As a consequence we
obtain that the upper critical dimension is three (instead
of five). Let us note that above three dimensions the
interface remains smooth up to T,. Indeed the capil-
lary waves of this interface tend to restore near Tw

the translation invariance which is broken by the
semi-infinite geometry : the interface becomes delo-
calized. However for d greater than three, these

capillary waves leave this liberated interface smooth.
The three-dimensional situation is more subtle. For a
discrete model, or for an adsorbed solid, the wetting
transition may occur above or below the roughening
temperature TR of the infinite system. In our conti-
nuum model TR is zero : the capillary waves are
always roughening the surface.
From the analysis of the effective interactions we

construct an interface displacement model for a

(d - 1 )-dimensional interface (see final section, below).
This model will be further analysed in a forthcoming
publication [5].

2. The model and the mean field profile.
We consider a Landau-Ginzburg-Wilson Hamilto-
nian A (= PH) in d dimensions for a one component
order parameter Ø(z; pi, p2, ..., pd -1 ) below the bulk
miscibility temperature Tr (Curie point in the magne-
tic analogy), and limited to the semi-infinite half-

space z &#x3E; 0 :

in which the normalization is such that i = - (T -
Tc)jTc, - M is the bulk spontaneous magnetization
(M = ’(6 ’Cjg)1/2 at the mean field level) h, is the
surface field and c the surface temperature (c is assum-
ed to be positive throughout this work; this is the
normal situation for a semi-infinite magnetic model,
or for a mixture in which the surface layer has less
tendency to phase separate than the bulk). As usual
we shall speak as if r, h, and c were the physical
parameters, but the true temperature or fields are
related to these effective parameters with some

distortion. The partition functions, the correlation

functions, etc... are defined by statistical averages

with the Boltzmann weight exp - (A), over the

order-parameter distribution. In fact the Hamilto-
nian (3) is still ill-defined : VO will have in general
a 6-function at z = 0 and the product 0(z) (VtP)2
is not defined. We shall restrict ourselves to order

parameters CP(z, p) which satisfy the boundary condi-
tion

This has the effect to makes

to z = 0 since

well defined down

and the surface variation term disappears if (4) is used.
Within the mean field approximation we look for a

fluctuationless solution, i.e. a minimum tPc(z, p) of A

which satisfies the boundary condition (4) and

approaches the bulk magnetization - M far from
the wall. It is the solution of the equation ðAjð4&#x3E; = 0,
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and since there is a translation invariance in the
directions parallel to the wall, Or is a function of the
single variable z, satisfying the differential equation

A first integration, taking into account the asymptotic
condition at z equals infinity, yields

We follow here Pandit and Wortis [3a] and represent
graphically equation (5’) with a plot of 0’ c as a function
of Oc (keeping in mind that Oc(z) is decreasing from
the wall to infinity). On figure 2 one can see the two
parabolas corresponding to equation (5’) and the
straight line B which is the image on this plot of the
boundary condition (4). If the slope of B is larger than
the slope of D, the tangent at the point (Oc = M,
0’ c = 0), there is a single intersection , of B with the
parabolas. This occurs for

Fig. 2. - -P’ c as a function of ø c. The wall boundary condi-
tion is the straight line B. The dashed line D tangent at
0’ c = 0, Ov = + M, is the separatrix between second-
order and first-order transitions.

which is the condition for having a second-order
transition. We shall restrict ourselves to this case.

If the temperature is increased, T and M decrease,
and, if hi and c remain fixed, the point (Oc = M,
4Y§ = 0) will move towards the line B. When it reaches
the line B the thickness of the wetting layer diverges.

This occurs when (cM - hl) vanishes, i.e. for a tem-

perature Tw(hl, c) defined by

For temperatures in-between T,, and Tc the
thickness of the up-spin layer remains infinite and a
finite negative magnetic field h bulk is necessary to

keep the interface within any specified finite distance
of the wall. The profile is depicted on figure 3.

The explicit solution to (5) is of course (for T  Tw)

with zo determined by (4) :

When T approaches
diverges as

Finally we can compute the surface tension which
is the free energy per unit area. (Note that we have
subtracted from our definition (3) of the free energy
the (constant) contribution of a free interface).

in which 0,, = M tanh.-.,/T/2 zo is the magnetization
on the wall. It is then elementary using (5) and (8), to
derive

Fig. 3. - The mean field profile. (a) T  T w ; (b) T c &#x3E; T &#x3E; Tw : the thickness zo is proportional to log l/hbulk.
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and to verify that equation (9) for zo is nothing but
OZ/OiP, = 0. Expanding AZ near T w we obtain

If we define the exponents v and a in the usual way, as

governing ç and the surface tension, mean field yields
v = 1, a = 0 ; hyperscaling is satisfied for an (inter-
face) dimension 2, i.e. a bulk dimension three. It
is thus not surprising that we shall obtain in the follow-
ing sections dc = 3.

3. Mean field correlation functions.

In order to characterize the correlations, we have to go
beyond the single saddle-point approximation which
we used at the mean field level. Gaussian fluctuations
of the order parameter around the profile 0, have
to be considered. Let us write

and the boundary condition (4) imposes upon x the
condition

We expand the Hamiltonian A to second order in X

in which

The Green function G(x1, x2 ) is given by

an operator kernel inverse being meant of course in
the last equation. We shall give explicitly below the
result for G, but it is helpful to characterize the eigen-
modes of G, or of A (2). A Fourier transform on the
(d - 1) variables p parallel to the surface is naturally
performed first and we then look for eigenmodes
of A (2)

with pn regular at infinity, and constrained by (12)
at the origin. With the notations

we have

The potential - 6/cosh 2 y, limited to the half-space
y &#x3E; - /r/2 Zo (see Fig. 4), has two bound states
COn = - xn, n = 0,1 ; for large Zo Ko z 2 and K1 ~ 1.

The wave-functions are

Fig. 4. - The potential which gives the eigenmodes of the
Green’s function (Eq. (18)), and its two bound states.

with xn determined as the positive roots of the equation

In addition there is a continuous spectrum wn &#x3E; 0.
Therefore the spectrum of A (2) consists of the lowest
states qJo(z) exp iqll.p with eigenvalue co = q 2 +

1 

and the excited states qJn(z) exp(iqll.xn)

with eigenvalues en : =

nity of TW (large zo)

. In the vici-
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and thus

whereas E remains larger than 2 + 3;r for

n &#x3E; 1. Let us note that the « mass » term of Eo(q) is
small near Tw provided (i) C2 remains much greater
than 2 iw, i.e. we are not looking at the vicinity of the

tricritical point A of figure 1, (ii) TW remains well
below Te, i.e. hi is not too small and we are not looking
at the vicinity of the Curie point 0 of figure 1. There-
fore long-range correlations are induced by this
n = 0 mode for q small and T close to T w. They
correspond to the propagation of long wavelength
excitations along the interface (capillary modes). At
long distance the Green’s function, i.e. the correlations
are dominated by this lowest mode

Thus if we study the correlations between two points at fixed distance from the wall but at large separation in
the direction parallel to the wall we obtain, in the vicinity of TW

These long wavelength modes give a correlation length
in directions parallel to the wall

This is in contrast to the usual v = 1/2 mean field law,
ç oc 1 T - T, 1-1/2 that one finds for a conventional
critical point.

This wetting transition corresponds to a restoration
of a broken symmetry : in the infinite system transla-
tion invariance would leave the location of the inter-
face undetermined (the parameter zo of Eq. (8) would
be arbitrary). The low qll modes which translate and
distort the interface would thus be gapless. In the semi-
infinite geometry, the wall breaks translation inva-
riance : long wavelength fluctuations of the interface
are supressed at low temperature by the wall. However
at Tw, the energy-entropy balance for the interface
favours a liberation of the interface; zo becomes

arbitrary and translation invariance is restored.
Before we leave the subject of correlation functions

we note here the exact solution for the Green’s function
and not simply its leading mode approximation (23)
(indeed we shall see later on that we need to go beyond
this approximation). The result of a straightforward
calculation which consists of inverting A (2) given by
equation (14) in the space of functions satisfying the
boundary condition (12) yields

with

This representation is not well adapted to the qll = 0
(w = 2) Green’s function. It does have a limit, but it is
more convenient to use for qjj 11 = 0 the alternative
form :

with

4. The upper critical dimension.

In order to complete our program, we have now to
determine the effective interactions of the singular
mode n = 0, qll small, T near Tw. At first sight one
could conclude that a replacement in all diagrams of
the full Green function by its leading form (23) is
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legitimate. Specifically this would mean that if we

expanded x(z ; p) (see Eq. (11)) in terms of the eigen-
values cpn of the Green functions

we would keep the n = 0 mode alone for x. If we wrote
a Taylor expansion for the Hamiltonian

and if we kept only the singular mode

we would obtain

in which

Near T, 1 - K 2/4 vanishes as (T w - T)2 (Eq. (21 )),
and since zo -+ oo, CPc(z) is close to an odd function,
whereas the limit of qJo(z) is even (for Ko = 2 Eq. (19)
gives To ~ 1/cosh2 (z - zo)). Therefore U3 vanishes
near Tw (in fact as (Tw T)2) and U4 remains finite.
A conclusion on the basis of this computation would
be that we have recovered for the À-o(P )-mode an
ordinary critical model with d replaced by (d - 1) and
(T - TJ by (Tw - T )2 ; hence the upper critical
domain would be dc - 1 = 4, with the usual Ising-
like E-expansion below four dimensions.
However this whole line of argumentation (which

was our first reaction) is wrong. The first reason is that
near Tw we expect translation invariance to be res-
tored ; a simple translation Zo -+ zo + bzo of the

profile 0,(z - zo) should not cost any energy. But the
mode lpo(z), in the large zo limit, is precisely this « zero
mode » of the profile for the infinite volume geometry
(TO(z) - 0’(z - zo)). Consequently a constant

zo large
change in Ao should not cost any energy and therefore
we expect that all the vertices of the effective Hamil-
tonian for Ao should vanish for constant À-o ; therefore
ueff should also vanish at Tw and it should not be
given by (33). A more technical reason explaining
why the consideration of the singular mode alone
is not sufficient, may be based upon a study of the
structure of the full Hamiltonian (29), keeping now
all the modes :

The vertices are given by similar formulae

etc... The leading diagrams which control the sin-

gularities near Tw are obtained by exchanging the
n = 0 propagator, provided the corresponding vertex
does not vanish near Tw. For instance we have seen
that u3o,o,0&#x3E; vanishes near Tw because for large zo,
TO(z) is even whereas 0,, is odd ; therefore if we take
an excited state such as ({Jl (z) (which is odd for large
zo) u3o,o,n does not vanish and the massive modes
are as important as the massless ones. Therefore in
order to derive the correct effective Hamiltonian
for the ho-mode, we have to take the trace over the
A,,-modes with n &#x3E; 1, in the partition function

This is clearly a difficult task but we may proceed
through a loop-wise equation. At the tree level we
would have 

in which the index on the line refers to the eigenmode
of the Green’s functions. This graphical equation
means that

Using (38), and the spectral decomposition of the
Green functions
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we obtain

The functions cp c’ ({Jo, G are given explicitly by the
equations (8)-(9), (19)-(20), (27). Therefore the calcula-
tion is reduced to quadratures. In the limit of T
approaching TW the difference between the two terms
in (40) vanishes as expected (again because at TW the
interface becomes free, and for an infinite geometry all
the terms generated by (36) without powers of ~03BB0
should vanish). An extremely tedious calculation
leads to

Similarly all the higher effective interactions (US)eff’
(U6),,ff, ... generated by the partial sum (36) over
the massive modes will vanish at Tw as ( Tw - T)2;
(it is clear from the previous arguments that they
have to vanish; they vanish as (Tw - T)’ because the
differences between the semi-infinite geometry and
the infinite one are proportional to (Tw - T)2 ;
for instance

and I/cosh’ y is the « zero-mode » of the free inter-
face problem).

In fact we expect a cross-over near Tw between
our model and interface model of the Wallace-Zia [9]
type which involves powers of Vho only. The effective
action should thus look like

in which F(À-o) is some power series in Ao.
Consequently corrections to mean field theory for

the critical wetting problem will be drastically modified
by the vanishing of the effective interactions at T w.
For instance let us consider the correction to the mean

field correlation length Çw at first order in (U4)eff;
we obtain

Since (u4)eff vanishes at Tw there is no shift of T w
due to the fluctuations. Furthermore, for (d - 1) &#x3E; 2
the integral over q II converges for small q II even for
T = T w. Therefore since (u4)eff vanishes as (T w - T)2
the only effect of the fluctuations is a modification
of the amplitude jo of the singularity. Any interaction
term (U5),ff, (u6)eff’ etc..., vanishing as (Tw - T)2
leads to the same analysis in perturbation theory
they yield integrals such as the one in equation (44)
which have no effect on the mean field behaviour above
three dimensions. Similarly a different choice of the
initial Landau Hamiltonian (3) with higher powers
of the order parameter would not change our result.

5. Three dimensions.

If d = 3 the integral in equation (44) diverges logarith-
mically near Tw. This has two effects :

(i) Mean field theory is not valid when the tempe-
rature is too close to Tw. There is a critical region in
which fluctuations break the mean field behaviour
and mean field theory is applicable only if (TW - T)

A

is large so that

The scale of (7l - T) is given by equation (22) for
eo(q II) ; the integral is cut off at large q by A, the inverse
of a typical interatomic distance. This condition implies
that Ln [const. (TW - T)2 / A 2] 1 remains small.

(ii) Higher order interactions (us)eff’ (U6)eff5 ... will
contribute higher powers of logarithms; from this
infinite sequence of logarithms many behaviours

may be generated and this approach does not allow
us to control the nature of the three-dimensional

singularities.

6. Interface displacement model.

In order to make more explicit the previous results
we can construct directly a displacement model in
which the dynamical variable is the position C(p)
of the interface. The effective Hamiltonian

reduces, for a uniform C(p), to the free energy of the
interface, i.e. the surface tension ðE(Øs).

Indeed we have already noted that the location
of the interface is given by the minimization of this
surface tension with respect to 0. ,, with 0. =
M tanh C Jt1i. Near T w, the interface is far away



783

from the wall and an expansion of AL(OS) for large
yields

with

The mean field phase diagram is easily reproduced
from this potential V(C) [8]. The critical wetting line
is A = 0, B &#x3E; 0, and T  Tw corresponds to A &#x3E; 0.
The first order line corresponds to B  0, B2 = 4 AC.
In order to study the critical wetting transition we
can take the simplified form

This potential is very repulsive for negative, ; this is
a reminder of the impenetrability of the wall. As

long as A is positive the interface remains attracted
by the wall.
The minimum of the potential occurs for a value zo

determined by the equation

Zo goes to infinity at fixed B, when A vanishes ; this
result coincides with our previous mean field treat-
ment (9) since A vanishes linearly as (TW - T). Simi-

A2
larly the « mass » term m2 = V"(z - A p2 vanishesy o) 2 B
as ( Tw - T)2 in agreement with (25). The effective
interactions VR)(ZO) that one would encounter in a
systematic expansion about the mean field solution
, = Zo are all proportional to A 2, i.e. to (TW - T)2;
this was indeed expected on the basis of our previous
analysis. It is much easier now to understand why
dc = 3. Furthermore this model may be solved

exactly [5] for the case d = 2 (one-dimensional inter-
face) and one obtains Çll ’" (TW - T)-2, Zo - (TW -
T)- 1, in agreement with the results [6] of discrete
solid-on-solid models. The analysis of the three-
dimensional situation is more delicate and it will be

reported in a subsequent publication.
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