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Résumé. 2014 Les paramètres de liaisons fortes ont été calculés pour les métaux de transition Fe, Co, Ni, Cu, Pd,
Pt, soit pour décrire le métal pur (liaisons métal-métal), soit pour décrire un couplage avec des atomes légers,
azote, carbone, hydrogène, oxygène, soufre. Pour cela, on utilise un calcul atomique self-consistent Hartree-
Fock-Slater de type Herman-Skillman avec une correction de potentiel type Slater pour tenir compte des effets
d’échange et corrélation. L’étude des variations des paramètres avec les distances interatomiques montre que
ceux-ci décroissent exponentiellement avec la distance. Finalement les effets des intégrales de champ cristallin
et des intégrales à trois centres sont discutés.

Abstract. 2014 Calculations of the tight-binding parameters have been worked out for Fe, Co, Ni, Cu, Pd, Pt bonds
either in metal-metal bonds or in chemisorptive bonds with oxygen, sulfur, hydrogen, nitrogen, etc. Parameters
are extracted from Herman-Skillman atomic self-consistent Hartree-Fock-Slater calculations with 03B1-Schwartz
correlation values. Variations of these parameters with adsorption distances are established. Surface crystal field
effects and the role of three-centre integrals are discussed.
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1. Introduction. - The most accurate way to study
bulk properties of crystalline solids is to use « k-space »
methods as APW or KKR in band calculations. But
these methods are huge and computer time consuming.
For this reason we can observe a « renaissance of the

tight-binding » approach [1], less sophisticated and
sufficient for investigation of qualitative properties of
solids, as is the case in adsorption and catalysis field.
According to Slater and Koster’s [2] ideas, the bulk

properties, obtained by accurate calculations, can be
adjusted in the tight-binding approximation by an
interpolation scheme. So obtained, the dd Q, ddn, dd6
parameters may also be used to study unrelaxed sur-

faces, kinks, holes, steps, etc., in the direct « R-space »
[3]. But for an approach of surface relaxation, chemi-
sorption, etc., they are not adapted as they are deter-
mined for a given interatomic distance.

In order to study these topics, we start the whole
process by atomic calculations based on the same SCF
Herman-Skillman computations as for accurate me-
thods (Hartree-Fock-Slater Hamiltonian). We apply
this method (in the same spirit as X,,, starting process)
first to a metal atom, secondly to an adsorbed one.
This permits us to obtain the same degree of approxi-
mation for adsorbate and substrate calculated atomic
properties. Then we can use these results (numerical
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functions) to directly build up the interatomic para-
meters, required to a further tight-binding approach
of chemisorption.
The aim of this work is to present a study of these

parameters using the tight-binding spirit where only
interactions between the first nearest neighbours are
considered. The way the diatomic parameters are

extracted permits us to draw a parallelism between
tight binding and Hfckel frames and to consider with
more accuracy the problem of the non-diagonal
Hfckel-type Hamiltonian and its lack of realism for
heavy compounds. Another by-product of the alge-
braic attempt of parameters calculation is the great
anisotropy of errors in the algebraic basis set fitting :
results are good for Q-type multi-dzeta STO integrals,
poor for n-type and fairly bad for 6-type interactions.
So, for accurate ab initio angular effect calculations,
we must use pure numerical functions.

2. Parameters entering : tight binding approximation
developed in heteronuclear case. - As reviewed in
many books, the tight-binding method uses the same
approximation level as the one of Hfckel. For this
reason, as for the homonuclear case of the Hfckel
frame, we start by briefly considering the H’ bond,
but we develop the formalism for the case of two
different atoms A and B (Fig. 1). The Hamiltonian
for the complete system will be written, R being the
distance between two nuclei :

This is the correct Hamiltonian H = T + V for the
simplest case, that of Hi . In a realistic case, the mono-
electronic approximation leads to the same type of
equation, but for the potential V we must consider

Fig. 1. - Definition of electron coordinates versus a two
atoms system.

the expression derived from atomic numerical calcu-
lations :

where f, g, h are screening functions.
We assume that t/ln will be satisfactorily approxi-

mated for the Schr6dinger eigenvalue energy En

by a linear combination of atomic orbitals (LCAO)
with a minimal basis set. In the case of H2 this gives :

(~a and (~b being atomic eigenvectors of atoms A and
B associated with atomic energies Ea and Eb respec-
tively.

Let 

be the overlap integrals.
We can then write in the simplest formalism of Hi :

As usual, we label aa and at « crystal field integrals »
(Coulomb integrals in Hiickel method)

and

and we label V’ and V b.  the hopping integrals »
(resonance integrals in Hfckel method)

and three-centre integrals :



435

Table I. - a parameter values used in our calculations
taken in [5a] for the elements from H to Cu and in [5b]
for Pd and Pt.

3. Details of calculations. - 3 .1 INTRA-ATOMIC
ELECTRON REARRANGEMENTS. - The atomic wave-

functions and the potential Vi were obtained by a self-
consistent atomic calculation similar to that of Her-
man-Skillman [4]. To take into account the exchange-
correlation effects, we used the Slater local exchange-
correlation potential, a.pl/3, where p is the electronic
density and a is a prefactor (Table I). The prefactor a
is determined in the spirit of Xa-method through a
minimization of the difference between Hartree-Fock-
Slater (HFS) and Hartree-Fock (HF) energies [5].
As we are mainly interested in catalysis by chemi-

sorption in VI B metalloid group on metallic group
VIII surfaces with defects : kinks, holes, steps, it is
not possible for us to use a jellium model surface
which works, for instance, with Na or Cl adatoms on
simple surface of Al [6] in the spin-density functional
formalism and its treatment of exchange correlation
effects. Instead of employing for these effects a better
formalism, as that of U. von Barth and L. Hedin,
we prefer to maintain the possibility to compare our
results to Xa calculations on small particles (13 metal-
lic atoms) with the same a-Schwartz parameter as
starting point, these Xa calculations being in fact the
first step in the many body problem treatment [6].
Using the above a, we have performed atomic SCF

calculations for Fe, Co, Ni (3d’ 4s’), Cu, Pd, Pt, 0,
S, H, Cl, C, N and stored files of numerical functions
for atomic orbitals and potential on each element. For
nickel, we will indicate the effect of a on the value of
hopping integrals. We shall also study the effect of
initial configuration on the hopping integrals by
comparing the atomic configurations (3d’ 4s’) and
(3d9 4s’) for Ni.

3.2 INTER-ATOMIC ELECTRON REARRANGEMENTS. -
Therefore, such an approach leads to the following
difficulty. The discrepancy between molecular and
metallic situations is in the way we take into account
the screening effect of the electrons on the considered
electron of the monoelectronic Hamiltonian. In a non-

n

Fig. 2.1. - Radial part 9t(R) of the function.

Fig. 2.2. - f (R) _ - kV(R), V (R) being the potential.

Fig. 2. - Variation of 3d function and corresponding
potential of nickel with distance R. - Dotted lines corres-
pond to Herman-Skillman data. - Full lines correspond
to multi-dzeta function and Thomas-Fermi potential of the
form : V(R) = (- 2 - 2(Z - 1) exp(- CR))/R with ( = 3,
if R is expressed in a.u.
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metallic compound, for the molecular Hfckel Hamil-
tonian, the formalism leads to a bare (+ 1) nucleus
when the electron is removed; this corresponds to a
« trail » in the Herman-Skillman potential of coulom-
bian shape, i.e. in 1 /R. In the metallic case, on the
other hand, a tight binding Hamiltonian takes the
place of the one of Hfckel and, then, the electron
reorganization leads to a completely screened nucleus
(equivalent to a neutral atom) at large distance. The
problem is just in the definition of this cut off in long
range properties.
In the present work, we have made the following

approximations :

a) If a nucleus bears an orbital function, the involved
part of the structure is considered as intra-molecular
and affected by the electron described by the mono-
electronic Hamiltonian; for that reason the potential
is chosen exactly as the Herman-Skillman potential
(with tail of coulombian shape). It looks like a Thomas-
Fermi potential (Fig. 2.2).

b) If a nucleus bears no orbital function, the involved
part of structure is considered as inter-molecular and
we assume that the electron reorganization is com-

plete on this nucleus. The potential is a solution of
Poisson’s equation and, for that reason, has no long
rang effect (characterized by an 1 /R long range shape).
As the electronic density on this nucleus vanishes,
the potential also vanishes.

To focus on our parameters problem this means
that the hopping integrals V:b will be calculated with
a potential of 1 /R long range shape and the crystal
field or three-centre integrals without this 1 /R tail.
In the homonuclear case in which only « d-orbitals »
are involved we shall use for hopping integrals VI ab
the usual notation ddA with : A = (1, n, 6 according
to the symmetry of the bond.

4. Algebraic calculations for diatomic parameters.-
In ’the initial part of our work, we have represented

Table II. - Algebraic radial part of 5d platinum orbi-
tal corresponding to

our numerical wavefunctions by a sum of Slater
multi-dzeta functions orthonormalized by Schmidt’s
method. Like Gaussian-Type Orbitals (GTO), we
considered that, more than pure numerical ones,

Slater-Type Orbitals (STO) were easier to handle.
So, the optimization of the platinum 5d functions
required first the fitting of 3d functions to extract 3d

Fig. 3.1. - Corresponds to 3d function.

Fig. 3.2. - Corresponds to 4d function.
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Fig. 3. 3. - Corresponds to 5d function. 
R

Fig. 3. - Variation of radial part 3t of nd functions of pla-
tinum with distance R - Dotted lines : Herman-Skillman
functions. - Full lines : multi-dzeta functions. The HS

functions are expressed in the form Jt.d(R) = aRn(c, R) +

algebraic parameters, then the 4d and finally the 5d
ones (Table II). The fitting of numerical functions by
algebraic functions is excellent (see Fig. 2.1 and 3)
and the behaviour of core functions is perfect The
Herman-Skillman potential can be well fitted (the
derivative discontinuation included) by a Thomas-
Fermi potential (Fig. 2.2). In the best known case,
i.e. for nickel, we see (Table III. 1) that the Herman-
Skillman wave functions are diffuse compared to

those of Clementi and close to those of Richardson
which are the most suitable functions of quantum
chemistry [7-9] for the first transition series atoms.

Looking at the column describing a-type para-
meters of nickel 3d8 4s2 (Table 111. 2), we see the
extreme sensitivity of the ddu parameter to the wave
function shape and to the choice of the potential.
The multi-dzeta Clementi wave functions (very con-
tracted) lead to parameters which are much too
weak. The best agreement with the interpolation
scheme data is given by the H.S. fitted function using
a Thomas-Fermi optimized potential for the 3d’ 4S2
configuration. The 3d’ 4s’ configuration (Table V)
leads to much larger parameters for Ni-Ni bond.
This is in agreement with the results of Snow and
Waber [10] who studied the influence of the initial
atomic configuration on various sets of APW energy

bands calculations. Thus, for nickel, we shall use the
usual atomic configuration 3d8 4s2 (Table IV).

Table 111. - Calculations corresponding to nickel
S.T.O.

A : Clementi functions.
B : Richardson functions.
C : Optimized functions.
D : Non-optimized functions.
E : Similar to C but with a Thomas-Fermi potential.
F : Results obtained from interpolation schemes [3, 20].
1 : Algebraic radial part of the 3d nickel orbital corres-
ponding to

2 : Hopping integrals dd Q, ddn, dd6 between two
nickel atoms at a distance of 2.492 A from each other.

Table IV. - Configurations used in our calculations.
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Beside the potential, if one chooses to replace the
numerical HF SCF functions by the best choice of
algebraic multi-Slater orbitals (a fortiori gaussian-
type orbitals), the « round-off » error on tails is huge
and the diatomic parameters (platinum ddb for ins-
tance) vary from - 0.013 3 Ryd for the numerical
function to - 0.006 6 Ryd. for the best algebraic one
(Table VI).
When the tight-binding parameters dda, ddx,

dd6 are deduced from interpolation schemes, they
may be considered as independent of each other. In
our case, the three parameters are connected and
only dependent on the ratio between the range of the
considered orbitals and the distance R of the bond.
The way our parameters vary with distance allows
us to study them at some distances between adsorbate
and metal and for different crystal faces. As we have
pointed out in a previous short report about nickel [ 12],

Table V. - ikalues of nickel integrals.
A : Usual configuration 3d8 4s2 with a = 0.708 96.
B : Configuration 3d9 4s1.
C : Usual configuration with a = 1.
D : Integrals obtained from band structure [12, 20].
1 : Hopping integrals dd a, ddn, ddb and overlap integrals SO’, Sn, Sb between two nickel atoms at a distance of
2.492 A from each other.

2 : Overlap integrals S and hopping integrals V between a 3d function of a nickel atom and s and p functions of H, 0
and S atoms.
The notations are the same as in table III.
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the ratios of integrals ddcr [/ddx and ddJ/dd6
approach those determined by Heine [llJ using the
resonance theory. The choice of a, coefficient of the
exchange term of Xa, by influencing the atomic orbital
range, leads to a good agreement when the Schwartz
value [5] is used for a, while the value a = 1 contracts
the orbital too much. This decrease of the band-width
when increasing the exchange potential is in agreement
with band calculations of Ni of Connolly [13] which
show the same effect

5. Numerical calculations of integrals. Their accu-
racy. - Figure 2.3 shows, for platinum, the excellent
result of optimization process between the Herman-
Skillman 5d numerical function and the 6-dzeta

algebraic representation of the same function

(Table II). Both are orthogonalized to the core (3d
and 4d) and are like each other in this range. However,
this is not the case for the binding range and the tail
of the 5d function. The two bumps of the main lobe
of the algebraic function are unavoidable and due to
the fact that the function is performed by the two
outermost STO of quantum number n = 5 in this

area, while the numerical 5d Herman-Skillman func-
tion is smooth and does not show such sign changes
of the second derivative. Table VI illustrates the
effect of this fitting and optimization of multi-dzeta
functions on the parameter values. dda decreases
only by 25 % with use of algebraic functions, while
the directional character of 03C0 (at 450 from the bond,
deplacing the major integration area in the tail region)
and chiefly of 6 (at 900 from the bond line) leads to a
decrease of 34 % for ddn and of 50 % for dd6, which
is unacceptable. This is due to the fact that, for 6
bonds, the maxima of the wave function amplitude
are parallel to each other and perpendicular to the
bond line, and thus the inadequate representation
of tails plays a very important part. This shows that
an algebraic integration of multi-dzeta cannot lead
to acceptable values of the parameters.
For this reason, we had to leave the usual approach

of binding parameters (in extended Hfckel frame)
which consists in the use of Slater multi-exponential
algebraic wave functions and Thomas-Fermi poten-
tials. We performed a purely numerical development
in calculation of these integrals.
For non-modification of Herman-Skillman nume-

rical functions within their non-linear scale (the ratio
of arithmetical series doubling each 40 points) we
have performed a quadratic approach of functions
on three next nearest neighbours of a considered
Gauss point. The three dimensional integration (in p,
0, cp) has been obtained by a double-quadrature Gauss-
Legendre method in elliptical coordinates (À, Jl)
assuming qJ-cylindrical symmetry. For Va ab, Vb ba (i.e.
ddh) 64 points have been taken for each coordinate,
i.e. 64 x 64 = 4 096 points for the whole quadrature.
To obtain an equivalent cost for a non-symmetric
case, we have considered 16 Gauss-Legendre points

for each (A, 14 cp) coordinate, which leads to a I J/§
precision and is quite sufficient We have been able
to test the precision of a double numerical integration
on the example of dd Q, ddn and ddb parameters for
Pt-Pt bond (Table VI).

Table VI. - Values of hopping integrals between 5d
functions on two platinum atoms separated by a dis-
tance of 2.772 A.
A : Non-relativisticAPWparameters[16,20].
E : Herman-Skillman + a yexch parameters obtained

from numerical integration.
F : Parameters obtained from S TO fitted on HS and

numerically integrated.
C : Parameters obtained from ST O fitted on HS and

algebraically integrated.
The perfect agreement obtained between F and C
(about 6 x 10-3) is a test of our method of numerical
integration. This has allowed us to use it in the E case
for which an algebraic integration could not be consi-
dered. The E case (Herman-Skillman + aVexch) is

that which leads to the best values of the ratios

I dd a/dd x I and dda/ddð, in principle, respectively,
equal to 1.5 and 6 [11].

While the algebraic function is an approximation
of the Pt-5d orbitals, the representation of this 5d-
algebraic function by a numerical function on the
non-linear Herman-Skillman scale does not lead
to any loss of precision ( 10-6). Then, we have
calculated the integrals both by an algebraic method
for the algebraic 5d orbital (multi-dzeta Slater orbitals
and Thomas-Fermi potential) and a numerical method
for the numerical representation of the same functions
(elliptic coordinates). The worse result (Table VI)
corresponds to a 6 x 10- 3 precision, that is suffi-
cient for qualitative parameters.

6. Results and discussion. - Our calculated integrals
are collected in tables VII to XI. In figures 4 to 7,
we show the variation of parameters with distance,
which is the only variable in the calculations. This
is a way of solving the uncertainties in adsorption
distance corresponding to the different crystal faces.
For the metal-metal Pt-Pt bonds, the calculated

ratios I dd a [/ddx and ddJ/dd6 are of the order of
1.5 and 7 in accordance with those based on reso-
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Table VII. - Values ofhopping and overlap integrals between two metal atoms calculated from wave functions and
potentials obtained in a calculation H.S. + aVexch’ R (A) represents the distance between two atoms (equilibrium
distance in the bulk of mental) dd a, ddn and dd6 (Ryd) represent hopping integrals between d fonctions ; S u, Sn, Sb
are corresponding overlap integrals.

nance theory [11] and our previous results on nickel
[12]. Two main ideas can be pointed out :

First, the T uv term of the extra-diagonal elements
H p.v of the Hamiltonian must not be neglected. The
fact can be explained this way : the hermiticity of the
Hamiltonian gives Hp.v = Hvp." But for the potential
term V p.v = Pab and Vvll = Pba, in the Pt-0 bond for
instance, the two terms differ from each other by as
much as a factor of two ; this means that T p.v must
not be neglected. It is impossible to weigh the fl terms
by P:b = ’(#ab 2- + Nba) because the bond is too

dissymetric. The formula :

is a practical way to handle this asymmetry (Table IX).

Fig. 4. - Variation of hopping integrals VNi-H between
nickel and hydrogen with interatomic distance R (A).
+ Represent calculated points. - Dotted lines correspond
to a R - 5 fitting. - Full lines correspond to a exp( - À(R -
Ro)/Ro) fitting (here the value is À = 2.92 for Ro = 2.492).
(a) curves represent VH - Ni integrals; (b) curves represent
vNi integrals.

The second idea to formulate is the inadequacy of
the various approximations relating H /lV to the direct
overlap S /lV for transition metal compounds such as
the Wohlsberg-Helmholtz one :

or that of Longuet-Higgins and Roberts :

Fig. 5. - Comparison between variations of overlap inte-
grals S and hopping integrals I ddA between two platinum
5d functions with interatomic distance R (A). o correspond
to usual distance Ro = 2.772 A. (a) curves correspond to
a bond; (b) curves correspond to n bond; (c) curves cor-
respond to 6 bond.
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or that of Ballhausen and Gray :

The extra-diagonal term H JlV is directly linked to
Vuv. The approach of the Vllv term by a formula pro-
portional to S JlV leads to an inaccurate binding effect
(the bond is a consequence of HJlv). For instance, for
the Pt-Pt bond integrals versus R, the inter-atomic
distance, the curves Sdda and Sddx cross one another
while the V dda and V ddx curves are quite parallel
around the binding distance (Fig. 5). We can show
the same discrepancy between SJlV and Vuv when we
study variations on the row Fe, Co, Ni, Cu (Fig. 8)
or on the column Ni, Pd, Pt (Fig. 9). There is no

similarity between curves.
The examination of Ni-H curves versus the bond

distance R, as well as other curves function of adsorp-
tion distance, shows that (Table XII, Fig. 4) the varia-
tions of hopping integrals, which mostly contribute to
the chemical bond, are not in R - 5 as conjectured by
the resonance theory [ 11 J but rather in e -qR [17].
So we have obtained a good agreement between the
exponential law and the parameter variation with
distance. It leads to a very simple way of obtaining,
with two points on a curve, parameters for all the
adsorption distances on crystal faces and reaction

paths.

7. Further developments. - The method used in
this paper leads to some approximations we wish to
point out here :

First, in the heteronuclear case, we have shown that
the empirical Hamiltonian conventionally developed
on an atomic-orbital basis set leads to a non-hermitian
matrix. For instance, in the case of the bond between

iron and oxygen, the parameters are linked to the
« usual Hamiltonian » by :

We prefer to assign the approximation to the whole
Hamiltonian taking into account the hermiticity pro-
perty, explicitly. For such empirical non-diagonal
elements, the relation Hu,, = HVIl implies the equa-
tion (6 .1 ) :

In the expression of H l.n" let us define

If we replace atomic energy levels Ea and Eb by

the hermiticity condition (6 .1 ) will be automatically
satisfied. We can then remark that the error due to
this substitution is within approximation of the whole
method. For instance, for the FeO bond (in which
vFe ,o and Vo,Fe are in ratio of 1 to 2), we are led to the
values

instead of

instead of

Table IX. - Comparison between (Ept - Ex).Spt-x and VPl - x - vX - Pr Notations used are the same as in

table VIII. Ept and Ex are the energy levels obtained for the corresponding orbitals.
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Fig. 6. - Comparison between variations of overlap integral
S and hopping integrals V between a 5d function of platinum
and a Is function of hydrogen with interatomic distance R
o corresponds to distance Ro = 2.06 A. (a) curve corres-
ponds to V: - Pt integrals ; (b) curve corresponds to V;: - H
integrals.

The important point to notify here is the necessity
to add the non-diagonal kinetic term, dependent on
the values of E.*, Eb and Sab, to the formulation

commonly used Hab = Pab’ even in the recent tight
binding bulk method calculations [1,11].
Then we propose to use El’ and Eb* deduced for-

mulae in the H JJV formulation because the relative
corrections Ea - Eb* of Ea - Eb will be very weak
(they can be extracted from table IX), even when
Vab and Yba are in a ratio of 1 to 2 as in the Fe-0 bond.
We want to mention here the imprecision inherent

to data extracted from atomic hydrogen calculations.
The hydrogen data are the least precise because, in
this case, when the atom is involved in a molecule,
one electron is replaced by two, which leads to the
biggest exchange-correlation potential change. The
atomic orbitals, atomic energies and electron corre-
lations are the least accurate. The best treatment would
be to use, instead of atomic data, those issued from
bi-nuclear molecular SCF process, by recalculation,
on this basis, of atomic-like properties.

Second, the atomic orbitals do not constitute an
orthogonalized basis set (OAO). For instance, in

Fig. 7.1. - Comparison between variation of overlap
integrals S between a 5d function of platinum and a function
of sulfur with interatomic distance R (A)..o corresponds to
a distance Ro = 2.31 A. (a) curve corresponds to a a bond
and a 3s function for S ; (b) curve corresponds to a a bond
and a 3p function for S ; (c) curve corresponds to a n bond
and a 3p function for S.

Fig. 7.2. - Comparison between variations of hopping
integrals between a 5d function of platinum and a 3s func-
tion of sulfur with interatomic distance R (A). o corresponds
to a distance Ro = 2.31 A; (a) curve corresponds to Ys S-Pt
integrals; (b) curve corresponds to Yp’-s integrals.

Table X. - Values of crystal field integrals VAA and three centre integrals VAB. The inter-atomic distances are
2.492 A for nickel and 2.772 A for platinum.
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the bond between platinum and oxygen, the overlap
Sab is o.167 and we should have to employ the Lowdin
method glA = S -1 1/2 ø A to use orthonormal atomic
orbitals instead of crude atomic ones as we do. Another

way is to extend the continued fraction expansion
formalism often used [2] to describe the chemisorption
process to take into account this effect.

Thir4 there are the « atomic relativistic effects ».
The Mattheiss platinum calculations, as our para-
meters calculations, for comparison purpose, start

from the non-relativistic Herman-Skillman method.

Qualitatively, one of the effects of using the atomic
Dirac calculations instead of the Schrodinger equa-
tion is often the contraction of numerical atomic
orbitals. As we have done on platinum surface atoms
[15] it is possible to take into account spin-orbit
coupling on the atomic basis using the j-parameter
of Herman-Skillman tables [4, 15, 16]. But the effect
on the radial part of 5d orbital is small enough to be
neglected for our calculations. On the other hand, the
chemisorption problem necessitates the description
of s orbitals and the 6s relativistic contraction [18]

is 20 %. For this reason, when platinum is involved
in a bond by its 6s orbitals, the relativistic effects
should be fully considered.

8. Anisotropic crystal field integrals. - In the same
way as we have defined in part 1 integrals V(A,B)
and V(A,I) which were established by purely numerical
calculations (o round-off » error  6 x 10 - 3), we can
use the same approach to calculate crystal-field inte-
grals aii (notation defined by Fig. 10)

We shall now discuss the anisotropic character
of the so-called « crystal field integrals &#x3E;&#x3E; without
focusing too much on the formalism problems

Fig. 8. - Variations of overlap integrals Sa, S,,, S, (Fig. 8.1) and of hopping integrals Va, V 7t’ V a (Fig. 8.2) between 3d
functions with the considered element (first transition row) for usual interatomic distances : 2482 A for Fe, 2.506 A for Co,
2.492 A for Ni, 2.556 A for Cu. 

-- 

-
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Table XI. - Variation of three centre Q integrals of
platinum with the position of the third atom C.

and

Table XII. - Expression of the formulae of the fitting
of some hopping integrals with the inter-atomic distance
R. They lead to a very good agreement with calculated
points.

This well-known formula in crystal field theory
leads by a straightforward calculation to selection
rules on  Y’l 1 Y’21 [ Yg3 ) that limit the series to
a few terms [19] with even parity in /2/R3 and 14/R s
for d-orbitals. This is exactly the crystal field develop-
ment in ionic compounds which gives rise to the

anisotropic effects as we can see on computed values.
The first term (in 1 /R), cancelled, corresponds to

the Madelung constant, that is to say an isotropic
term. It has, for that reason, nothing to do with
« crystal field » effects. It shifts down all the orbitals
and corresponds to the electrostatic interaction poten-
tial of all the nuclei. Examination of table X shows
that « crystal field » integrals are very small for the
bulk of metal. « Directional effects » compensate
each other with the high symmetry of the lattice point
group Oh. The splitting d (t2g - eg) is 0.008 5 Ryd.
On the opposite side, close to the metallic surface,
the high symmetry is destroyed and the maximal
splitting is multiplied by the factor 2.35 for (100)
plane.
The results of figure 11 show the importance of

anisotropic « crystal field effects » close to surfaces.

Fig. 9. - Comparison between variations of overlap inte-
grals S and hopping integrals I dd between two nd functions
of metal atoms with the number of d row for usual interato-
mic distances : 2.452 A for Ni, 2.751 A for Pd, 2.772 A for Pt
* correspond to usual values obtained from interpolation
schemes. (a) curves correspond to a bonds ; (b) curves
correspond to n bonds ; (c) curves correspond to 6 bonds.

Fig. 10. - Definition of coordinates of an electron in a

Wigner-Seitz cell corresponding to an atom A bound to
another atom B.

Fig. 11. - Shift of d levels of Ni obtained from calculation
of AA integrals. (a) In the bulk; (b) On the (100) face;
(c) On the ( 111 ) face.

Three-centre integrals (Tables X and XI) have
weak values and furthermore, as for crystal field
integrals, the first order of the value Vab is compen-
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sated by the term which leads to an overall

totally negligible effect.
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