
HAL Id: jpa-00209594
https://hal.science/jpa-00209594v1

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Frustration and (111) silicon surface
B.K. Chakraverty

To cite this version:
B.K. Chakraverty. Frustration and (111) silicon surface. Journal de Physique, 1983, 44 (2), pp.257-
261. �10.1051/jphys:01983004402025700�. �jpa-00209594�

https://hal.science/jpa-00209594v1
https://hal.archives-ouvertes.fr


257

Frustration and (111) silicon surface

B. K. Chakraverty

Groupe des Transitions de Phases, C.N.R.S., B.P.166, 38042 Grenoble Cedex, France

(Reçu le 10 septembre 1982, révisé le 11 octobre, accepté le 21 octobre 1982)

Résumé. 2014 Nous montrons que toutes les données expérimentales actuelles sur la surface (111) de Si sont consis-
tantes avec une bande d’énergie des liaisons pendantes ayant une dispersion positive et un dédoublement à cause de
l’énergie de corrélation. L’état isolant qui résulte est un état paramagnétique à cause de la frustration pathologique
du réseau triangulaire. En l’absence d’ordre antiferromagnétique, l’état fondamental est deux chaînes « zig-zag »
de Heisenberg pour la surface (1 1) non reconstruite. La reconstruction en enlevant la dégénérescence entre les
deux chaines stabilise la surface (2 1), et lui donne un caractère profondément unidimensionnel.

Abstract. 2014 Careful analysis of the currently available experimental data on (111) surface of silicon leads us to
believe that a positive correlation energy and positive dispersion are responsible for a split surface band of dangling
electrons. The resultant ground-state is paramagnetic and insulating but cannot order antiferromagnetically
because of the pathological frustration of the triangular lattice. Instead a ground-state results of two correlated

zig-zag Heisenberg chains of S = 1/2 electrons for the unconstructed (1 1) surface. Surface reconstruction lifts

the degeneracy between the two chains, stabilizes the well-known (2 1) surface and gives it a pronounced one-
dimensional character.
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Reconstruction of the dangling bonds on ( 111)
surface of silicon has been object of numerous study [1]
because of the fundamental as well as technically
important aspect of this surface. In particular the
buckling model proposed first by Haneman [2] in
which alternate dangling bonds move up or down
perpendicular to the surface, transferring the electron
from the « down » bond to the « up » and thus creating
an energy gap at the surface has enjoyed a great deal
of popularity [3]. The Haneman motion of the surface
atoms creates a (2 x 1) surface after cleaving and
renders the half-filled band of dangling bonds ( 1 elec-
tron/bond) insulating, both facts known experimen-
tally. Recent core-level binding energy shift measure-
ments on the (2 x 1 ) reconstructed surface,
simultaneously by two groups [4, 5] (Himpsel et al.
and Brennan et al.) have shown unambiguously that
very little charge transfer is involved between surface
atoms (  0.2 electron/atom). On the other hand in the
absence of almost complete charge transfer, the
stabilisation of the (2 x 1) surface or the creation of an
energy gap at the surface is improbable and this has
cast a serious doubt on the Hanemann buckling model.
Himpsel et al. [6] had suggested that correlation
effects between dangling bonds should be invoked to
explain suppression of the charge transfer. Recently

in two theoretical papers, Del Sole-Chadi [7] and
Northrup-Ihm-Cohen [8] have explicitly taken the
correlation energy into account and have concluded
that the resultant antiferromagnetic spin-ordering
of the (2 x 1) surface allows both for the energy gap
as well as the negligible charge transfer observed.
These two sets of calculation suffer however from an

important oversight : (111) surface of silicon is a

triangular lattice and it is known, since the first work
of Wannier [9] that a triangular lattice has no antifer-
romagnetic ground-state or long-range order. We must
conclude that the energy gaps obtained in these calcu-
lations [7, 8] are spurious. In this communication,
I would like to indicate the ground-state of the ( 111 )
surface of silicon if correlation is important, both of the
unreconstructed, as well as of the (2 x 1) surface.
The conclusions for the (2 x 1) surface bear some
superficial resemblance to the recent chain-model of
Pandey [10].
Our starting point is the tight-binding Hubbard [11] ]

Hamiltonian for the surface atoms

where the fs refer to the surface sites,
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Fig. 1. - Dispersion relationship E1,2(k) of the unrecon-
structed ( 1 x 1 ) (111) silicon surface, E 1 lower Hubbard-
band, c, upper Hubbard-band, with positive correlation
energy U = 1 eV, co = -. 0.5 eV and tl = 0.15 eV;
uncorrelated surface band e(k) with U = 0. The inset shows
the primitive translation vectors it and i2 for the triangular
lattice. Zero of energy is maximum of the bulk valence
band E(r 25)’

eo ... site energy of the dangling bond at any site i,
tij refers to the transfer integral between near-neigh-
bour sites (we shall consider n-integrals only) ;

U ... the on-site Coulomb repulsion between two
opposite spin electrons ; *

C*, C are creation and destruction operators for
spin (1, ni,,... number operator.
For ( 1 x 1) (111) surface, using T, and T2 as two

primitive lattice translation vectors (Fig. 1 inset),
we get for the dispersion, if U = 0, as

where :

ao ... distance between two dangling bonds,
t1 ... near-neighbour transfer integral,
k and k2 are wave-vectors along s and T2 directions.

For U 0 0, the approximate Hubbard [11] solution
gives us the two Hubbard-bands 81 (k) and 82(k) as
the two roots of the equation

Note that the Hubbard gap obtained here is quite
different from the antiferromagnetic gap assumed in
references [7] and [8] which is in reality a Slater gap.
No spin periodicity is assumed and a paramagnetic
ground-state is retained. For a paramagnetic ground-
state n-, = n,,, = -1, in case of 1 electron/atom.
Equation (2) as well as the solutions of (2a) are dis-
played in figure 1 for the following choice of para-
meters.

The zero of energy is chosen as the maximum of the
valence band at the F25 point.
We note from figure 1, that the effect of U besides

rending the half-filled surface-band develop an energy
gap, also narrows the band (band-width goes from
8 tl to 4 tl). The lower Hubbard-band (81(k)) cor-
responds to a correlated spin fluid, with a total
dispersion of - 0.6 eV. We may note the following
features of figure 1 :

(a) The lower Hubbard-band disperses. upward
from r at - 0.75 eV to J point at - 0.15 eV. Recent
photoemission experiments [6, 12] are in very good
agreement with these results.

(b) The Mott-Hubbard gap is EH = U -4 tl =0.4 eV.
Since this corresponds to single-particle excitation,
this would represent the optical peak at N 0.45 eV
observed by Chiarotti et al. [ 13].

(c) Finally the Fermi-level of the surface-band,
in case of n-type silicon, will shift to accommodate
excess charge from bulk from so + U/2 to the upper
Hubbard-band at around 0.25 eV from the valence
band and will remain pinned there due to the large
density of states available. While the Fermi-level

pinning at the silicon surface is well-known, the

upward shift was observed by Wagner et al. [14] by
photoemission.

(1) The to value was taken from the tight-binding calcula-
tions of Ciraci et al. [21]. The position of this level is very
sensitive to the crystal potential and local environment.
The ti value for the n-electrons (0.15 eV) was obtained

from t° as to - AEP where AEP is the width of the bulk
silicon p-band (E,.25 v - Ex4 v) known experimentally to
be - 3.2 eV, and exponentially scaling .down t° from the
bulk distance of 2.35 A to inter-dangling bond-distance of
3.85 A, on the ( 111 ) surface. An approximate estimate for
the correlation energy U can be obtained from

where :
e is the charge on the electron
K static dielectric constant of silicon

a(l) and a(2) are the wave-functions of the two electrons on
the dangling bond separated by a distance r12. Writing for

the localized wave-functions a(r) = - exp( - ar) where
a is the localization parameter. The integral, as calculated

by Slater [22] is U = 512 a .8K
From the value of a, estimated from the Harrison rela-

tionship [23] for silicon, we obtain U - 1 eV.
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The electrons in the paramagnetic insulating state,
as represented by the band E 1 (k) in figure 1 are sub-

jected to the antiferromagnetic Heisenberg interaction
given by the Hamiltonian

where :

Jij = 2[tij]2/U is the Anderson [15] kinetic exchange,
ci’s are spin operators for 2 spin electrons at site i.
This means that the electrons in the paramagnetic

lower Hubbard-band of figure 1 can lower their energy
if the spins can order. But since ,the triangular lattice
is completely frustrated, the antiferromagnetic Ising
ground-state having no long-range order as Wannier [9]
showed, has large degeneracy and a finite entropy.
The best that the Ising spins can do (i.e. in the absence
of Jx and Jy components of the exchange) is .as shown
in figure 2, where the frustrated spins are arranged in
plaquettes, and each triangle has at least two anti-
ferromagnetic interactions, the so-called short-range
ordered (S.R.O.) states. If the interaction is purely
Ising, the ground-state energy is Elring/N = 0.5 J
where N is the number of lattice sites and J is the

Z-part of the exchange interaction Jij. What happens
to these localized spins if X and Y interactions are
turned on, i.e. when they are allowed to tunnel ?

Fig. 2. - Triangular frustrated antiferromagnetic lattice

of spin - formation of equivalent zig-zag Heisenberg

chains a and fl for ( 1 x 1 ) surface. Inset corresponds to
(2 x 1 ) surface, with atom displacement of 0.1 A on alternate
line of atoms.

We can rewrite the isotropic Heisenberg Hamiltonian
(3) in the following way :

Fazekas and Anderson [16], parametrizing the second
term of the Hamiltonian (4) as a small first-order
perturbation on the Ising ground-state (i.e. inter-

change of pair of electrons that leave S.R.O. unchang-
ed), concluded that the Ising state is unstable to the
formation of a small number of mobile paired elec-
trons, the so-called « resonating valence bonds ». If one
goes beyond the first-order perturbation and considers
electron interchange, that induces breaking of S.R.O.
(e.g. interchanging spins 1 and 2 in Fig. 2, four anti-
parallel pairs in a given hexagon are replaced by
parallel ones, with a resultant excited state higher by
2 J than the Ising energy), we need to calculate the
correction to the Ising energy, at least to second-order,
and we thus obtain

where H I acts on 2 N antiparallel pairs.
We note Eo can only be an over-estimate to the

ground-state energy; for at best HI can bring about
formation of zig-zag Heisenberg chain a (in Fig. 2)
whose ground-state energy is known exactly [17].
It is Eo = 0.887 6 NJ. This ground-state is not anti-
ferromagnetic and resembles « liquid » diamagnetic
pair bonds. We can conclude that a zig-zag spin-
chain like a in figure 1 could represent a ground-state
to the triangular antiferromagnetic Heisenberg lattice.
We further note that if a-chain results from flopping
spins 1 and 2 etc., fl-chain (Fig. 2) is also an exactly
equivalent Heisenberg chain, related by translation
operator r

where I cx &#x3E; and I # &#x3E; denote wave-functions of the a
or fl-chain.
The correct ground-state then must be either

with

where Eo is the energy of any of the Heisenberg
chains a or fl. 
We conclude that for a ( 1 x 1) (111) surface of

silicon, the triangular lattice resonates between a

and fl chains, in T ’ and Y - states. This leads us to
believe that the ground-state of antiferromagnetic
Heisenberg triangular lattice are two correlated

Heisenberg chains. It is worthwhile noting that the
one-dimensional antiferromagnetic Ising chain [18]
has exactly the same ground-state energy (0.5 J/atom)
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Fig. 3. - ( ) The two one-dimensional Hubbard-bands
of the (2 x 1) silicon surface, with L1 = 0.2 eV and

tl - 0.2 eV; (- - -) unreconstructed (1 x 1) lower surface
Hubbard-band shown for comparison.

as the triangular antiferromagnetic Ising net [9],
consequence of frustration.

(2 x 1) surface would result if the translational

symmetry and hence equivalence between a and fl
chains is lost, as due displacement, shown in the inset
of figure 2. As the two-dimensional electrons localize
themselves on a given chain, the increase of kinetic
energy (correlated lower Hubbard-band width - 2 tl
as against 4 tl) has to be compensated by the defor-
mation potential shift of the dangling bond site energy
(from to to to - d ) due to site displacement. The
resultant (2 x 1) dispersion curve is shown in figure 3
for a A - 0.2 eV [ 19] for a displacement of o.1 A with
a slightly increased t1 = 0.2 eV. The two one-dimen-
sional Hubbard-bands has a dispersion width - 0.4 eV
each and the lower Hubbard-band is full. We note the

large density of states at the edges of these Hubbard-
bands, characteristic of one-dimensional systems;
those at nla of the upper Hubbard-band could well
be responsible for Fermi-level shift seen on Si(I 11)
surface if called upon to accommodate excess elec-
tronic charge from bulk [14]. Besides these single-
particle excitation spectrum, measurement of the one-
dimensional spin-wave excitation [18] as well as

magnetic susceptibility will be a crucial test of this
model (Fig. 4). The spin-wave state of figure 4 is not
the same as that of a conventional antiferromagnetic
spin-wave; in particular it is gapless (at k = 0) in its
collective excitation spectrum.
The zig-zag chain proposed here for the (2 x 1)

surface bears only a superficial resemblance to the 7C-
bonded chain recently proposed by Pandey [10]
and which is unlikely for at least two related reasons.

Fig. 4. - Collective spin excitation spectrum and single
particle excitation spectrum of the zig-zag Heisenberg
chain; EH refers to the Hubbard gap. Undimerised chain.

(a) It is hard to see the driving force for the n-
bonded chain formation considering that the § filled
two-dimensional band, without correlation (Fig. 1,
v = 0) has a band-width 8 tl while the single n-baned
is only half as wide. On the other hand a band narrowed
by correlation and electrons more localized will be
susceptible to strong electron-phonon coupling.

(b) In the most recent communication [20], Pandey
dispensed the buckling model for its neglect of the
correlation energy which he calculated to be large
that is in turn neglected to arrive at the n-bonded
chain.

In conclusion, I have shown that the currently
available experimental data on ( 111) surface of silicon
is consistent with a surface dangling bond band split
by strong correlation with positive dispersion, that the
resultant insulating paramagnetic state because it is
frustrated in the triangular lattice to order antiferro-
magnetically goes to a ground-state of two correlated
zig-zag Heisenberg chains. Lattice deformation, by
lifting the degeneracy between these two chains
stabilizes a (2 x 1) surface (2).

(2) Since this article was submitted for publication, two
recent communications by Duke-Ford [24] and Lanoo and
Allan[25] that treat correlation have been brought to the
author’s attention.
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