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The role of Coulomb screening in quasi one-dimensional conductors

S. Bari0161i0107

Department of Physics, Faculty of Science, P.O.Box 162, 41000 Zagreb, Croatia, Yugoslavia

(Reçu le 25 juin 1982, accepté le 13 octobre 1982)

Résumé. 2014 Nous considérons les électrons de conduction d’un système de chaines avec les paramètres de réseau
d~ et d. Les électrons sont supposés interagir par les forces de Coulomb de longue portée. Le problème est traité
par l’approximation de parquet en supposant petit le rapport 03BD de l’interaction de Coulomb entre les premiers
voisins e2/d~ et la largeur de bande. Les diagrammes de parquet sont calculés en utilisant l’interaction de Coulomb,
écrantée non logarithmiquement, pour la diffusion vers l’avant, et l’interaction de Coulomb, nue, pour la diffusion
vers l’arrière. La diffusion arrière interchaîne est supposée négligeable. L’approximation de parquet élimine alors la
diffusion vers l’avant, interchaine, écrantée. La tri-dimensionalité entre dans les résultats par écrantage de la diffu-
sion intrachaine vers l’avant. Cet écrantage est faible pour les chaines écartées d ~ d~ . La fonction de corrélation des
ondes de densité à 2 kF, calculée pour le modèle de Tomonaga, présente alors une loi en puissance dont la puis-
sance même est logarithmiquement singulière. Lorsque les chaines sont rapprochées, l’écrantage dynamique
devient important, et les lois en puissance habituelles sont retrouvées. Toutefois, la contribution coulombienne
à g2 est augmentée logarithmiquement par rapport à l’interaction 03BD entre les premiers voisins, soit 03BD log d2/03BDd2~.
Les forces à grande distance favorisent donc la formation des ondes de densité à 2 kF. L’effet est le plus faible lorsque
les chaines sont rapprochées, et l’on peut atteindre un régime supraconducteur à l’aide des phonons.

Abstract. 2014 The electrons of the system of conducting linear chains with lattice parameters d~ and d are assumed
to interact through the long-range Coulomb forces. Assuming further that the ratio 03BD of the first-neighbour Coulomb
interaction e2/d~ to the band-width is small, the problem is treated in the parquet approximation. The parquet
diagrams are evaluated using the non-logarithmically screened Coulomb interaction for the forward scattering
and the bare Coulomb interaction for the backward scattering. The weak interchain backward scattering is neglect-
ed. The parquet approximation eliminates then the screened interchain forward scattering. The three-dimensio-
nality enters the results through the screening of the on-chain forward interaction. This screening is inefficient in
the loosely packed chains d ~ d~. The 2 KF-CDW correlation function of the corresponding Tomonaga model
shows then a power law singularity with a power which itself is logarithmically singular. In the closely packed
chains the important screening is dynamic. It is very efficient and the usual power laws are recovered. The Coulomb
contribution to g2 is however logarithmically enhanced with respect to the first-neighbour interaction 03BD, i.e. it is

equal to 03BD log d2/03BDd2~. The long-range forces thus enhance the tendency to the formation of the 2 kF-CDW or SDW.
In the closely packed chains the effect is weakest and with the help of phonons the superconducting regime can be
attained.
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1. Introduction. - The recent discovery [1] of

superconductivity in some organic metals has renewed
interest in the origin of this phase. Particularly indi-
cative in this respect is the phase boundary between
the superconducting phase and the spin or charge den-
sity wave phase, which was observed on applying
pressure to these materials. Indeed, in the conventional
(three-dimensional) conductors the spin density phase
is associated with the strong repulsion and therefore
cannot continuously turn into the BCS phase.

It was realized a long time ago that such phase
boundaries can occur in (quasi) one-dimensional

conductors, due to the one-dimensional logarithmic

singularity in the electron-hole channel, additional
to the logarithmic singularity in the electron-
electron channel which is independent of the
dimension. The first consistent many-body theory
of this effect was formulated [2] for the weak-

coupling band model. It represented one of the
first applications of the method of parquet sum-
mation required when two channels are singular.
The weak-coupling theory (band model) was subse-
quently completed [3, 4] by the inclusion of the Um-
klapp terms, spin-orbit couplings, interchain electron-
electron interactions, interchain hopping and terms
beyond the parquet approximation. In particular, the
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study [3, 5] of interchain hopping led to the better
understanding of the role of some early [6] « mean-
field » (ladder) theories [7] for quasi one-dimensional
materials. The common feature of all these theories is
that they are based on the short-range extensions of the
Hubbard Hamiltonian. We shall call them constant-
interaction theories, because in the reciprocal space the
interaction is a slow function of the wave-vector q I I -

Using the results of these theories it was possible to
understand [8-10] the phase diagram of many novel
chain-materials in terms of three interaction constants,
the backward (q r&#x3E;t 2 kF) scattering 01’ the forward
(qll rr 0) scattering g2 and the small Umklapp scat-
tering 93- It turned out that although this latter
constant controls the phase diagram of the organic
superconductors at very low temperatures, most of
the basic physics is contained in the combination

, or even better, in its sign. E.g. in the absence

is associated [3, 4] with density

waves and with superconducting fluc-

tuations.

Not much is known about g2 - Yl. It is not even2
clear that it is legitimate to use this quantity in chain

conductors. g2 - g’ contains the forward scattering. 2
g2, and the difference between gl and g2 is attributed
to the already mentioned short-range interactions

(91 = 92 in the Hubbard model). On the other hand
it was pointed out a long time ago [11] that even in the
tight-binding limit, which is appropriate to all known
chain conductors, the electrons interact via long-range
Coulomb forces. The corresponding bare forward
interaction is by no means a constant - it contains
the Coulomb singularity. Moreover, the measure-
ments [12] of the plasma frequency Wo have shown
that the strength of the Coulomb singularity is not

particularly small in the existing materials : (oo is

comparable to the Fermi energy SF. At the same time
the observation of the intraband plasmons suggests
that the metallic screening of the forward interaction
may be important. The interesting question which
we shall address here is whether and under which
conditions is the forward scattering screened enough
to became comparable to the backward scattering,
allowing for the transition between the density wave
and superconducting regimes.

Previously, the role of the Coulomb singularity
was only briefly discussed within the Tomonaga
model [ 13]. This included the evaluation of the electron
propagators, but the correlation functions were not
found. The purpose of the present paper is to deter-
mine these correlation functions, not only for the
Tomonaga model but also including the physically
important backward scattering. We chose to do it
within the parquet approximation, i.e. in the weak-

coupling limit. The advantage of the parquet approxi-
mation is that from the outset it treats the forward
and the backward scattering on equal footing and
that it can be rather easily extended to various physi-
cally interesting situations.
The paper is organized as follows : in section 2

we review the main facts concerning the screening
of the long-range forces in the quasi one-dimensional
conductors. Parquet approximation is briefly discussed
in section 3, emphasizing the properties important
for the evaluation of the parquet sum when the

dynamically screened Coulomb force replaces the
usual constant 92- Section 4 deals with the elementary
parquet diagrams. Some questions are more easily
discussed in terms of second-order parquet diagrams
of section 5, where also the required general properties
of the parquet diagrams are verified. In section 6
we find the 2 KF-CDW correlation function of the
Tomonaga model in the extreme weak-coupling limit
for the Coulomb forces. Section 7 is devoted to the

qualitative study of the corrections to the weak-

coupling results when the intermediate couplings are
approached, with the emphasis on the ladder diagrams.
Some effects of the backward scattering are discussed
in the last section which also summarizes the results.

2. ModeL - In this section we wish to construct the

simple model which includes the effects of the long-
range Coulomb electron-electron interaction. Also,
we shall briefly review what is known about the non-
logarithmic screening of these long-range forces. Let
us thus consider the square lattice of the equivalent,
parallel chains at distance dl, assumed larger than the
intersite distances within the chain dBl - The electrons
are allowed to move along the chains with the Fermi
velocity VFI i.e. we here neglect the interchain hopping
and linearize the electron spectrum around the Fermi
level BF. This is legitimate in the weak-coupling limit,
the meaning of which will become clear in the course
of our discussion.
The Coulomb interaction between electrons at

large distances is correctly described by the point-
charge approximation, even when the electron sites
are extended as is for example the case in organic
metals. The corresponding behaviour of the Coulomb

Fig. 1. - Behaviour of Coulomb matrix element v in reci-

procal space. B and S denote bare and screened regions,
respectively.
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matrix element u + v a in the reciprocal space spanned
by the vectors g is illustrated in figure 1. Here

n 

denote respectively the on-site and the first-neighbour
Coulomb interactions. Lx is the Madelung constant

From equation (1) we see that the matrix element
u + va shows the three-dimensional behaviour

for I q I  dl 1, as is also seen in figure 1 which illus-
trates further how this behaviour crosses over [14]
into the one-dimensional regime. The weak transverse
dispersion, occurring in figure 1 for q II &#x3E; d 1.- 1 arises
from the weak interchain scattering, proportional to
exp( - q d1.) in the point-charge approximation. As
usual [3], we shall divide the scattering in the forward
and backward parts, I qll I  kF and [ q 11 ± 2 kF I  kF
respectively. On physical grounds we shall assume

In this way the strong Coulomb singularity (2) falls
in the forward region, while in the backward region
both the on-chain term g, and the interchain term gl’
can be considered as the non-singular functions of q jj .
The latter can be thus set equal to 2 kF and we get
from equation ( 1 ), [ 14] :

The condition (3) making g 1 a non-singular function
of qll uses the point-charge approximation in the

range of its validity. However, this approximation

breaks around qjj 7E , ql 7E in materials withit L
large molecules and then equations (4) are merely
an indication that gil &#x3E; gt. Indeed it has been shown
[15] that this relation remains valid in the more
elaborate models. Focusing our attention on the role
of the forward Coulomb singularity we shall thus
neglect g’ in the following.

In the next section we shall see that in the absence
of gt the forward scattering gets integrated over q,
in all correlation functions of interest, which are thus
determined only by the on-chain forward term. The
forward on-chain term corresponding to equations (1)
and (2) is

where we have used equation (3), defined the Fermi
energy by Sp = vF kF, and set ç = VF q I,. We note
that (5) is logarithmically singular. Obviously, such
singularity requires a full care in the theory which is
logarithmic by itself. We shall proceed therefore by
first introducing the non-logarithmic screening of the
strongest singularity in the problem, namely the
Coulomb singularity (2). In the next step, we shall
deal with the problem of logarithmic singularities
through the parquet diagrams evaluated with the

non-logarithmically screened Coulomb interaction.
This programme can be carried out by using the

dielectric constant E calculated either in the RPA [16]
or in the Tomonaga model [13]. Let us therefore
review briefly the properties of this quantity. The
RPA dielectric constant contains two nearly coalescent
logarithmic singularities at cv z ç, (ç = vF q II ) but
they are inessential since they average out in the

integral properties, and the diagram calculations
involve integrals over frequencies and momenta.
Therefore we shall use the simpler expression for the
dielectric constant. Anticipating that we shall need
it on the imaginary axis (o = i I we put [ 13]

where w’ = [1 + 4(u + vex)] ç2 is the anisotropic
plasma frequency.

Let us first consider the static limit of (6),  j.
Ignoring u  1 we see that the screening is important
in the range 4 va &#x3E; 1. Assuming further that v is
small compared to unity the solution of the equation
4 va =1 falls into the three-dimensional regime (2)
of figure 1 and defines the screening wave-vector
kTF by

The weak-coupling limit thus necessarily implies that
the screened range of the Brillouin zone (Fig. 1) is
three-dimensional. For I q I  kTF we find the usual
Thomas-Fermi three-dimensional static screening,
whereas for q I &#x3E; kTF the screening disappears.
The plasma frequency plays a role in the frequency

scale analogous to the one kTF plays in the momentum
space. Equations (2) and (6) give

i.e. when 4 va &#x3E; 1. The screening is dynamic for

(4)P &#x3E; m &#x3E; ç and disappears for w &#x3E; cvp. The maxi-
mum plasma frequency (Coulomb energy scale) Wo
is related to kTF (Coulomb momentum , scale) by
(h = 1)

In summary, the Coulomb screening, static or dyna-
mic, is efficient for
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Outside this region the screening is, roughly speaking
negligible, 8 ~ 1. This completes our digression on
the properties of the dielectric constant and we can
now evaluate the screened on-chain forward scattering
which is to replace equation (5) in parquet calculations.
The averaging of [u + va] 8-1 

1 
over the transverse

Brillouin zone can be performed only approximately
in spite of the existence of the closed expressions (1)
and (6). In agreement with the condition (10) we
shall consider separately the two regions ql &#x3E; kTF - q i I
for q)  kiF (ç  mo) and evaluate the contribution
of each region to the on-chain forward scattering.
In the screened range qi  k?F - q] I I  wo) u is
negligible and we shall use the approximate expres-
sions (2) and (8) to calculate the contribution vs of
this range to the on-chain interaction,

In (11) we used the simplicity of the approximate
expression (2) for a to transform the integration over
ql I into the integration over wp’ using (8). This is
suitable because e of equation (6) depends on q, only
through cvp. For q real the two poles of E-1 

1 do not
fall on the integration axis of (11). Collecting the
contributions of all three poles in (11) we thus find

In the remaining part of the Brillouin zone,

q 1 2 &#x3E; k 2 TF - q 2 11 for qf 11  kTF (ç  who) or all ql for
q 2 &#x3E; kTF, we set E = 1. Accordingly, we shall call
this range the bare range and calculate its contribution
to the on-chain interaction by integrating [u + va]
over ql with appropriate cut-offs. It follows immedia-
tely that the contribution to the forward on-chain
scattering proportional to u is

In the same way we find the contribution gB of the
bare range to the on-chain forward scattering, pro-
portional to v,

Equation (14a) follows from the observation that on
adding equations (12) and ( 14a) valid for ç  who
we must obtain for q &#x3E; Wo the full bare Coulomb

on-chain interaction (5) or (14b), in agreement with
the condition (10).

In conclusion, the screened on-chain Coulomb

long-range interaction given by (12) and ( 14a) for ç,
?I  coo goes over into the bare on-chain term (5)
or ( 14b) when either ç or q exceed wo. This is what
remains of the condition (10) after the transverse

integration.

3. Parquet approximation. - The general parquet
diagram can be considered as an iteration of the
first-order parquet diagrams in which two electron
propagators combine in one logarithmic integra-

Fig. 2. - Elementary parquet e-h contribution g 1 M to the
backward vertex. Full and dashed lines are electron pro-
pagators at kF and - kF respectively, double wavy line is the
forward and the wavy line the backward interaction.
Transverse momenta are not exhibited (see text).

tion [2]. There are three types of diagrams, which
appear in the parquet theory [2, 17-19]. First we have
the diagrams with four external electron lines (square
diagrams), the elementary representatives of which
are shown in figures 2 to 5 (omitting those involving
only the short-range forces g 1)’ Next, there are dia-
grams with two external electronic lines (e.g. Fig. 2
with g 1 omitted, figures 6, 7 and 10) which we shall
call triangular diagrams. Finally we have the correla-
tion function diagrams without external electron lines,
such as that of figure 8. The square and the triangular
vertices are the intermediate quantities in the calcula-
tion of the correlation functions.
The examination of the low-order diagrams in the

constant-interaction theory shows that some variables
appear as natural variables of the theory. In the dia-
grams of the electron-hole (e-h) type (o reducible »
in the e-h channel [18], by cutting two e-h lines),
such as those of figures 2, 4, 6, 7 and 8, the natural
variable involves the difference of the longitudinal

Fig. 3. - Elementary parquet e-e contribution g 1 C to the
backward vertex. Notation here and in other diagrams is the
same as in Fig. 2.
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Fig. 4. - Elementary parquet e-h contribution B to the
forward vertex.

momenta (measured from 2 kF) and the difference of
the frequencies entering the e-h channel. In the nota-
tions of our figures these are, qll, (o, respectively.
Likewise in the Cooper (e-e) channel the important
combination is the sum of the momenta and fre-

quencies namely q211 I I 
- 

q 1 I I (02 + a),. Indeed, at

T = 0 the first-order diagrams of the constant-

interaction theory are logarithmic in the natural

variables, i.e. proportional to log I max (q II, OJ) or to
log I max (q2 11 - q 111, W1 1 + OJ2) 1. This result becomes
particularly simple in the Matsubara diagrammatic
formulation which works with imaginary frequencies.
Setting

we see that the natural variables can be understood
as the moduli of the complex energies, Q and Q2 - Q I
in the e-h and e-e channel, respectively. As will be
also illustrated below, in the constant-interaction case
the natural variables can be identified with the lower
cut-offs of the logarithmic integrations. The parquet
theory with constant-interactions proceeds further

by proving that these properties can be generalized
to the vertices of the arbitrary order. E.g. the vertices
of the e-h type depend only on I Q when the latter
is the largest variable, the same role being kept by
I Q2 - Qi I in the e-e channel. Furthermore it is

possible to identify the natural variables in the res-
pective channels with the cut-off energies for the

logarithmic integrations in those channels. This turns
out to be of great practical importance. Using the
identification of the natural variables with the cut-off

energies it is possible to reformulate the theory
[2, 17, 18] so that the important values of the natural
variables in both channels are of the same order of

magnitude. Further steps can thus be performed in
terms of the unique variable I Q I ’;Z~~ I Q2 - Ql I.

Fig. 5. - Elementary parquet e-e contribution C to the
forward vertex.

This simplifies considerably the integral equations
for the renormalized vertices (Sudakov theory), and,
by the appropriate use of the single variable triangular
vertices, allows [17] the determination of the correla-
tion functions. It can be added that the integral
equations of the single variable theory can be cast [19]
in the differential form, which turns out to be identical
to the first-order renormalization group Lie equa-
tions [3, 4]. This shows that the homogeneity assump-
tions [3] behind the Lie equations are correct at least
to the considered order.

In summary, the vertex properties required for the
transformation to the single variable theory are :

(i) that the vertex depends only on its natural
variable when the latter is the largest;

(ii) that the natural variable can be identified with
the cut-off energy for logarithmic integrations in the
considered channel.

Although derived in the constant-interaction case
these properties concern the general vertices and
therefore need not be related to the use of constant-
interactions. Indeed in the forthcoming sections we
shall show that under certain conditions the single
variable theory continues to hold with our long-range
interactions, but gives results quite different from
those obtained in the constant-interaction case. It
will appear that the single variable theory breaks
through the condition (ii) and we shall examine some
consequences of this breakdown. However, before

turning to the actual evaluation of the parquet dia-
grams with long-range forward scattering, we wish
to argue that in absence of g 1 we can use only its
on-chain component, as was already anticipated in
the preceding section.
An exact argument shows [20] that the forward

interchain scattering alone cannot order the correla-
tion functions (2 kF-CDW). The parquet approxima-
tion satisfies this general requirement in a simple
way : in the absence of gî all the triangular (and thus
the correlation function) diagrams involve only the
on-chain forward interaction. In other words, the

parquet theory is effectively one-dimensional in the
absence of gî. This can be readily seen by first assuming
that the forward interaction depends on the relative
distance between the chains, i.e. that it is periodic in
the transfer of the transverse momentum. Then the
transverse integrations of the forward interactions
over the whole transverse zone of periodicity reduce
the interactions to the on-chain terms. Not suprisingly,
this result known in the parquet theory with short-
range forces [19, 21] remains valid irrespective of the
dependence of the forward scattering on the longitu-
dinal momentum.
The conclusion is of practical importance in the

evaluation of the square vertices. Let us illustrate this

point on the low-order diagrams. The on-chain
forward scattering appears naturally, by a transverse
integration, in figure 2 and also in figure 3 when
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gl - 0. However this is not so with figures 4 and 5.
In the two latter cases there is only one transverse
integration for the two forward interactions, i.e.
the usual diagram rules leave these diagrams with a
complicated transverse wave-vector structure. Only
the additional transverse integration in the triangular
diagrams of figures 6 and 7, generated by the square
diagrams under consideration, reduces both interac-
tions to the on-chain terms. Since the final result is

independent of the inter-chain forward scattering we
can use the on-chain forward interaction from the

outset, i.e. even in the intermediate square vertices.

(This is why the transverse wave-vectors are not shown
in our figures.)

In fact it would be interesting to know whether or
when the single variable theory holds for finite ’
However, this problem requires the investigation of
the interference effects between the forward and
backward interchain scatterings, which is beyond
the scope of the present paper.

4. First-order diagrams. - In this section we shall
consider the elementary parquet square diagrams.
There are four representatives of this kind, omitting
those which do not involve the forward scatterings
and thus do not bring anything new. The diagrams
in figures 2 and 3 contribute to the backward scat-
tering and those in figures 4 and 5 to the forward
scattering.

Let us first consider the backward scatterings shown
in figures 2 and 3 because they are somewhat simpler
than the forward terms of figures 4 and 5. gl 1 in figu-
res 2 and 3 is not involved in the integration and we
can conveniently write the contribution of these

figures as gl M(Q2, Q - Q2) and gl C(o.2’ Ql) res-
pectively, using the Matsubara notations of equa-
tion (15). M and C are the first-order triangular
vertices and from figures 2 and 3 we find by obser-
vation

This relation allows us to determine C once M is
known. It also shows that in the quasi one-dimensional
case 9 9 1 11 the square vertex contributions g, M
and g, C cancel for Q2 - Ql = Q. This cancellation
is however useful only if the special values Q2 -Ql =Q
of the external variable are of particular importance.
Indeed, in I Q2 - Ql I and I Q I we recognize the

natural variables of section 3 and the values

I Q2 - Ql I ~ I Q I carry the single variable parquet
theory, provided that the latter is valid, i.e. the condi-
tions (i) and (ii) of section 3 fulfilled. Then the can-
cellation of g 1 M and g 1 C extends to all orders of
the single variable theory and leads to simplifications.

Let us thus start examining M from this point of
view. There are three contributions to M, Ms, Mu
and MB corresponding to the contributions (12),

(13) and (14) to the on-chain forward scattering
respectively. The simplest is M,,,

where, for simplicity we have taken the T = 0 limit
of the Matsubara formulation (15) i.e. replaced the
summation over the imaginary frequencies by the
integration over il’. For small external frequencies uB
in (17) can be taken as given by ( 13a) because only
the small values of energies matter. The result for M
with constant-interaction is well known,

but it is instructive to see how it arises in our formula-
tion. Keeping in mind I Q in (18) we pass to the polar
variables p’, 0’ in (17). It can be easily seen that the
integration stripe along the N’ axis of the width 2 EF
can be replaced to a good approximation by the
circle of radius EF. The 0’-integration in (17) results
in two contributions to the p’-integral which can be
contracted into one using the fact that the interaction
is constant. The lower cut-off of this logarithmic
integration is determined by I Q I while Q2 is negli-
gible since small with respect to eF. In other words
in (17) we can neglect Q2 and « ignore » the angular
integration on transferring Q from the denominator
of the integrand to the lower limit of the radial inte-
gration, to get the result (18). From this consideration
it also follows immediately that UB of equation ( 13a),
which figures in (18) for I Q I  wo, is to be replaced
by u of (I 3b) for I Q I &#x3E; coo. This shows in detail how

g 1 Mu satisfies the conditions (i) and (ii) of section 3.
Ms and MB differ from Mu by the fact that the

corresponding interactions (12) and (14), which replace
UB in (17) are logarithmic rather than constant. We
shall show now that the logarithmic dependence on
0’ can remove I Q from the lower limit of the loga-
rithmic p’-integration, contrary to the logarithmic
dependence on p’.
The logarithmic dependence on 0’ appears in Ms.

Indeed, for il  Wo, Vs of equation (12) can be cast
in the form

The only singularity in (19) occurs for
03C0

~’ = - (q’ &#x3E;&#x3E; ç’). On the other hand the product of

the electron propagators is weakly dependent on 0’,
and we can set 0’ ;:t + 71 in this part of the expression
for Ms. Then the angular integration involves only
the interaction ( 19)
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which factorizes out in Ms. The remaining radial

integration is easily performed by separating the two
poles in the product of the propagators. In this way
we find the singular part of Ms as

We note that there is no singularity at Q2 - S2 + Q2 =0.
The strong anisotropy of v. ,(0’) has therefore impor-
tant consequences. First, it separates the logarithmic
singularity of the interaction, in 0’, from the logarith-
mic singularity of the propagators in p’. Thus the
former singularity can be integrated out in equa-
tion (20), making Ms logarithmic in the external
variables, similarly to M.. Second, unlike M., Ms
depends on I Q2 I. This may seem unimportant
because (21) satisfies the condition (i) of section 3.
However the appearence of Q2 in (21) is also related
to the breakdown of the condition (ii). So the third
consequence of the anisotropy in vs is the departure
of Ms from the requirements of the single variable
parquet theory. Indeed, I Q does not act as a cut-off
energy in equation (21) : omitting Q in the radial
integrand by introducing [ Q ( into the lower limit of
the radial integration leads to the result different
from (21).

Let us now evaluate MB, the contribution to M
corresponding to gB of equation (14). For ç &#x3E; wo
the interaction gB becomes anisotropic. However,

shows that gB contains the radial component. The
leading singularity in MB comes just from the coupling
of this component with the p’ -1 1 singularity in the
electron propagators. In this contribution to MB
the 0’-integration is the same as in M.. In contrast to
Mu, here the interaction is not a constant but a

logarithmic function of p’ for p’ &#x3E;wo (power of log
in higher-order diagrams). However this logarithmic
behaviour is sufficiently slow to leave I Q I in the
lower limit of the p’-integration, (as in the higher-
order diagrams of the constant-interaction parquet
theory). Thus we find

corresponding to equations (14a) and (14b), respec-
tively. Here

according to (9), (7) and (3). MB satisfies the conditions
(i) and (ii) of section 3 although the logarithmic beha-
viour of the interaction (14b) reflects itself for cvo 
I Q 1  SF in the additional power of the logarithmic
singularity.
We are now in a position to draw the conclusions

concerning the entire M. Assuming that mo « EF,
9B/9s = log BF/WO &#x3E; 1 and we can neglect Ms with
respect to MB, which itself presents two distinctive
regimes I Q I -Z Wo. We shall call this limit the weak-
coupling limit, although cvo « EF can arise either
from v  1 or from dl &#x3E; dil, according to (24). If we
now let v and dIlIdL simultaneously tend to unity, coo
tends to BF from below. In this intermediate coupling
limit log BF/WO ~ 1 cannot be considered as large

and Ms becomes comparable to MB. Thus, although
M becomes linear in the logarithm in the whole

range of interest 10 1  cvo 5 SF, the single variable
theory breaks down.

In summary, we have seen that the triangular ver-
tices M and C and the square vertices g 1 M and
g 1 C satisfy the requirements of the single variable
parquet theory provided that cvo « SF but not for
cvo 5 SF, when, however, all these quantities become
linear in the logarithms. The basic quantities of our
discussion appeared to be the triangular vertices M
and C, which involve only the forward scattering and
are thus common to the Tomonaga (g 1 = 0) and
the backward scattering (g 1 Vz 0) models : the pro-
perties of the Tomonaga model come naturally into
the focus of our attention when we are dealing with
long-range forces.
The square vertices h and C, shown in figures 4 and 5
respectively, involve only the forward scattering and
thus belong in the first place to the Tomonaga model.
At first sight 3 and C depend on many variables in a
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complicated way, because both interactions are screen-
ed. The first important simplification occurred however
when we realized that even in these diagrams we can
use the on-chain component only of the forward
scattering. This eliminates the transverse wave-vector
dependence. Concerning the dependence on the
external energies we note that, in contrast to M and C,
Îi and C depend on all three energies Îi =Îi@2’
so that

instead of equation (16). For brevity we write here the
« third » variable as a complex energy, although B
and C depend on its real and imaginary parts sepa-
rately, according to equations (19) and (22).
Our further aim is to examine whether fi and C

have the properties consistent with the single variable
parquet theory. Focusing our attention on the anoma-
lous contributions (12) and (14&#x26;) to the forward

scattering, we shall show that this is the case in the

weak-coupling limit wo  EF’ In this limit the contri-
bution of the screened range (which already produced
the anomalous term Ms in M) is negligible. This can be
seen from B and C directly, but also more easily from
the triangular diagrams generated by 8 and C and
discussed in the next section. Postponing to this
section the proof that only the bare range matters in
the cvo « EF limit, let us now consider the contribu-
tions BB and CB of this range to h and C, respectively.
In the next section we shall also see that the triangular
diagrams generated by JiB and CB are dominated by
the isotropic part (22) of the interaction ( 14b) and now
we shall retain only this component in BB and CB.
The latter then satisfy (25) as it is written, namely
BB or CB are symmetric in the real and imaginary
parts of the third variable. The integration in BB
or CB can be performed either in the polar or in the
original ç’, rN’ variables. Actually, it is somewhat

simpler to use the latter, together with the anisotropic
interactions ( 14b) and the external q’s set equal to
zero. Symmetrizing the result at the end we obtain

Indeed, CB has all the required properties. As can
be seen easily, Q2 - Ql acts as a cut-off energy in the
actual integration. Consequently, in all regimes for
Cp, Q2 - 01 appears in the argument of at least one
logarithm. However, all regimes are not important
because the variable of the « third » channel, 02 + g21,
can be considered as small in all parquet calcula-
tions [3]. Equations (26a) and (26c) show that CB
depends only on the total energy in the Cooper channel
when it is the largest among the three external energies.
(26b) shows that when Sl I &#x3E; 1 C22 - Ql CB depends
on log I Q 1 linearly, the other two logarithms being
cut-off by I Q2 - ol I. 

_

In contrast to that, Q2 - 01 looses its meaning of
the cut-off energy when the contribution of the
screened range is included in the intermediate coupling
limit cvo 5 EF’ Accordingly, when 10 1 is large the
results are no longer linear in log I Q 1, as will be
discussed in the next section by comparing the contri-
butions of the bare and screened ranges in the response
diagrams generated by B and C.
We can thus conclude that although equations (16)

and (25) ensure the (near) cancellation of the vertex
corrections for comparable values of the energies in
the two channels and for the arbitrary values of the

on-chain couplings, this cancellation is meaningful
only in the weak-coupling limit coO  CF when the
vertices satisfy the requirements of the single variable
theory.

5. Second-order diagrams. - In the study of B
and C in the previous section we took for granted
that

(a) the contribution of the screened range is

negligible if wo  8F;
(b) the contribution of the angular part of equa-

tion (22) is negligible with respect to the radial part
ifcvo « BF’

In this section we shall prove these statements by
the examination of the triangular diagrams, which

Fig. 6. - Second-order triangular ladder diagram L in the
e-h channel.
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can be discussed easierly in terms of the interaction
variables than the square diagrams. The triangular
diagrams are obtained from square diagrams by
closing two external lines in the e-e (Cooper) or
2 kF e-h integration. Hence from each B or C we
obtain one ladder diagram and one mixed diagram.
If both diagrams generated by B satisfy the conditions
(a) and (b) we can deduce that so does B, i.e. that
B ~ BB retained in equations (26). Since we know
that BB satisfies the conditions (i) and (ii) we can
conclude that (i) and (ii) hold for 6 in weak-coupling
limit WO  EF’ Clearly, due to (25) the same procedure
need not be repeated for C. In fact, according to this
equation it is only important to consider one ladder
diagram and one mixed diagram. With strong forward
scattering it is somewhat more natural to consider
the e-h channel where the many-body singularities
occur and we choose to discuss the diagrams shown
in figures 6 and 7.

Let us start with the ladder diagram L of figure 6.
Integrating figure 6 from right to left requires first
the evaluation of B, but in the previous section we

Fig. 7. - Second-order triangular mixed diagram N in
the e-h channel.

were able to give the detailed expression (26) only
for hB. It is in fact more convenient to integrate
figure 6 from left to right, using in both integrations
the interaction variables associated with two inter-
actions. Each of the two interactions is built from two
one-dimensional contributions, (14) and (12), corres-
ponding to the bare and screened Coulomb ranges
respectively. Hence L can be decomposed as

according to the ranges which combine from left-to-
right to give particular contributions to equation (27).
The first left-to-right integration yields M(Q;, Q’ - Q).
This M = MB + Ms is the incoming quantity for the
second integration in terms of Q2 - Q’2*
When evaluating LBB we note that MB of the first

integration is independent of Q’. Therefore it is not
involved in the second integration and we find

The same result follows in the right-to-left direction
from 2?B given by equations (26b) and (25), i.e. linear
in log S22 I.

Lss arises by combining the incoming Ms with the
screened range of the second integration. The second
interaction vs(/J;) carries the main angular dependence
and we can set q2 = + n/2 everywhere except in

vs( /J;) itself. Using equation (20) we get a factor gs
from v,,, in addition to that appearing in the incoming
Ms. The remaining radial integration is carried out
in the way analogous to that for Ms and we get

The factor 1/2 ! arises from the coupling of log I Q’ 2 in the incoming Ms with the second radial integration.
According to the discussion below equation (21), long Q’ 2 dependence of Ms and therefore 1/2 ! is the conse-
quence of the anisotropy of the first v,,(O’) interaction. The anisotropy of the second v,,(O’) interaction leads
to the dependence of Lss on Q2, i.e. to the additional factorials in the higher order terms, discussed in section 6.
All these effects are not covered by the single variable parquet theory, as already discussed below equation (21).

Turning now to LBS we note that the incoming MB is independent of Q’. Therefore it does not couple with
the second integration, which however contains the anisotropic vs and yields therefore Ms, which depends
on Q2,

It remains to evaluate LSB. The first integration yields Ms, which couples with the radial part of the second
integration. The resulting expression for L5B is somewhat cumbersome if the full expression (14a, b) is used for
the second interaction. For brevity we shall give only the part of the expression corresponding to 9B of (14a),
appropriate for the intermediate couplings

However, we shall keep in mind that even the full expression for 4B contains gs as a factor.
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This discussion shows that due to gs  gB implied by wo  EF, L satisfies both conditions (a) and (b) quoted
at the beginning of this section. Reading the results for L from right to left we conclude that the same is true
for B when it acts in the e-h channel. Moreover, from the factorial denominators of LSB and Lss we can deduce
that the contributions of the screened range to h are nonlinear in log I Q’ 2 when the latter is large and relate
this to the fact that I Q looses the meaning of the cut-off frequency in these contributions to B (Eq. (25) transfers
this to C). We notice finally that all this information about h follows from the prefactors of L, whereas the
explicit frequency dependences of L (can serve to) carry the reasoning one order higher. If we now wish to inves-
tigate the behaviour of B in the Cooper channel or of C in the e-h channel with respect to the conditions (a)
and (b) it suffices to consider the prefactors of N, analogous to those appearing in L, by ignoring the detailed
dependences on the external frequencies.

The two integrations in N can be carried out in terms of the interaction variables. Dividing each integration
range according to equation (10) we can write

analogously to (27). As we are not interested in the dependences oR the external frequencies we can set the latter
equal to zero. This simplifies considerably the product of the four electron propagators.

Assuming that the interaction is either a constant or a function of the angle, the integrations over radial
variables pl, p2 are easily performed, as shown in the appendix. E.g. in the case of Nss we get in this way

where r2 - p2 1 + p2 and 0 = ol - 4&#x3E;2’ We see that the main singularities of Nss come from the propagators.
Indeed, the I sin 4&#x3E; -1 singularity occurs on the diagonal of the integration range, whereas v(oi) have weaker
singularities on the two upper limits. These singularities weakly overlap with the main singularity, and can be

integrated out. This leads to Nss quadratic in the logarithms with the prefactor 7rv,where03C0

Also, one cut-off frequency is modified to xo wo, where

Let us first consider the cvo « EF limit in which Nss
has to be compared to NBB calculated with the cons-
tant-interactions (14a) instead of vs in equation (33).
According to (34), which is the N-analogue of (20)
for M, we can again invoke the log GF/WO &#x3E; 1 argu-
ment to neglect Nss with respect to NBB. The similar
discussion is valid for NsB and NBS. This proves
the validity of the condition (a). Turning now to
the condition (b), we can continue to keep the external
energies equal to zero, considering for qualitative
purposes the extreme Wo -&#x3E; 0 limit. For the angular
part of equation (22) we can thus use (33), with Vs
replaced by v log [ cos § in the integrand and coo by
EF in the limits of the integration. v log I cos 0 has
the same singular properties as vS. The resulting
expression similar to Nss has to be compared to the
expression for NBB in which the v log p; interactions
couple to p;-integrations of the appendix. Thus NBB
is obviously more singular than its angular counter-
parts, as required by the condition (b) of this section.

Hence (a) and (b) are satisfied by C when it acts in the
e-h channel. According to the discussion in the

beginning of this section this completes our proof
that B and C satisfy the conditions (i) and (ii) of
section 3.

Lacking the log GF/úJO &#x3E; 1 argument in the cvo 5 8F
limit we have to worry about the numerical factors.
In the case of L the angular integrations in Lss
and LBB have introduced in Lss the coupling of the
radial integrations absent in LBB. In contrast to that,
the radial integrations in Nss and NBB lead to quali-
tatively the same angular structure of the Nss and
NBB integrands, as already mentioned above. The
anomalous factorial denominators analogous to those
in L, thus do not occur in N. This is further discussed
in section 7, in a somewhat more general context.

6. Tomonaga model for mo « sF. - In section 4
we have already pointed out that the basic model
for the study of the long-range forces in the Tomonaga
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model, which omits the short-range interactions g 1
and u. In such a model the spin does not play an
explicit role and only one square vertex is involved,
namely the renormalized forward scattering. In this
respect the problem is analogous to the X-ray singu-
larity problem studied in reference [18]. The analogy
became even closer when we realized that our results
for (oo  EF can be expressed in terms of the radial
variables only, and that they satisfy the conditions (i)
and (ii) of section 3 for the applicability of the single
variable parquet theory.

However, before going to the straightforward sum-
mation of the parquet it is instructive to sum the
ladder diagrams when both equations (14a and b)
are used and the full expression (23a, b) for MB is
iterated into a ladder. Equation (28) shows that the
ladder is geometric, (1 2013 MB) -’, but, according to
(23) the nature of the expansion variable MB changes
between the low and high frequency limits. We can
thus expect that if the ladder remains geometric in
MB at I Q I &#x3E; cvo, the parquet remains exponential
in this same sense.

Turning now to the parquet summation we first
realize that the single variable parquet theory extends
the cancellation (25) of BB and CB for I Q I ;z: I Q2 - q1 I
to all orders. The forward vertex remains therefore
unrenormalized

where gB(1 ç I) is given by ( 14a, b).
In our present model the 2 kF-CDW and the 2 kF-

SDW correlation functions exibit the same singula-
rity, and we can denote both of them by P. If we
define P = dP/d(log EF/I Sl I) the latter is the renor-
malized triangular vertex. As we have shown that
the elementary triangular vertices satisfy the requi-
rements of the single variable theory we can determine
P in the usual way

Substituting (36) in (37) we find

as anticipated above. (38) is the central result of this
paper. It completes the way from equations (14) via
(23), (25), (26), (28), (33) to the final result. This equa-
tion shows that the power of the correlation function

singularity is itself logarithmically singular

This result was first found by the bosonization
method (22). (38) also shows how this behaviour
crosses over into the usual power law

and gives the value of the corresponding coupling
constant g2 = gB in terms of the microscopic para-
meters v and dl, /d1- of equation (24).
The crossover between the two regimes may occur

for MB(I Q I = cvo) z v log2 SF/WO smaller or larger
than unity, i.e. in the perturbative or the many-body
regime, respectively. Thus, if log EF/wo &#x3E; v- 1/2 (loo-
sely packed chains, d1- &#x3E; dll, according to Eq. (24)),
our result (38a) gives new many-body features due
to the long-range of the Coulomb forces. If on the

contrary v- 1 /2 &#x3E; log 8F/CùO &#x3E; 1 (closely packed
chains) the whole many-body singular regime is of the
conventional nature. When log EF/WO tends to unity
(closely packed chains, v 5 1) we have to start

worrying about the contribution of the screened

range. This contribution is further discussed in the
next section.

7. Tomonaga model - Ladder diagrams. - In
this section we shall consider the limit v-’ /2 &#x3E;

log SF/COO Z 1 when the complications with the

I Q I &#x3E; cvo regime can be ignored, but when we have
to include the contributions of the screened range
on assuming cvo $ 8F’ i.e. log 8F/WO -&#x26; 1. In other
words we shall consider the corrections to the conven-
tional constant-interaction theory with 92 = 9B of
equation ( 14a) due to the screened range.
We have seen that the screened range may produce

factorials additional to those which enter in the defi-
nition of the diagram itself, i.e. which appear in the
constant-interaction theory. In principle the additional
factorials may either introduce a qualitative change
in the result (38b), i.e. the asymptotic behaviours
faster than that, or produce less important « quanti-
tative » changes of the result (38b).

Fig. 8. - Correlation function ladder diagram LIP).

Let us thus start by examining the ladder diagrams
in which the additional factorials appear already
in the second order. In the evaluation of ladder dia-

grams it is somewhat more convenient to consider
the correlation function diagrams instead of the

triangular diagrams of figures 2 and 6. An example of
such a diagram is shown in figure 8. The low order
diagrams of this, kind are obtained by closing the
external lines in figures 2 and 6, and we shall denote
them by M and L. This step allows us to draw a
simple consequence from the 102 1 dependence of
the contributions (21), (29) and (30). Ms, LBs and
Les are coupled to the logarithmic integration over
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I Q2 I in contrast to MB, LBB and LSB of equations (23a),
(28) and (31). Thus, in the cvo £ CF limit, we have

and

A brief thinking based on the discussion below
equation (29) shows that the factorial in (39) and (40)
is equal to (v + 1) !, where v is the number of neigh-
bouring gs’s which couple the logarithmic integra-
tions.

This result can be readily extended to the p-th
order ladder diagram of figure (8). Each line in this

diagram should be understood to represent either

gs or gB, analogously to the separation in equations (39)
and (40). Furthermore, we have to focus our attention
on the chains of the neighbouring gs’s, since each
such chain of the length v produces (v + 1) ! in the
denominator. The theory of runs [23] tells us that out of
()

configurations with r gs-lines and p - r gB-lines,

are built of k gs-chains of unit length, ..., k, gs-chains

configurations are associated with the same prefactor
coming from the coupling of the logarithmic inte-

grations,

The p-th order diagram can be therefore written as

We shall further note that the expression for L(P)
obtained by a minorization ( 1 I + v)’v ,:t 1 differs from
that with a majorization ( 1 + V)k, ;:t evkv by replacing
gs by gs/e, since e I vkv = er. Neglecting this renorma-
lization of gs, between e and unity, unimportant for
our qualitative purposes, we shall approximate
(v + 1) !kv in equation (41) by v !B The sum over
ki ... kv... kr can then be recognized as a definition
of the Stirling numbers [24]. Using the sum rules [24]
obeyed by these numbers we find that

The combinatorial factor in (42) replaces which

would occur if the coupling of the logarithmic
integrations were not present, i.e. if the bare
and screened range were acting additively. ’In

order to see whether this difference leads to the qua-
litatively new behaviour of L(P) with respect to the
constant-interaction case we must evaluate L(p) for
large p. This can be done by the saddle point approxi-
mation, i.e. through the largest term of (42). The latter
is determined as a solution of

where y = r/p, x = 9S/gB and we have used the

Stirling approximation for the factorials. In figure 9
we plot the graphical solution of equation (43)
y = y(x), as well as the coefficient a appearing in

In the whole range 0  gs/gB  10, a is of the order
of unity, i.e. the contribution of the screening range
to f(P) is practically negligible. The asymptotic beha-
viour of the ladder series (42) is therefore geometric
as in the WO  EF case of the preceding section.

Only for the unphysical values of x, x &#x3E; 10 the radius
of convergence of the ladder series in terms of

9sp 109P ’ ’ ’EF/ I Q I (note gs instead of gB) starts increasing.
As easily seen directly from equation (42) it becomes
infinite for gB = 0, when f(P) becomes a term of the
exponential expansion. In conclusion the additional
factorials do not produce qualitative changes of the
asymptotic ladder diagram in the interesting 9B ’;::t gs
regime. The ladder diagram series remains geometric
and determined by gB, i.e. it is the same as in the

WO EF limit of our wo  EF approximation.
Unfortunately we can not extend this conclusion
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Fig. 9. - Value of r which gives dominant contribution to the
p-th order ladder diagrams as a function of 9,/gs. Cor-
responding value of a prefactor a multiplying the coupling
constant gB in the correlation function ladder diagram.

straightforwardly to the whole parquet because the
additional factorials do not appear symmetrically in
the denominators of all parquet diagrams. E.g. we con-
cluded that they do not appear in the second order in
the diagrams of the N-type. Equation (34) was even
written in the form which suggests that the factorials
may appear in the numerator of the high-order
N-type diagrams of figure 10. This however can.,be
ruled out by a closer examination of these diagrams :
factorials in the numerator would require the accu-
mulation of many angular interactions vs in the same
angular integration. Contrary to that, the interactions
join two by two in the high-order N-type diagrams.
This leads to the powers of c rather then to the fac-
torials in the numerator. If we ignore the difference
between the quantities such as cv2 of (34) and g’ of
(20) we can say that in these diagrams the bare and
screened ranges act more additively than in the ladder
diagrams, i.e. their effective coupling constant is close
to gB + gs. Presumably, the general parquet diagram
falls between the two extremes fixed by the ladder and
N-type diagrams, i.e. its effective coupling constant is
somewhere between gB and gB + gs. The variations
of the effective coupling constant from one to another

Fig. 10. - High-order mixed diagram (no ladder inserts).

parquet diagram are sizeable i.e. of the order of

gs = 9B, but the qualitative changes such as that in the
ladder diagram L(p) at gB = 0 are not expected. It is
even reasonable to expect that in the average parquet
diagram the role of the screened range is diminished
by the additional factorials and that the straight-
forward mo £ EF limit of our (00  EF theory is

roughly correct.

8. Concluding remarks. - There is no conceptual
difficulty to extend the results of the two preceding
sections to the case with backward scattering. The
elementary square diagrams involving only g 1 of

equation (4) satisfy the requirements of the single
variable parquet theory and so do the cross-terms
g 1 M and g, C of equation (16). The conditions of
the validity of the single variable theory remain
therefore the same as for the corresponding Tomonaga
model.
New many-body effects occur in the limit

log EF/(00 &#x3E; v -1/2 of the loosely packed chains when
the degeneracy of the diagrams with the same number
of integrations is lifted at high frequencies due to the
long-range nature of the forward interaction

given by equations (13) and (14). This represents the
generalization of the result (38a). Postponing the
discussion of these effects to a separate paper we
shall briefly mention here the two more conventional
situations when the I Q 1 structure of g2 is unimpor-
tant.

The first corresponds to the case when I UB I &#x3E; gB’
This is the (extended) Hubbard Hamiltonian limit.
In this limit it is convenient to include the short-range
forces of the non-Coulombian origin into the diffe-
rence between uB and u of equation (4).
The second simple situation corresponds to the

log EF/00  v-1/2 limit of the closely packed chains
encountered in section 6. The conventional parquet
results in terms of g2 - g 1 /2, hold then in the whole
singular regime. Moreover our theory provides the
explicit expressions (4) and (45) for gl I and g2. If we
assume that u is of the Coulomb origin, g2 - gl j2
tends to be positive. The tendency to the charge
density wave, associated with the Madelung energy
in the second term of g 11 in (4), is increased by the
log GFlwo enhancement of gB over the first-neighbour
Coulomb interaction v. This indicates that the appea-
rance of superconductivity requires the mechanism
additional to the Coulomb interaction. It is however

important that the repulsive long-range forces contri-
bute to 92 a term 9B  I which can be overcome by
the short-range phonon mediated attraction. This
result is due to the dynamic screening which led to
gs  9B  I i.e. to the dominant role of gB. In this
sense we can say that the superconductivity is due to the
combined activity of plasmons and phonons.
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These considerations explain the qualitative success
of the constant-interaction theory in accounting for
the phase diagrams of real systems exhibiting super-
conductivity, although the present analysis indicates
that they belong to the intermediate mo = EF or even
the mo &#x3E; EF strong coupling regime. The investigation
of the strong coupling limit of our problem would be
certainly clarifying in this sense. However, it should

use the methods [4] completely different from those
employed here.
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Appendix. 2013 The diagram N of figure (7) contains four electron propagators. With external variables set
equal to zero their product is

written in terms of the amplitudes and phases of the interaction variables. To fix the ideas let us discuss Nss.
The interactions are therefore given by equation (19),

The first logarithmic singularity can be extracted from the two radial integrations by going to the polar varia-
bles r, 0 in the p 1, p2 space. The r-integration gives a logarithmically singular factor, whereas the remaining
integration reads

where we have abbreviated §1 - Ø2 by 0. The result of the integration (A. 3) depends on the quadrants to
which 0, and 02 belong. With 0, and 02 both in the first quadrant, 10 1  Tr/2, and

Similarly, for 0, in the first quadrant and 02 in the third, qP2 = n + q2, we have

where q=qi2013 4J2 = ø + n (i.e. 4Jl i = 01) and [ § I  n!2:... The shift to the new variables leaves the interac-
tions in equation (A. 2) invariant but changes e -’0 into - e - i4&#x3E;.

In this way we get

The main singularity in the angular part of equation (A. 6) is I sin 0 -’, which falls on the bissectrix of the
integration range. The similar procedure casts N (12) + N( 14) into the form analogous to (A. 6), such that 2 10 1
is replaced by 2 P and 0 = ool 1 + P2. This latter means that the singularity of I sin P -’ is not contained in the
integration range and the four contributions of this kind can be discarded. Collecting then those of the type
(A.6)wegetN ~ 4(N (11) + N (13)), i.e. equation (33) of section 5.
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