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Observation of the dynamics of polyelectrolyte strong
solutions by quasi-elastic neutron scattering

F. Nallet, G. Jannink, J. B. Hayter (*), R. Oberthür (*) and C. Picot (**)

SPSRM, Orme des Merisiers, 91191 Gif sur Yvette Cedex, France

(Reçu le 10 juin 1982, révisé le 13 septembre, accepti le 28 septembre 1982)

Résumé. 2014 Des expériences de diffusion quasi élastique de neutrons, dont nous présentons les résultats, ont été
réalisées sur des solutions aqueuses concentrées de polyélectrolytes, sans sel. Le polyion est du polystyrène sulfoné
associé successivement à des contreions sodium et tétraméthylammonium. Dans ce dernier cas, nous avons étudié
toutes les combinaisons possibles de polyions et contreions deutérés et non deutérés.
Les grandeurs extraites des données expérimentales sont tout d’abord les facteurs de structure statique des polyions
et des contreions. Les contributions cohérentes et incohérentes au facteur de structure dynamique sont ensuite
séparées. Le coefficient d’autodiffusion des contreions est alors déterminé à partir de la diffusion incohérente.
Un coefficient de diffusion dépendant du vecteur d’onde est obtenu à partir de la diffusion cohérente. Ce coeffi-
cient est lié au mode lent du processus collectif de relaxation. Nous trouvons que la mobilité associée à ce mode
est une fonction du vecteur d’onde, ce qui répond à une question soulevée auparavant à propos du facteur de
structure dynamique d’un polyélectrolyte flexible. Nous n’avons pas réussi à observer le mode rapide du processus
de relaxation, malgré l’utilisation des différentes combinaisons de polyions et contreions marqués.

Abstract. 2014 We report results of quasi-elastic neutron scattering experiments on concentrated polyelectrolyte
solutions in water without added salt. The polyion is sulphonated polystyrene, associated successively with sodium
and tetramethylammonium counterions. In this second case, all possible configurations of deuterated and non
deuterated charged components are tested.
The quantities first derived from the experiment are the static polyion and counterion structure factors. Next,
the coherent and incoherent contributions to the time-dependent structure factors are separated. The counterion
self diffusion coefficient is determined from the incoherent scattering. A wave-dependent diffusion coefficient is
derived from the coherent scattering. This coefficient is associated with the slow collective relaxation mode. The
mobility related to this mode is found to have a characteristic wavevector dependence, settling thereby a question
raised earlier about the dynamic structure factor of polyelectrolytes made of flexible coils. The attempt to observe
the fast relaxation mode using the different labelled combinations failed.
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1. Introduction. - Polyelectrolytes are multicom-
ponent systems made of large polyions and small
counterions dissolved in a polar solvent. Thermal

agitation induces characteristic mass and charge
fluctuations. Two dissipative processes control the
concentration fluctuations [1, 2]. The first is mass
diffusion along a concentration gradient; the second
is convection due to electric fields arising from these
gradients. Their combined effects yield characteristic
variations of transport coefficients, such as molecular
mobility, with the parameters of the solution. It is of

(*) ILL, 156X, Centre de tri,. 38042 Grenoble Cedex,
France.

(**) CRM, 6, rue Boussingault, 67083 Strasbourg Cedex,
France.

general interest to study these variations experimen-
tally, since the effect of the Coulomb interaction on the
observable properties of the system is difficult to

account for in an explicit manner through rigorous,
statistical mechanical calculations. Other static or

transport properties of polyelectrolyte solutions not
yet thoroughly theoretically understood, are, for

instance, the existence of a maximum value of the
polyion-polyion partial static structure factor at some
transfer wavevector qm varying as c 112 [3], or the
anomalous value of the electrical conductivity [4].
They are also attributed to the strong Coulomb
couplings. Here we consider the time and space depen-
dence of the concentration autocorrelation functions.
Unlike the case of ordinary diffusive behaviour, two
characteristic relaxation frequencies are expected to
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be found, with one non zero relaxation frequency at
zero transfer wavevector. The disymmetry in mass and
charge between polyions and counterions, typical of
a polyelectrolyte, produces other specific dynamic
properties. When the polyion is a rigid molecule, as
is the case with polystyrene latex, the dynamics of the
system can be in some respect treated in a simplified
way, using the Born-Oppenheimer hypothesis. The
counterion equilibration time [2] is small compared
to the corresponding polyion time and, as a conse-
quence, the two species can be considered separately.
When the polyion is made of long, flexible coils, as is
the case in this report, the dissymmetry is still large
but its effect is tempered, in concentrated solutions,
because of the overlapping of the coils. Here the ele-
mentary time for the polyion is fixed by the size of
the rigid units associated with the random coil confi-
guration. But the main fact of interest in this case is
that the polyion concentration fluctuations have long-
range spatial correlations, which are sensitive to mole-
cular interactions, and whose variations can be mea-
sured over a large q range from a scattering experiment.
The characteristic variation with q of the time-depen-
dent pair correlation functions serves as a test for the
formulation of the dynamic properties in such systems.

In a preceding letter [5], a problem was raised

concerning the q-dependence of the effective diffusion
coefficient, D(q), related to the polyion concentration
fluctuations. The data published in reference [5] sug-
gested that D(q) probably changes from a decreasing
to a constant function of q as q increases beyond qm.
However, there was not enough experimental material
to settle the matter conclusively. We thus performed
more neutron quasi-elastic scattering experiments at
the Institut Laue-Langevin (Grenoble). Our results,
reported here, allow, hopefully, a definite conclusion
to be drawn. Moreover, as the possible influence of
counterions on the polyelectrolyte solution dynamics
was not previously investigated, we tried to point out
this influence. To this end, experiments were carried
out on all possible combinations of labelling the
polyion-counterion system. In principle, this allows
us to make both a clearer distinction between coherent
and incoherent scattering and a separate evaluation
of the contribution to coherent scattering of each
mode that might exist in our coupled, three-compo-
nent system. In particular, the so-called « plasmon »
mode should become observable. Unfortunately, we
were not able to reach that goal, and the question
about counterions remains unanswered.

Subsequent parts are organized as follows :
Part 2 : Neutron scattering cross-sections;
Part 3 : Samples;
Part 4 : Instrument description and performances;
Part 5 : Results;
Part 6 Theoretical considerations;
Part 7 : Discussion of the results.

2. Neutron scattering cross-sections. - A neutron
scattering experiment is, basically, the measurement

of an intensity I(q, cv) as a function of the transfer
wavevector q and the energy transfer hcv. Assuming
single collisions, the general expression for I(q, w)
is [6] :

K is an apparatus constant, the indices I and J run
over all the components of the system (in our case
three components, the solvent I = 0, the polyion
I = 1 and the counterion 7 = 2). The transfer wave-
vector q is related to the scattering angle 0, the energy
transfer hot and the wavelength A of the scattered
neutrons. In the quasi-elastic approximation (núJ
smaller than the neutron incident energy) we have :

The coherent dynamic scattering function SIJcoh(q, cv)
is defined by [6] :

and the incoherent dynamic scattering function

S, i..(q, M) by [6] :

that is, as time Fourier transforms of the intermediate
scattering functions, respectively F¡Jcoh(q, t) and

Fjin,,;(q, t). rl, (t) is the position, at time t, of the ith
elementary scatterer belonging to component I ; such
an elementary scatterer is chosen so as to have a

negligible size as compared to q-1 (i.e. a constant form
factor), and is here the solvent molecule (I = 0), the
polyion monomer (I === 1) or the counterion (/ = 2).
al and aI are respectively the coherent scattering
length and the incoherent cross-section of the ele-
mentary scatterer of the Ith component.
The quantities F¡Jcoh(q, t) and F¡inc(q, t), which

may be expressed, in the quasi-elastic approximation,
as inverse Fourier transforms :

are of great interest because they are directly measured
with one of the spectrometers used in our experiments
(see Part 4). Moreover, FIJ..h(q, t = 0) = SIJ..h(q)
is the partial IJ coherent static scattering function.



89

Because of the long-range correlations in polyelec-
trolyte solutions (polymer structure and electric

interactions), small-angle scattering experiments are
interesting. In this q range, the incompressibility
constraint has to be taken into account; this is done
later (see Part 6).
A characteristic of the neutron scattering experi-

ment, as compared to light scattering for instance, is
apparent in the I(q, co) formula (1). The self transport
properties of the system are encoded in the incoherent
contributions (3) to the total intensity and must be
separated from the collective ones (2).

It is possible to modify, to a large extent, the cohe-
rent scattering lengths of some species in the system
by labelling them without altering chemical properties.
This is accomplished for instance by substituting
deuterium nuclei to the protons of some scattering
units. This possibility is of great importance for at
least two reasons. The separate evaluation of coherent
and incoherent contributions is feasible, as is the
identification of each mode of collective behaviour
that a multicomponent system may exhibit. This only
requires a proper « tuning » of the al’s (see Part 6).

3. Sample description. - The samples are sodium
and tetramethylammonium polystyrene sulphonates
(PSSNa, PSSTMA).
Working with wholly deuterated or non deuterated

polyion, or counterion, various combinations may be
obtained. We used : PSSHNA, PSSHTMAH,
PSSHTMAD, PSSpTMAo, PSSDTMAH. (The index H
or D indicates a hydrogenated or deuterated mole-
cule.)

In the case of the PSSTMA samples, the styrene
polymerization and the sulphonation were carried
out at the Centre de Recherches sur les Macro-
molecules (CRM) (Strasbourg). The (weight-average)
degree of polymerization of the parent polystyrenes
(hydrogenated and deuterated) is NW = 1 200. The
Vink method [7] was used for both sulphonations.
There is about 90 % or more sulphonated styrene
per chain, and the polydispersity of the samples
after sulphonation is known through the ratio NWIN.,
equal to 1.25 in the best case and to 1.40 in the worst.
The PSSHNa sample was bought from the Pressure

Chemical Company (Pittsburg). The (weight-average)
index of polymerization is NW = 950. All the samples
were dialized against pure water.
The solvent is pure heavy water (D20) (1); no salt

is added.
Concentrations are evaluated from measured solvent

volume and solute mass before mixing, using the
tabulated partial molar volumes of PSSTMA and
PSSNa [8].

(1) We have used the D20 obtained from the D6parte-
ment des Molecules Marquees, CENS, without further puri-
fication.

In the case of PSSNa, the solute concentration C is :
c=350 monomole.m-3 (c=7.21 x 10-2 g.cm-3),

and in the case of PSSTMA :
c = 590 monomole. M-3 (c =1.6 x 10 -’ g.cm- 3 ).

In order to check the validity of these values, we
measured the mass density of the PSSHTMAH and
PSSH TMAD with the high-precision digital densito-
meter [9]. The results

and

are consistent with the values derived above, i.e.

Pmeasured Pcalculated 
f’"ttoI O 5 0 /o ’

Pmeasured

In this range of concentration, the strong solute-
solute correlations are reflected by the existence of a
maximum in the coherent polyion-polyion scattering
function (see Ref. [3]).

According to this reference, the peak position is

qm = 1.2 nm -1 (PSSNa), and, from interpolation of
the qm(c) law, qm = 1.3 nm-’ for the PSSTMA’s. The
temperature is room temperature for PSSTMA and
25 °C for PSSNa. The Debye screening length x -1
calculated from the number of counterions assuming
full dissociation is :

The main interest in using labelled species for neutron
scattering experiments comes from the possibility
of adjusting the effective scattering length to a useful
value. Values are given in table I of the incoherent

Table I. - Neutron coherent scattering and contrast
lengths jor the components of the polyelectrolyte
solution. a, coherent scattering length, v, partial molar
volume, bi contrast length, U I incoherent scattering
cross-section, jor the elementary scatterer of compo-
nent I.
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scattering cross-section U, the coherent scattering
v

length al, and the contrast length bj = a, - -1. aovo
for the molecule monomers of component I(i.e. PSS-,
TMA + or Na + ). The quantity v is the partial volume
of the species, and index 0 refers to the solvent (D20).
Notice that in this case the incoherent scattering
cross-section is accounted for mostly by spin inco-
herence (and not by isotopic incoherence).

4. Spectrometer description. - The spin-echo
(IN 11) and the back-scattering (IN 10) spectrometers
of the Institut Laue-Langevin were used in this

experiment. They are described in detail in refe-
rences [10, 11, 12]. It is however useful to define here
the quantities measured from these instruments.
The spin-echo spectrometer gives as final output

the normalized intermediate scattering function

This quantity is obtained from a succession of ele-

mentary measurements, which we describe below

assuming an ideal, fully efficient apparatus. IN 11 is
a two-axis spectrometer for which the incident
neutron beam is polarized (all spins « up »). Along
the two arms, a magnetic guide field is kept uniform
and constant. At the beginning of the first arm and
at the end of the second one, a Tr/2 spin-turn coil is
placed. Between the two arms, near the sample,
there is a rc spin-turn coil.
An experimental configuration is defined by :
- a scattering angle 0
- a guide field value B (the time in F(q, t) is

actually proportional to B)
- a state of the spin-turn coils : « on » or « off ».

Moreover when the second Tc/2 coil is « on », its
current may be either positive or negative.
The neutron detector is placed behind the pola-

rization analyser. Given an experimental configu-
ration, the measured quantity is the scattered neutron
flux with spin « up ».

Let 1+(I_) be the flux when all spin-turn coils are
on, with a positive (negative) current in the second
n/2 coil; IT the flux when all spin-turn coils are off
and Ii the flux when all but the n spin-turn coils are
off It is shown (see Ref [12]) that, if the isotopic
incoherence is negligible, the following relations hold :

with

and
T

Thus with our ideal spectrometer, FN(q, t), defined as

is given by

and the relative weight of coherent scattering

by :

The discussion is slightly more complicated for the
real spectrometer. Nevertheless the basic ideas, and
the IN 11 performances, remain very similar.
The available scattering angles range from 0 = 2°

to 0 = 20°. For our experiment (choice of the guide
field B) the minimum value of the time is tm = 0.5 ns
with a maximum one tM = 10.7 ns. The mean wave-

length is A = 0.83 nm, with a 8 % relative spread
(mechanical velocity selector). The accessible transfer
wavevectors q and transfer energies OJ are then, res-
pectively :

The back-scattering spectrometer, IN 10, measures
an M(q, w) obtained by the convolution of the inten-
sity I(q, w) (form. 1) with a resolution function Gø(w).
M(q, w) is observed for seven values of 0, between 4°
and 17.80’with w ranging from - 12 lleV to + 12 lleV
by steps of 0.2 lleV. The width of the resolution func-
tion is always about 1.8 lleV. The incident, Bragg
reflected, neutrons have a wavelength A = 0.628 nm.
This leads to a reciprocal space domain

We now describe and compare the IN 10 and IN 11
data processing :

IN 10 :
We choose a priori an analytical form for the w

dependence of I(q, co) within the three following
possibilities :
- I(q, (o) is a Lorentzian, characterized by four

parameters : background, i.e. lim I(q, (o); position,
’a "’

i.e. value cvo at the maximum of I(q, a)); height, i.e.

I(q, (oo); half width at half maximum.
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- I(q, (o) is the sum of two Lorentzians centred at
the same point : six parameters.
- I(q, a)) is the sum of a Lorentzian and of a delta

function, centred at the same point : five parameters.
The chosen I(q, OJ) is then numerically convoluted

with the experimental Gø(OJ) and the result fitted,
varying all the parameters and according to a least
squares criterion, to the experimental M(q, co).

IN 11 :
In this case a time convolution analysis is also

necessary, in principle. But in practice there is no
need for such a sophistication. According to the IN11
time scale, we are studying rather slowly-varying
phenomena. The width of the time resolution function
is much less than the relaxation times of our FN(q, t),
and it is therefore legitimate to factor out of the
convolution integral. Hence, IN 10 results are less
reliable and less easily interpreted than those obtained
with IN 11.

5. Results. - 5. 1 STATIC STRUCTURE FACTORS. -

As a check, the coherent static intensity ,..h(q) was
measured, using IN 1 l, for all the samples. When the
polyion is the more luminous component of the solu-
tion (hydrogenated polyion with sodium or deuterated
TMA) the characteristic polyelectrolyte static struc-
ture factor is seen, with a position of the interaction
peak in rough agreement with the results of refe-
rence [3] (Fig. 1). In this case :

On the other hand, if the polyion is deuterated its
contrast length is nearly zero (Table I) ; the intensity
recorded thus comes entirely from the counterionL and
only the partial counterion-counterion coherent static
scattering function is observed (Fig. 1) :

Also obtained by this static polarization analysis is
the identification, in the scattered intensity, of the
coherent and incoherent scattering contributions.

Fig. 1. - Polyion-polyion ( +) and counterion-counterion
(A) scattering functions, directly obtained from the elastic
scattering experiments : + PSSHTMAD; 0 PSSpTMAH.

Results are displayed on figure 2 where

is plotted against q for the four PSSTMA samples.
It is worth mentioning that the wholly-deuterated
sample, PSSDTMAp, which gives an acceptable cohe-
rent level relative to the incoherent one, is actually a
bad choice because of its overall very low intensity
in D20.

5.2 DYNAMIC STRUCTURE FACTORS. - 5.2.1 IN 11.
- The normalized intermediate scattering function
FN(q, t) is obtained with the PSSHNa and PSSHTMAH
samples. Measurements are made at 8 values of the
scattering angle 0, namely 0 = 4, 5, 6, 8, 10, 11, 12,
and 15 degrees, with PSSHNa, but only at 2 values
0 = 7° and 0 = 15° with PSSHTMAH. Figure 3 shows
a representative spectrum. Though the data acquisi-
tion duration of such a spectrum is about one day,

Fig. 2. - Ratio of coherent intensity to total intensity
(static measurements) : 0 PSSDTMAD; 0 PSSHTMAD;
+ PSSDTMAH ; x PSSHTMAH.

Fig. 3. - Normalized intermediate scattering function

FN(q, t) for PSSHNa at q = 1.58 nm-’; continuous curve :
fitted A e -’ .
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the precision of our measurements is rather poor :
this exemplifies the low luminosity of polyelectrolytes
dissolved in pure water. We did not try to use elabo-
rate data analysis methods, like cumulant expansions,
etc., to represent these spectra.

If we assume that FN(q, t) is the sum of several
relaxation modes we have :

In the long-time limit, all but the slowest mode have
decayed to zero, hence :

where is is the characteristic relaxation time of this
mode.

This long-time limit is no longer normalized to
unity when extrapolated back to t = 0 : the norma-
lization is a short-time property and here we study
explicitly the long-time behaviour. We thus restricted
ourselves to a (two-parameter) fit of FN(q, t) by a
single decaying exponential : F’N(q, t) = A e-’/T . This
allows us to define a (q-dependent) relaxation fre-

quency ’t-1, characteristic of the slow mode. Figure 4
shows the dispersion relation T-’(q) for the PSSHNa
sample. An important related quantity is easily obtain-
ed : the effective, q-dependent, diffusion coefficient

-1

D (q) T q 2 A curve of D(q) is drawn on figure 5.
q

The different behaviour for q  qm and for q &#x3E; qm is

easily seen on this plot. The (approximately) constant
value of the effective diffusion coefficient at large q
is about D cn 6.0 x 1O-11 M2.S-1.

5.2.2 IN 10. - The quantity M(q, (o) is measured
for the four PSSTMA samples. Two functions M(q, w)

Fig. 4. - Dispersion relation Ls-1(q2) for the PSSHNa
sample.

Fig. 5. - Effective diffusion coefficient D(q) (o) and poly-
ion-polyion structure factor S,,(q) (+), for the PSSHNa
sample. The dashed lines are only eye guides.

at fixed 0 = 8.60 (q = 1. 5 nm’ ’) are shown in figure 6.
In the first case the sample is vanadium; its dynamic
scattering function is seen as an incoherent elastic

peak : I(q, (o) f’OooI 6(cv). Thus the curve is the resolution
function GO(a)). In the second case the sample is

PSSHTMAH. The spectra are reduced to the same
height, to facilitate the comparison between the appa-
ratus and sample broadenings. The second curve is
not centred around cv = 0, because the resolution
function is not a symmetric function about the origin.
As is apparent in figure 6, the convolution analysis
is necessary to recover the sample true I(q, w); there-
fore the data were analysed according to the methods
described in § 4.
From the study of the PSSpTMAH sample, the

polarization analysis establishes that incoherent scat-
tering is important at large q values and almost as
important as coherent scattering at small q’s (see Fig. 2).

Fig. 6. - IN 10 raw spectra M(q, w). q = 1.5 nm-1. +
resolution function; 0 PSSHTMAH sample. The resolution
width is 1.8 pev and the sample broadening is 2.2 pev.
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At small q’s the best representation of I(q, co) is the
sum of an elastic peak and a Lorentzian. At large q’s
the data are best fitted with one Lorentzian. Its

broadening y thus originates from incoherent scatter-
ing. A linear relationship between y and q2 is observed
(Fig. 7). The measured diffusion coefficient, defined
by D = yq-2, is D = 3.7 x 10-11 M2.S-1.

In the whole q range probed, the PSSHTMAD inten-
sity is mostly coherent, excluding perhaps the first

point (Fig. 2). At the four last angles, it is possible
to fit a single broadened Lorentzian to the experimen-
tal data. In this high-q limit, the broadening y is again
linear in q2 (Fig. 8). We have thus a well-defined diffu-
sion coefficient D = I x 10- i l m2 . s-’. Results are
not altogether satisfying because none of the three
possible representations of I(q, (9) is acceptable for
the first three scattering angles. The numerical fit leads
to « unphysical » broadenings for I(q, w) less than the
w step value (~ 0.2 JleV). The actual broadening are
too small to be measured using this spectrometer.
The situation is similar for the PSSHTMAH sample.

At all but the last two points the intensity is coherent.
No fit is physically reliable at small angles for the same
reason as given above. At large angles, a fit using two
broadened Lorentzians gives the best result. Never-
theless, the broadening r of the broader Lorentzian,
which could be identified with a fast mode relaxation

frequency, has a rather chaotic q behaviour, probably
because r is near the upper co-space limit : r - 6-8 pev.
The broadening y of the other Lorentzian is also of
the form y = Dq2, with nearly the same diffusion coef-
ficient as defined with PSSHTMAD (Fig. 9). Two com-
plementary measurements were made on PSSHTMAH
with IN 11. The relaxation frequencies measured are
also on the curve y = Dq2. The same mode is observed
with the two spectrometers.
No results could be obtained with the wholly-deu-

terated sample PSSDTMAD, not luminous enough to
give us confidence in the numerical deconvolution

analysis.

Fig. 7. - Dispersion relation 7(q’) for the PSSpTMAn
sample. The straight line is the least squares fit passing
through the origin.

Fig. 8. - Dispersion relation y(q2) for the PSSHTMAD
sample.

Fig. 9. - Dispersion relation y(q2) for the PSSHTMAH
sample.

6. Theoretical considerations. - In this part, we
present theoretical models designed to describe some
essential features of the dynamics of charged systems.
The theoretical approach to the dynamics of poly-
electrolyte solutions is difficult because both polymer
and electrolyte properties should be taken into account
The electrolyte character brings in strong and long-
range electrical interactions. On the other hand, the
polymer chain has many internal degrees of freedom
and there are specific intra- and interchain correlations.
Models expounded in the following are therefore often
not satisfactory because they emphasize either the
electrolyte or the chain properties. But they are never-
theless useful for their qualitative predictions.

Theoretical calculations consist in transforming the
basic expressions for the cross-sections, given in Part 3,
into function of collective or self-transport coefficients.
We examine the results of such calculations successi-

vely for the incoherent and the coherent contribution.
The experimental evaluation was discussed in the pre-
ceding section.
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6.1 THE INCOHERENT CONTRIBUTION : : SELF DIFFU-

SION MOTION. - The following model deals with the
self diffusion of the counterions in a polyelectrolyte
solution and allows us to compute the counterion inco-
herent dynamic scattering function, S2 inc(q, ro). The
small ions are subject to a rapid brownian motion in
the electric field created by the large, and therefore
slowly moving, polyions. The resulting effect of this
electrical interaction is a slowing down of the diffusive
motion of the counterions. Picturesquely, we may say
that the counterion spends more time moving against
the electric field than it does moving with it. The rela-
tion between the self diffusion coefficient of the counter-
ion in the polyelectrolyte solution, D2, and the one it
would have in a very dilute solution with small ions
as a substitute for polyions, D ’, is [13] :

where f is a function, always smaller than unity, of
the Manning dimensionless « condensation » parame-
ter lB/a, where 1B is the Bjerrum length of the solvent,

’B = 4 7rso e i;, kT and a the spacing between charged
groups on the polyion chain. It should be noted that,
although the « condensation » parameter appears in
the calculation, the slowing down of the diffusive
motion of the counterions basically originates from
the Coulomb interaction and not from the so called
« counterion condensation » [14] : f  1 even if no
« condensation » occurs (i.e. / 1 even if lbla  1 ).
We apply this result to the incoherent counterion

intermediate scattering function; its relaxation fre-

quency will be : r = D2 q2 = fD2 q2, which gives
a measurement of this f factor at the microscopic
scale probed by neutron scattering.
The scattering experiment by the PSSDTMAH sam-

ple provides us with a good check for this calculation.
As seen in Part 5, the intensity scattered by this sample
is mostly incoherent and the hydrogenated counterion
is the more efficient scatterer. The curve displayed in
figure 7 is the counterion self diffusion motion disper-
sion relation.
Our value for the self diffusion coefficient of tetra-

methylammonium counterion in a semi-dilute poly-
electrolyte solution, deduced from the dispersion curve,
is : D2 = 3.7 x 10-10 m2 . s-1. A tabulated value, for
TMA in a very dilute simple electrolyte solution is [ 15] :
Do = 1.19 x 10-9 m2 . s-1. The Manning f factor is
thus here f = 0.3. Manning’s theoretical calculations
give hh = 0.28, and conductivity measurements yield
f exp = 0.32 [16]. This value is derived from observa-
tions on dilute sodium polystyrene sulphonates. The
agreement with our result may therefore be only
fortuitous.

6.2 THE COHERENT CONTRIBUTION : CONCENTRATION
FLUCTUATIONS. - In the concentration range where
the polyion chains overlap with neighbours the cohe-
rent dynamic functions SIJc.h(q, co) are related to the
collective diffusive motions of the species. This rela-

tionship can be derived from equations for the time
and space dependence of concentration fluctuations.
Such equations have a simple structure when only

linear terms in concentration fluctuations are retained
and when the (macro) molecules are treated as struc-
tureless particles. It is then possible to account for
some essential features of the concentration auto-
correlation function, but not for the specific dynamic
behaviour of polyelectrolytes made of long, flexible
coils. In a previous report [5] these formal results were
modified to include a wavevector dependent mobility
Jl(q), introduced to account for the internal structure
and for the small-scale rigidity of a polyelectrolyte
chain.
The coherent dynamic functions Sjj(q, (o) are given

here using first the simplified theory (structureless
particles) and then according to reference. [5]. The
simplified theory is expected to be valid only in the
small-q domain. Its interest is that it explicitly considers
all the components, solvent, counterion and polyion
on a par, and thus provides a convenient framework
within which to discuss the influence of the counterions
on collective dynamical properties. To our knowledge
there is no such framework for the higher-q regime.
That is why we reproduce below the arguments given
before in reference [5], to cope with high-q situations.
As seen in Part 2 we have to calculate, for example,

the following intensity

where  ... &#x3E;,,q is an average over the equilibrium ini-
tial distribution. We define the concentration e, of
the « elementary units » of component I as

and the fluctuation 61j as

 ej(r, t) Bq is the usual, thermodynamic concen-
tration, cj.

In terms of spatial Fourier transforms, we have for
q :0 0

LJ

We now use the Onsager’s regression hypothesis to set

where bcj(q, t) = ( btj(q, t) ) is the average of61j(q, t)
over a non-equilibrium initial distribution, and chan-
ges with time according to macroscopic transport
equations, such as the hydrodynamic ones. This

determines bcj(q, t) as a function of the initial condi-
tions bcK(q, 0). Formally :
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The average ... is defined as : P

The two major couplings controlling the relaxation
processes are the overall incompressibility constraint
and the electric interaction between charged compo-
nents. We therefore write the transport equations as
an incompressibility relation :

(vl partial volume of the I th species) and as continuity
equations for the two solute components

where the current jj(q, t) is assumed to be the sum
of a diffusion term, j,,d, obeying Fick’s law

.- _lz_

and of a convection term jj,,,,, accounting for the
coupling between the two solute components [1, 2].
The coupling is itself due to the electric field created
by the concentration fluctuations. This contribution
is essentially non linear. However it is evaluated as a
linear combination of concentration fluctuations

This may be thought of as the first-order term of an
expansion for the «true current It neglects also all
thermal or viscous couplings.
The equations of motion for the solute components

are of the general form

and are easily solved. In matrix notations

The expression for the intermediate scattering func-
tion, using the incompressibility relation, becomes

or I(q, t) = B + QB, where B is the contrast length
column vector :

and Q is the quadratic form :

or

(S,J(q) =  611(q, 0) 61j(q, 0) &#x3E;,,q is the I-J partial
static scattering function).

Before giving more explicit results, we must remark
that our calculation method, based on Onsager’s
hypothesis and on phenomenological transport equa-
tions, may sometimes not be self consistent. The scat-
tering cross-section is always positive but our method
does not retain this property, unless special conditions
are met. Easily worked out is the following necessary
condition (2 x 2 case) :

Other necessary conditions appear as inequalities and
are less important constraints. In the subsequent
general discussion we shall assume that the dynamic
matrix A (q) is chosen to be compatible with the cross-
section positivity requirement.

Diagonalizing the (two by two) matrix A (q), we
find a two-mode structure of I(q, t) :

where Ts ’ (resp. Tf ) is the relaxation frequency of the
slow (resp. fast) mode (!; 1  Tf ’) and S, Y are
amplitudes depending on the contrast lengths bl,
on the 51J’ and on the matrix elements A1J(q). Their
explicit form is not particularly illuminating (see
Appendix A). The relaxation frequencies r-’ lead
to q-dependent effective diffusion coefficients

D eff = ! - 1 q - 2. .
The motions are strongly coupled in the sense that

even i( say, b, = 0, neither S(q) nor Y(q) is in general
zero. But at large q values (i.e. when looking for small
spatial scale behaviour) decoupling occurs and the
two components act as if independent :

(If we suppose, for example, that the I = I component
is the larger and therefore less mobile one : Dl  D2.)
These are very general features of any coupled two-
component system. When the solute components
are charged, the electrical-neutrality condition intro-
duces a constraint and new features emerge. The fast
mode becomes a (non-propagating) « plasmon » mode,
i. e. 2 f 1 (O + ) &#x3E; 0 (usually Tf - ’(0 = -r; 1(0+) = 0) and
Y(O,) is identically zero.

Explicit expressions may be given within the model
of Berne and Pecora [2], which describes the dynamics
of an electrolyte solution made of rigid molecules.
Let D_ and D+ be the self diffusion coefficients

respectively for the anion and the cation. Using our
preceding notation (see Eq. 13), D+ = D2. Let z be
the charge ratio between anion and cation. The dyna-
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mic matrix is in this case

where K - ’ is the Debye screening length.
This form for the dynamic matrix is consistent

with the cross-section positivity requirement, for
small q’s, because of the electroneutrality conditions :

(see Appendix B).
The slow and fast mode relaxation frequencies are

easily obtained. In the small-q limit :

for large wavevector q values :

Moreover, the following inequalities hold true

In order to interpret our experimental data, we may
first use the Beme and Pecora model defined above,
and thus neglect the coil-like structure. For this,
we need to define the « anion » which best describes
the dynamics of our polyelectrolytes using the above
equations. Because the coils are flexible, the « anion »
is a unit whose size .ranges from the entire coil to the
monomer. The blob of size j = K-’ (Debye screening
length) was proposed to be such a unit [17-19]. In
this case, the self diffusion coefficient D- is the coef-
ficient corresponding to the blob of size ç. Expressions
(t6) and (1 7) can then be used to determine the time
dependences in (14). Our final, qualitative, results are
then : a two-mode structure of I(q, t), with a (low
intensity) plasmon mode; a diffusion coefficient
associated with the slow mode which exhibits plainly,
for small q’s, the coupling between polyions and
counterions. It is a decreasing function of q and
becomes a property of the sole polyion for large q’s.
An improvement for such a model, as regards the

polyion dynamics, is then found by acknowledging
the internal structure of the coil ; this is done in
references [5]. Counterions are ignored for large q’s ;
according to the simplified analysis made above this
should cause no harm.
The essence of the analysis given in reference [5] is to

consider that the measured signal I(q, t) reduces,
for high enough q values, to :

with the following stfucture for the q-dependent
effective diffusion coefficient D(q) :

Such a formulation is very general and not restricted
to polyelectrolyte systems. It may formally be
obtained by linear response theory [21], which,
however, does not explicitly give the mobility ,u(q).
In reference [5] the theoretical prediction for the
behaviour of the mobility p as a function of q is :

where lp is the persistence length of the polyelectrolyte
chain [20]. Since the authors in [5] assume the follow-
ing q-dependence for S,,(q) :
- Sl,(q) increases roughly linearly with q in the

range lp-’  q  qm (rod-like behaviour with impor-
tant interchain effects).
- s 11 (q) behaves as q-1 for q &#x3E; qm (pure rod-like

behaviour without interference between chains), their
prediction for the law D(q) is : D(q) decreases rapidly
(as q- 2) for lp- 1  q  qm and D(q) becomes constant
for q &#x3E; qm.

With the data recorded on the IN 10 and IN 11

spectrometers, it is now possible to discuss these
theoretical predictions about the (theoretically pri-
mary) quantity p(q) and the (experimentally primary)
quantity D(q). The link between the two quantities
will be the experimentally-determined S 11 (q) and not,
as in reference [5], a model for this polyion scattering
function.

7. Discussion of the results. - 7 .1 IN 11 STATICS. -

Using the various PSSH,p polyions and TMAH,D
counterions in D20, the polyion-polyion and coun-
terion-counterion partial static scattering functions
are directly derived from the elastic scattering data.
The classic results are obtained. A perhaps interesting
continuation of such studies using properly-chosen

. combinations of deuterated and hydrogenated compo-
nents would be the determination of the charge-
charge structure factor or of the related static dielectric
function.

7. 2 IN 10 AND IN 11 DYNAMICS. - The slow mode
was observed with PSSHNa on IN 11, in the q range
0.2 nm- 1  q  2.7 nm - 1. The measurements made
with PSSHTMAD and PSSHTMAD on IN10 are

inconclusive in the lower q range (up to 1.5 nm-l),
but we observe one and the same mode with the
two samples for the larger q values. (Within the experi-
mental and numerical (deconvolution) errors). The
dispersion relation of this mode meshes smoothly
with the one obtained, at two q values, with

PSSHTMAH, using the spin-echo spectrometer. Keep-
ing in mind that IN 11 can only « see » the slowest
mode of a system, we draw the conclusion that we
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also observed the slow mode with the IN 10 experi-
mental design. Thus the gathered informations about
this slow mode cover a rather wide range of reciprocal
space : 0.2 nm-’  q  3.1 nm - 1. We summarize
here the results obtained with IN I I (§ 5.2.1) and
with IN 10 (§ 5. 2. 2). The effective diffusion coefficient
defined from the slow mode relaxation frequency is at
first a rapidly decreasing function of q and then,
after a transition zone near qm, becomes a constant.

(The last point on figure 5 (for PSSHNa) is a long way
out, but the IN 10 measurements, (for the PSSTMA’s)
with larger q’s, ascertain that Deff(q) becomes actually
constant.) This behaviour agrees rather well with the
predictions about D(q) of reference [5], and is certainly
not incompatible with the ones arising from the

multicomponent dynamical analysis. The latter, valid
in the small-q limit, might still be applicable to the
very first q ykes scanned, and it indeed predicts
a large diffusron coefficient, decreasing as q increases
because of the decoupling that gradually occurs

between counterions and polyions. Of course, much
stronger evidence for the counterion-polyion coupling
would be the experimental determination of the
« plasmon » mode.
The behaviour of the polyion diffusion coefficient

at large q is easily understood on the basis of an
analogy between neutral and charged polymer struc-
ture. The neutral polymer chain is flexible at all scales
(down to the small monomer size). The size of moving
elements probed at the wavevector q is of the order
of q- 1, and an elementary application of the Stokes-
Einstein law gives a diffusion coefficient increasing
linearly with q, as is actually observed [ 19]. The charged
polymer chain is also flexible, but only down to its
(large) persistence length lp. The size. of moving
elements probed at wavevector q &#x3E; lp- 1 is always lp
and thus the diffusion coefficient is constant.

It is also of interest to extract from our results the

mobility p(q), since such a quantity is theoretically
important. We define p(q) here as p(q) oc Deff(q) S 11 (q)
using our experimental Deff and Sll. The resulting
curve is plotted in figure 10. Because of the lack of

precision, a precise, quantitative law cannot be derived

Fig. 10. - Mobility p(q) (PSSHNa sample). The dashed
line is only an eye guide.

from our data. Nevertheless it seems probable that
the behaviour of p changes near qm, and this is in
conflict with the predictions of reference [5], which
indeed give two different behaviours (u constant

and then p decreasing as q-’), but with a transition
zone located at q - lp 1 instead of q - q..
The conclusions of this discussion about the slow

mode are the following :
As hinted in the previous study [5], the slow mode

diffusion coefficient, after a sharp decrease, becomes
a constant when q increases beyond qm. This behaviour
at large q may be simply understood in terms of a
large persistence length associated with the charged
chain, but its interpretation using a rod-like mobility
is perhaps questionable, because it rests on a very
crude model for the structure of the polyelectrolyte
chain.
The coupling between counterions and polyions is

not evident in the q range of our study of the slow
mode.
We still have to discuss our failure to observe the

« plasmon » mode. The experiments performed with
IN 10, which probes faster relaxation phenomena
than IN 11, were originally designed to point out the
two-mode decomposition of the coherent contribution
to the total scattered intensity, and to study the

dispersion relation of the faster mode. The « plasmon »
mode is most easily observed when the slow mode
amplitude S(q) is zero; then : 

The condition S(q) = 0 may in principle be obtained
by a good choice of the coherent scattering lengths,
or of the contrast lengths, and this is easily done by
labelling either the sample or the solvent Inciden-
tally, this justifies the use of neutron scattering
methods, though the « plasmon » behaviour is a

small q property, a priori better suited to light-
scattering methods. In practice, because of the appa-
ratus limits, we were probably at all times out of the
proper q range to observe coupled-ion dynamics.
Moreover, our choice for labelling the samples
appears to have been inadequate : the PSSDTMAD
sample is not luminous enough; the PSSDTMAH
sample is mostly an incoherent scatterer. (Parenthe-
tically, we thus observed the counterion self diffusion
motion, which, at the space-time scales probed,
remains purely Brownian in spite of electrical inter-
actions and possible exchange kinetic between « free »
and « condensed » counterions). Our best samples,
PSSHTMAD and PSSHTMAH, both have an important
coherent contribution but, unfortunately, no two-
mode superposition could be clearly evidenced, and
the only well-defined mode seen is the slow mode !
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APPENDIX A

The dynamic matrix A(q) is ;

Its eigenvalues are :

We assume that they are real and negative. These eigenvalues are related to the relaxation frequencies Tf ’
and !; 1 : T-’ = - p; ’t; 1 = - A. The matrix e(q), is then :

With this expression, the calculation of I(q, t) = B + QB is straight-forward : I(q, t) = S(q) elt + Y(q).el", with :

_ .. v

APPENDIX B

The electroneutraIity relations. - We consider a multicomponent system with component I bearing the
electric charge Z,,

The number fraction of component I is xj, the total number of particles, N, and the volume, V.
We now ask for the mean electric charge 6/r) around a particle at position r belonging to component 1.

We have

where pjj is the probability of finding a J-partide somewhere when there is a I-particle at r ;.. therefore

,.,.IV

(i)(r r’) being the conditional probability of finding the ith J-particle at r"with a I-particle at r. It is related
to the pair-correlation function gjj through :

Thus

or, using the global electroneutrality relation

The total electric charge of the system is equal to the sum of the charge ZI of any I-particle at some position r
and the charge QI(r) of all the other particles surrounding this one. This total charge is zero; thus
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We now consider the partial / 2013 J coherent static scattering function Sjj(q), defined in Part 2. We have

or

Thus

or

With the electroneutrality relation (B 1 ), we finally arrive at :

In our case,

References

[1] PHILLIES, G. D. J., J. Chem. Phys. 60 (1974) 983.
[2] BERNE and PECORA, Dynamic. Light Scattering, Chap. 9

(J. Wiley, New York).
[3] NIERLICH, M., WILLIAMS, C. E., BOUÉ, F., COTTON,

J. P., DAOUD, M., FARNOUX, B., JANNINK, G.,
PICOT, C., MOAN, M., WOLFF, C., RINAUDO, M.,
de GENNES, P. G., J. Physique 40 (1979) 701.

[4] Anomalous as referred to the Nernst-Einstein law;
see e.g. HANSEN, J. P., MACDONALD, I. R., Phys.
Rev. 23 (1981) 2041.

[5] HAYTER, J. B., JANNINK, G., BROCHARD-WYART, F.,
de GENNES, P. G., J. Physique-Lett. 41 (1980)
L-451.

[6] VAN HOVE, L., Phys. Rev. 95 (1954) 249.
[7] VINK, H., Makromol. Chem. 182 (1981) 279.
[8] TONDRE, C., ZANA, R., J. Phys. Chem. 76 (1972) 3451.
[9] STABINGER, H., LEOPOLD, H., KRATKY, O., Digital

densitometer for liquids and gases (Anton Paar
Gaz Austria) 1966.

[10] MEZEI, F., Z. Phys. 255 (1972) 146.

[11] HAYTER, J. B., Z. Phys. B 31 (1978) 117.
[12] HAYTER, J. B., ILL Internal Scientific Report 78HA50

(Grenoble).
[13] MANNING, G. S., J. Chem. Phys. 51 (1969) 934.
[14] MANNING, G. S., J. Chem. Phys. 51 (1969) 924.
[ 15] As obtained from equivalent conductivity measure-

ments, and using the Nernst-Einstein law. Elec-
trolyte Solutions, ROBINSON, R. A. and STOKES,
R. H. (Butterworthf, London) 1970.

[16] OKUBO, T., ISE, N., Macromolecules 2 (1969) 407.
[17] DAOUD, M., COTTON, J. P., FARNOUX, B., JANNINK, G.,

SARMA, G., BENOIT, H., DUPLESSIX, R., PICOT, C.,
DE GENNES, P. G., Macromolecules 8 (1975) 804.

[18] DE GENNES, P. G., Macromolecules 9 (1976) 587.
[19] ADAM, M., DELSANTI, M., Macromolecules 10 (1977)

1229.

[20] ODIJK, T., HOUWAART, A. C., J. Polym. Sci. Polym.
Phys. Ed. 16 (1978) 627.

[21] KUBO, R., Rep. Prog. Phys. 29 (1966) 255.


