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Coherent light scattering by interacting anisotropic molecules
with variable dipolar polarizability (*)

S. Kielich

Nonlinear Optics Division, Institute of Physics, A. Mickiewicz University, 60-780 Pozna0144, Poland

(Reçu le 14 juin 1982, accepté le 3 septembre 1982)

Résumé. 2014 L’auteur présente une analyse théorique détaillée de la diffusion lumineuse coopérative, due aux
variations des polarisabilités de molécules dissemblables, anisotropes dans leur état fondamental. Les variations
des polarisabilités prises en considération sont celles qui sont induites par les fluctuations des champs électriques
dipolaires à longue distance dans des régions d’ordre proche. Des calculs complets ont été faits jusqu’au deuxième
ordre des variations des polarisabilités en tenant compte des contributions pures et croisées aux constantes de
diffusion isotrope et anisotrope. Ces contributions, liées aux interactions binaires ainsi que ternaires et quater-
naires, ont été calculées en supposant que les molécules sont en corrélation radiale mais statistiquement indé-
pendantes quant à leurs orientations.

Abstract 2014 A detailed theoretical analysis is given of cooperative light scattering, due to changes in polarizability
of unlike molecules, anisotropic in their ground state. The changes in molecular polarizabilities considered are
those induced by fluctuations of long-range electric dipolar fields in regions of near ordering. Complete calcula-
tions are performed with accuracy to the second order of changes in polarizability taking into account pure as
well as cross contributions to the constants of isotropic and anisotropic light scattering. The contributions in
question are related with two-body as well as three- and four-body interactions, on the specific assumption that
the molecules are correlated radially but statistically independent orientationally.
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1. Introduction. - To Smoluchowski [1] and Eins-
tein [2] is due the concept that spontaneous fluctua-
tions in density and concentration of the scattering
system are essential in the process of Rayleigh scatter-
ing. Equally fertile was the idea put forward by
Yvon [3] concerning the role, in propagation and
scattering of light, of statistical translational fluc-
tuations of atoms, correlated by dipolar forces into
two- and three-body assemblages. The Yvon model
of dipole-induced dipole interaction (DID) was sub-
sequently extended to the case of intrinsically aniso-
tropic molecules and applied to calculate the Lorentz-
Lorenz function (or molecular optical refraction) [4, 5]
as well as the second virial coefficient of isotropic
and anisotropic light scattering by compressed gases
[6, 7].
The depolarization of light due to changes in pola-

rizability of anisotropic molecules in condensed gas
mixtures has also been analysed [8, 9], applying two

(*) This research was supported by the Polish Academy
of Sciences (Research Project MR 1.9).

distinct molecular models : (i) the S-model (specific
model), considering the anisotropic molecules as

correlated radially but having statistically indepen-
dent orientations [4, 5, 7, 8], and (ii) the (general)
G-model, considering both the positions and orien-
tations of the anisotropic molecules as statistically
dependent [9-13]. On the latter G-model, analytical
and numerical calculations have been successfully
carried out to the end for the radial-angular correla-
tions with regard to the two limiting cases of (i) weak
angular (tensorial) interactions, dealt with as a per-
turbation to the radial interactions [6, 8, 11 ], and (ii)
strong angular interactions, expressed in terms of

two-parameter Langevin functions [12-14].
In addition to the preceding integral scattering

processes, recent years have witnessed the develop-
ment of spectral studies of light scattering, particu-
larly with regard to the depolarized component. In
their theoretical description of the spectral distribu-
tion of light scattered by anisotropic molecules, some
authors [15-22] have applied Yvon’s model of variable
polarizability in the DID approximation. The final
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results, however, were by no means always complete
or correct because of the unjustified restrictions impos-
ed in certain cases. The source of the inconsistencies
lies in the fact that, in the effective polarizability
tensor A = Ao + 6A (with Ao - the molecular

polarizability in the absence of interactions), various
authors give different interpretations to the change
in polarizability tensor bA (caused by molecular
interactions or other stochastical factors). As is well
known, the intensity of integral light scattering is

proportional to the statistical average

where the first term determines scattering by mole-
cules having unchanged polarizability Ao whereas
the higher terms determine coherent scattering on
mutually correlated molecules with an increment of
polarizability 6A.
When having recourse to the DID model of Yvon,

6A can be calculated in a perturbational approach
by writing, with accuracy to the second order [6, 8] :
6A = A 1 + A2 +... (A 1, A 2 are defined in § 4).
Earlier [6-9] and, in particular, recent papers [14-18]
are restricted to calculations of the first order pertur-
bations A 1. This, however, may lack justification
when applying the G-model since, here, the cross-
term contributions  Ag A 1 + A1* Ao ) can be non-
zero [6, 9, 11-14]. These cross-contributions vanish
always for the molecular S-model, the only non-zero
one being the purely fluctuational contribution

 I A 1 I2 ) [6, 8, 11] ] usually taken into account in
the spectral theories [15-20]. But it should be kept
in mind that contributions of the same order as

 I A 12 &#x3E; give non-zero cross-terms [7, 8, 11, 13]
( Aa A2 + Ai Ao ) in the S-model. It is noteworthy
that, in the molecular S-model, the factor causing the
Lorentz-Lorenz function to be density-dependent is

precisely the second-order change in molecular pola-
rizability A 2 ) [4, 5], whereas the first-approxima-
tion variation  A 1 ) gives non-zero contributions
but in the G-model [5, 23, 24].

It is our aim here to perform to-the-end calcula-
tions of integral light scattering on anisotropic mole-
cules with variable polarizability in the DID approxi-
mation. We shall show that, in the case of the molecular
S-model, terms of the type ( A o A 2+IAII’+A*Ao&#x3E;
give non-zero contributions to coherent light scatter-
ing of the isotropic and anisotropic kinds. Similarly,
we shall prove that, for the molecular G-model, the
cross-terms ( A* Al + AT Ao ) already give non-
zero contributions to coherent scattering. Our cal-
culations will be carried out for dipolar molecules
of arbitrary symmetry applying the formalism of
irreducible Cartesian tensors and their unweighted
rotational averages [25-27].

2. Light intensity tensors of isotropic and aniso-
tropic scattering. - We consider an isotropic medium

of volume V, containing a great number N of unlike
molecules, intrinsically anisotropic in their ground
state. A light wave of electric vector E(t) = E(w) e - iwt
and circular frequency m is incident on the medium.
Restricting our considerations to the linear response,
we can write the electric dipole moment induced in
V (neglecting spatial variations of the electric field)
as :

where summation extends over the index r in accor-
dance with the Einstein convention.

In the absence of electron dispersion and absorp-
tion, the tensor of linear dipole polarizability of the
volume V can, in a satisfactory approximation, be
dealt with as completely symmetric, A_ = .AtCT’ and
decomposed into an isotropic and an anisotropic
part :

Above, 6t, is the symmetric Kronecker tensor. The
anisotropic part of the polarizability tensor is given
by the deviation tensor

the trace of which vanishes, D66 = 0.
Furthermore, restricting ourselves to electric dipole

scattering in the wave zone ( 1 ) we obtain by (1) and (2)
for the intensity tensors of isotropically and aniso-
tropically scattered light [22, 28] :

where L"S is a phenomenological parameter, depen-
dent on the geometry of observation and the shape
of the scattering specimen. If V is a sphere with the
electric permittivity s and if observation is carried
out in the surrounding medium of permittivity so,
we have :

where s. and ews are the electric permittivities for
the vibration frequencies w and co, of incident and
scattered light, respectively.

Equations (3) and (4) contain constants accounting
for the molecular-statistical mechanism of isotropic

(1) The wave zone of the radiation field is here understood
as in classical electrodynamics (see e.g. W. Heitler, The
Quantum Theory of Radiation, Oxford, 1954).
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and anisotropic light scattering (1) (we omit phase
interference processes) :

with  &#x3E; denoting appropriate statistical averaging
at zero external field.

3. The scattering constants in the zeroth approxima-
tion. - The problem to be solved now is this : how
is the tensor of total polarizability Aat of the scatter-
ing sample V to be expressed in terms of the pro-
perties of the individual molecules or atoms ? Obvious-
ly, in the zeroth approximation, A_ is the sum of the
polarizabilities of the N individual molecules :

Above, a(i)t] is the linear polarizability tensor of the
i-th isolated molecule.

In the zeroth approximation (8), the scattering
constants (6) and (7) lead to results well known in
the literature [27]. Nonetheless, we shall consider
this simple case in brief to illustrate the course of
our further procedure. In particular, with regard
to (8), the isotropic scattering constant (6) can be
expressed as follows :

where

is the mean polarizability of the i-th molecule. The
first term of (6a) determines incoherent isotropic
scattering by noninteracting molecules. The second
term ( j = i) describes coherent isotropic scattering
by radially correlated molecules.

Before dealing with the anisotropic scattering
constant (7) as done for (6a), we note that the pola-
rizability tensor a(i) of equation (8) is expressed in
the system of laboratory coordinates and that, for
the sake of convenience, it should be transformed to
a tensor axB, expressed in coordinates attached to the
molecule :

The R6x are rotational transformation coefficients,
relating the reference systems (u, i) and (a, B).
With regard to the transformation (9), the devia-

(2) The scattering constants (6) and (7) defined above are,
respectively, 3 and 30 times greater than those defined in
reference [28] and contain no density fluctuational contri-
butions, which are highly essential for isotropic scattering
only.

tion tensor (2a) takes the following form in the zeroth
approximation (8) :

where we have introduced the following deviator of
the polarizability tensor in the molecular basis :

Applying (10), we write the constant (7) in the form
of a sum of incoherent (i = j) and coherent (i == j)
anisotropic scattering of the zeroth approximation :

where we have introduced the following parameter
of absolute anisotropy of the molecular polarizabi-
lity :

We now apply the molecular S-model to the cohe-
rent part of (7a) implying that the orientations of
the individual molecules are statistically independent.
This leads to the following unweighted rotational
averaging :

This proves that the part of (7a) corresponding to
coherent scattering vanishes and that, with the S-
model, we have but incoherent anisotropic light
scattering

studies of which permit the direct determination of
the absolute polarizability anisotropy (11) of the
isolated molecule. Clearly, in the general G-model,
because of the presence of mutual correlation of the
molecular orientations, the second term of (7a)
accounting for coherent scattering is non-zero. It
has been discussed by numerous authors for a variety
of angular interactions [6-8, 11-13, 29, 30]. Angular
correlations of a similar type intervene in Kerr’s
effect [31-34] as well as in other nonlinear pheno- 
mena [27]. 

4. Effective linear polarizability in the dipole approxi-
mation. - The question now arises of whether the
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S-model admits of coherent anisotropic scattering ?
The answer, in the affirmative, has been provided by
Yvon [3], who showed that, in dense phases, mutual
correlations between the atoms lead to variations of
their polarizabilities. In this situation the law of

additivity of the polarizabilities (8) no longer holds,
and one has to proceed to higher approximations.
We write, with accuracy up to the second order [8],

where Aá(1)), Aá;), ... are deviations of the first, second, ...
orders from the additivity law (8) due, in dense sys-
tems, to collisions (cf. the model of Silberstein [35]
as well as Levine and Birnbaum [36]) and various
multipolar interactions between the molecules [27,
28].
We shall consider here only changes in polarizabi-

lity originating in space and time fluctuations of the
long range electric fields F(r, t). Restricting our-

selves henceforth to interactions of the dipole type
we can write, in a linear approximation,

where we moreover have to deal with the electric field

produced at the centre of molecule i by the distribu-
tion of electric charges of all the (N - 1) molecules
of the medium polarized by the external field E(t).

In (14), the tensor of dipole-dipole interaction
between the molecules i and k separated by a dis-
tance rik is by definition (i # k) (in the absence of
phase interference)

The method of successive substitutions, when

applied to equations (13) and (14) with ( 1 ) and (12),
leads to the following first and second order varia-
tions of the polarizability tensor [8] :

.1 .1

In a similar way, one can calculate the contributions
to (12) originating in the nonlinear dipolar polariza-
bilities of the molecules [6, 8, 28, 27].

5. Coherent scattering in the molecular S-modeL -
We shall now analyse one by one the contributions
to the scattering constants (6) and (7) obtained in
the approximations (8), (15) and (16) using the
molecular S-model.

5.1 CROSS-CONTRIBUTIONS OF THE TYPES 01 AND
10. - In the first approximation we have, for the
isotropic scattering constant (6),

where, by (8) and (15),

On separating the parts related with two-body interactions for i = j # k and i = k # j, we obtain

The S-model, when applied to ( 18a), permits unweighted averaging separately over the orientations of mole-
cules i and j :

and we find that the binary contribution ( 18a) vanishes. Similarly, with the S-model, the ternary contribution
resulting from (18) vanishes as well.

By (2a) and (15), the deviator of the polarizability tensor is, in the first approximation,

and, taking into account the deviator of the zeroth approximation (10), we get from (7) the anisotropic scattering
constant of the first approximation in the form :
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where

The constant S (10P) is determined similarly.
Along similar lines as in the case of (18), we find immediately that in the case of the S-model the binary

and ternary contributions inherent in (21) vanish.
The G-model obviously leads to very different results : in this case, the two constants (18) and (21 ) yield

non-vanishing binary, ternary and higher contributions due to the translational-orientational fluctuations
[6, 8-14].

5.2 PURE CONTRIBUTIONS OF THE TYPE 11. - With regard to (15), the next contribution to the isotropic
scattering constant (6) is of the form :

On separating the nonzero terms related with two-body interaction for i = j # k = I and i = 1 # j = k
we get :

The S-model enables us to write

where, with regard to the rotational transformation (9), we now have :

The appropriate unweighted rotational averaging formulae [26, 27] together with equations (l0a) and

(11) lead to :

whence we finally obtain :

The above expressions enable us to write the binary contribution (22a) in the final form :

Beside the above two-body interaction contribution we calculate from (22) the three-body interaction
contributions for i = j =1= k =1= I, i = I =1= j =1= k, j = k =1= i =1= I, and k = I =1= i =1= j :

where Pn is a- Legendre polynomial of the n-th order.
The last remaining term of (22) for i :A j :A k :0 I corresponds to four-body interaction. On the S-model

it vanishes. In fact,
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since  af]* &#x3E; u = a* ð av’ etc.
We now proceed to discuss the anisotropic scattering constant (7), for which we have with regard to ( 19) :

It is essential to note that the anisotropic scattering constant (26) differs from zero even in the case of atoms
and isotropically polarizable molecules. In fact, we have here daB’,’) = 0 whence, by (10a),

and, as a result of the above, (26) gives [6, 8] :

This, obviously, is the principal result of Yvon’s model and derives from the changes in atomic polarizabilities
in the electric dipole approximation.

We now apply to (26) the procedure used with regard to the isotropic constant (22). The successive S-model
contributions from two-, three- and four-body interactions now are :

showing once again that in the case of atoms and isotropically polarizable molecules, for which I y I’ = ’0, the
isotropic scattering constants (24) and (25) vanish whereas the anisotropic constants (28)-(30) go over into the
results of Yvon [3, 6, 8].

5 . 3 CROSS CONTRIBUTIONS OF THE TYPES 02 AND 20. - We shall now calculate the cross contributions due to
interference between polarizabilities of the zeroth order (8) and second-order (16) approximations. In parti-
cular, we have for the isotropic scattering constant (6) :

The constant Sis20) is, obviously, determined similarly.
Prior to discussing in detail the many-body interaction contributions resulting from equation. (31) we

draw attention to a general property distinguishing (31) from the previously considered constant (22). Thus,
whereas in the case of the isotropic polarizability (lOb) (3) the isotropic scattering constant (22) vanishes imme-
diately irrespective of the molecular model assumed, the constant (31) does not vanish but takes the form :

Moreover, this contribution is analogical (though in general not identical) to the contribution (27) for aniso-
tropic scattering. Hence we note that, in the case of atoms and isotropically polarizable molecules, the contri-

(3) Equation (lob) is to be found just below equation (26).
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bution to isotropic scattering in the 02 and 20 approximations plays a role analogical to that of the contribu-
tion to anisotropic scattering in the 11 approximation.

Taking up equation (31), we have for two-body interaction the two components with i =j = 1:A k and
i = k :0 j = 1 which, in the case of the S-model, finally give :

Similarly, for three-body interaction (i = j =1= k =1= I, i = k 0 j :0 I, i = 1 #- j =1= k, j = I =1= i :A k), equa-
tion (31) leads to :

and, for four-body interaction

By (2a) and (16) we obtain the following deviator of the polarizability tensor in the second approximation :

and the anisotropic scattering constant (7) becomes :

In this context it should be noted that by ( l Ob) for atoms and isotropically polarizable molecules the cross
contribution (36) vanishes directly, signifying that in this 02 approximation the Yvon model changes in pola-
rizability produce no anisotropic scattering of light, as it was the case in the 11 approximation, where aniso-
tropic scattering does exist and is always given by (27).

We shall now show that the anisotropic scattering constant (36) can differ from zero provided that the
molecules are intrinsically anisotropic in their ground state. In particular, for two-body interaction, equation (36)
contains two non-zero terms for i = j = I = k and i = k # j = I which, using the S-model, we write as follows :

Applying the rotational average (23) and the following :

we reduce (36a) to :

where for simplicity we have used the notation :

On separating in (36) the terms. corresponding to three-body interaction, we obtain for the S-model
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Obviously, the four-body interaction term inherent
in (36) vanishes in the case of the S-model :

On summation of (28) and (37) as well as (29)
and (39) we obtain for S(0.2) + S(11) + S(20) resultsanis anis anis

for two- and three-body interaction in the form pro-
posed by us in an earlier paper [8] (Eqs. (A. 7)-(A .10)).

6. Applications and discussion. - The expressions
derived in section 5 for the constants of isotropic and
anisotropic scattering of light are valid for arbitrary
symmetry of the molecules. Their application to atoms
and isotropically polarizable molecules has been
discussed above. In order to apply them to the com-
prehensive class of axially symmetric molecules (point
groups Coov and Dooh’ as well as C3,, D3h, D3d, C6h’
D6h’ etc.) one has to put for the molecular parame-
ters (6b), ( 11 ) and (38) :

Likewise, the molecular parameters (11) and (8) can
be applied to other molecular symmetries, of the

point groups C2,, D2, D2, D2h as well as CS, C2, C2h.
Equation (28), when applied to axially-symmetric

molecules with identical optical properties, goes over
into the result of Berrue et al. [7]. Similarly, the expres-
sions (24) and (25) as well as (28)-(30), if applied to
axially-symmetric molecules having identical real

polarizabilities a = ai = aj = ak and anisotropies
y - yi = Yj = all I I - ai, go over into the results

recently obtained by Cox and Madden [18] by the
method of spherical tensors (albeit with their nume-
rical coefficient at y4 incorrect). Our formulae ore-

over differ from the results of Trappeniers et al. [37],
derived on the hypothesis that the orientation and
position of the molecule are uncorrelated. However,
the work of all above authors does not comprise the
contributions of the type 02 and 20, given by equa-
tions (33)-(39).
The complete contributions to the isotropic and

anisotropic scattering constants calculated in sec-

tion 5 are valid not only for molecules of one species
but, as well, for mixtures of unlike atoms and mole-

cules. The radial parameters of binary and ternary

correlations, rij&#x3E; and r- 3 -3 rii. rikcorrelations,  rij -6 ) and rij -3 rjk -3 p2 rij rjkii B ii rik P2 ]rij rj,,
respectively, are accessible to numerical calculation
for specific models of radial interaction [13, 27,
38-43]. On performing the numerical calculations for
the polar liquids considered in references [11-13], we
find that reasonably good agreement with experiment
is achieved when taking into account simultaneously
all the binary and ternary contributions calculated in
section 5.
On the other hand, the isotropic and anisotropic

scattering constants (6) and (7) can be determined
numerically from the experimental data. In particular
we have by equations (3) and (4) for the vertical and
horizontal scattered intensity components

if the incident light is polarized vertically of intensi-
ty Iv.

Equations (40) and (41) yield for a medium of

arbitrary density

a relation whose left hand side coincides with the
theoretical definition of the optical anisotropy of the
medium, and whose right hand side makes it possible
to determine the latter directly from experimental
data on the depolarization ratio Dv = IHV/Ivv for
incident light polarized vertically.

Similarly, we obtain from (3) and (4) relations at
other conditions of observation, namely

where R + = I S + /I + + is the reversal ratio for right-
circularly polarized incident light [27].
Note added in proof. - Recently, BREUER (Mol.

Phys. 45 (1982) 349) has evolved a different version
of our theory on the basis of the simple shell structure
model of thd liquid state leading to numerical results
in close agreement with experiment.
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