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Résumé. - L’énergie de liaison pour un atome de degré d’ionisation arbitraire est trouvée dans le cadre de la
théorie statistique tenant compte de l’inhomogénéité de la densité électronique. La méthode de Schwinger per-
met d’obtenir la dépendance analytique de la correction relativiste en fonction du nombre d’électrons N et de
la charge nucléaire Z. La seconde correction ~ (03B1Z)4 est estimée dans l’hypothèse d’électrons sans interaction.
La comparaison avec les données précises montre que l’évaluation analytique trouvée reproduit l’énergie totale
de la liaison pour les atomes (10 ~ N ~ Z ~ 100) avec une erreur de moins de 1 %.

Abstract. - Within the statistical theory a nonrelativistic binding energy for an atom with an arbitrary degree
of ionization has been found with inhomogeneity of electron density taken into account. Based on Schwinger’s
method and using the improved estimate of the electron density at the nucleus, the analytical dependence of the
leading relativistic correction on the nuclear charge Z and electron number N is obtained. The relativistic cor-
rection ~ (03B1Z)4 is estimated in the noninteracting electron approach. A comparison with accurate data has
shown that the analytical estimates obtained give the total binding energy of an atom within 1 % for
10 ~ N ~ Z ~ 100.
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1. Introduction. - Derivation of analytical depen-
dences for the physical properties of atoms on the
nuclear charge and electron number has been for

years attracting the attention of physicists. Studies
on the nonrelativistic energy of an atom are most
advanced. This has become possible due to the Z - ’
perturbation theory for atoms with a small electron
number and the statistical theory for many-electron
systems. The analysis of the total electron energy
including the relativistic corrections is now taking
its first steps. For heavy many-electron systems no
reliable analytical estimates are available at present.

Schwinger [1] has proposed a method to find the
leading relativistic correction to the binding energy
on the basis of the Thomas-Fermi (TF)-model and
has analytically estimated this correction for a neutral
atom.

The aim of our work is to study a dependence of
the total binding energy for atoms on the nuclear
charge Z and electron number N using accurate
asymptotical expressions. First, we shall show that
allowance for the inhomogeneity of the electron

density and oscillation corrections results in a more
accurate description of the energies of atoms in the
nonrelativistic approximation. The relativistic contri-

bution to the energies for atoms with an arbitrary
degree of ionization will be estimated analytically.
The emphasis will be laid upon the leading relativistic
correction.

2. Nonrelativistic approximation. - Consider a

system of N electrons in nuclear field Z. For simpli-
city the nucleus will be considered to be a point and
infinitely heavy. The total electron binding energy of
an atom for moderate Z may be expressed as

Here ENR is the nonrelativistic energy calculated from
the Schrodinger equation, ER is the relativistic cor-
rection to the energy (mass-velocity correction, spin-
orbit and Breit-interaction and other relativistic

effects).
The main part of ENR is the energy EHF calculated

within the nonrelativistic Hartree-Fock method. A
reliable estimate of EHF was obtained within the
statistical model of atoms.

Scott [2] expressed the binding energy as
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Here ETF is the binding energy within the TF-model
which, with allowance for the virial theorem, is equal

p(r) is the electron density, Y(x) is the screening
function which is a solution of the TF-equation

x is the dimensionless radius x = u -1 ’ r,

xo is the boundary of an ion, p(r) is related with f (x) [3]
by

is the quantum-mechanical term introduced by
Scott [2] as the boundary condition at the nucleus.
Recently Schwinger [1] has shown that Eqo is a change
of the binding energy due to correct treatment of
the electrons with a large momentum.

Eex in (2) is the Dirac exchange energy of the
electrons

Atomic units are used here and throughout the paper.
The improvement of EHF estimate [4] allowing for

the inhomogeneity of the electron density within the
Kompaneets-Pavlovskii-equation gives in (2) an addi-
tional term Eq, equal to

With (7) in mind, we have written EHF including all
the first-order terms with respect to the quantum
parameter P = 2 (6 nZ)-2/3 as

Here Eq1 = 11/9 Eex.
For a neutral atom the expression (8) becomes

The analysis of the accuracy of expression (9)
shows that the statistical model with allowance for
the contribution of strongly bound electrons and
other quantum corrections gives a reliable estimate
of the nonrelativistic binding energy for atoms (for
Z &#x3E; 5 the error is within 1 % and for Z a 56, it is
less than 0.1 %).

Recently, the coefficient of Z 5/3 equal to

was obtained from a numerical analysis of the Hartree-
Fock nonrelativistic energies for atoms with large Z
(up to Z = 290) [5]. This estimate fairly agrees with
exact value from (9).

Equation (9) has a form of Z-I/3 expansion. A
question may arise about the nature of the deviation
of EHF from SCF data. Preliminary analysis [4]
shows that the deviation bE is a periodic function
of Z 113 with the amplitude of oscillation - Z’

where F(x) is a periodic function F(x + 1) = F(x).
Here we have continued studying Eose for neutral

atoms using harmonic analysis and found that :

(1) the oscillation amplitude is ~ Z’11; (2) the
oscillation period is 0.92 Z 11’ which is in good
agreement with maximum azimuthal quantum num-
ber 1 (within the TF-model lmax = 0.928 Z’I’); (3) the
periodic function F(0.92 Z 1/3) may accurately be

approximated by a trapezoid (Fig. 1).
The extrapolation of Eose beyond Z = 120 (dotted

line) has shown that inclusion of Eo., gives the Hartree-
Fock energy of a neutral atom with an error below

0.001 %.
Eosc appears due to the difference between the

discrete quantum state distribution of electrons and
the continuous one given by the TF-model.
Summing up the main contributions gives the

binding energy of an atom as

Equations (8) and (10) are equally valid both for
neutral atoms and for ions.

Fig. 1. - Deviation of the nonrelativistic energy for neutral
atoms (Eq. (9)) from accurate data Eae [20J as a function
of Zl/3. , (EHF - Eae) Z-4/3; 2013201320132013 the extra-

polated curve ; x, EHF [5].
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In order to obtain the analytical function EHF(N, Z),
an explicit expression of the screening function ’Y(x)
for ions is necessary. It has been earlier shown [6]
that the solution of the TF-equation (6) may be
expressed as

Using (11), it is possible to express the expectation
values ETF and Eq, for ions as the N/Z series

The representation of ETF(N, Z) in form (12) was
postulated in [7]. We have shown the validity of
series (12) and found the exact values of the first
coefficients aik [8]

Here, using (6), (7) and (11), we give the exact values
of a3k

which allows complete estimation of the smooth part
of EHF(N, Z) within 32.

Equations (12) and (13) have the form of the well
known Z -1 expansion series

Combining (8), (12) and (13), we find the analytical
expression for coefficients Ek(N)

Equations (15) give the asymptotically exact (at
N &#x3E; 1) value of 6o(N) and asymptotically exact

smooth terms in sk(N) at k &#x3E; 0. Examination of

ek(N) shows that the frequently used geometrical
approximation of series (14)

is slightly effective for atoms with large N. Indeed,
it follows from physical considerations that the sin-
gularity of E(N, Z ) is localized at Z &#x3E; 0.5 N whereas

The terms proportional to N k -1 / 3 in (15) must
include the oscillating contribution. To do this, it is

necessary to find an explicit analytical expression
for Eosc(N, Z). We have failed to obtain the expres-
sion from the first principles within the TF-model.
The only explicit form Eosc(N, Z ) may be obtained
using the quantum noninteracting electrons model [8].
Eliminating Eqo from the quantum contribution of
noninteracting electrons (Eq. (8) from [8]) gives
Eosc(N, Z) in the algebraic form

Here 0  y  1 is the fractional occupancy of the
outermost shell, y = M/2 n2, M is the electron
number in the outermost shell n is the principal
quantum number of this shell.
The leading oscillating term for highly ionized

atom is proportional to Z2 N- 1/3 . The oscillation
amplitude for a neutral atoms is - Z4/3 as was shown
in this paper. Thus, the oscillating contribution of
_ Z 2 N - 1/3 vanishes for a neutral atom. With this
in mind, we propose a simple approximation of

Eosc(N, Z) in the form

which correctly describes both limiting cases : the
neutral atom and the atom with no electron interac-
tion.
The inclusion of Eosc(N, Z) improves the estimates

of so(N) and 81 (N) in (15) for small N. Comparison
of 8k(N) with exact results [9, 10] shows that equa-
tions (15) and (17) reproduce well the quantum data
beginning from N = 10 (Table I). Our analysis of
the accuracy of equation (10) with (15) and (17) has
shown that inclusion of Eose allows EHF(N, Z) [11]

Table I. - Coefficients of Z -1 expansion of EHF.
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to be estimated with an error  1 % for the isoelec-
tronic series from N = 6 up to N = 20. Taking into
account that expressions (15) and (17) have correct
asymptotic behaviour, it is clear that all nonrelati-
vistic series for large N would be described by (15)
and (17) within 1 %.

3. Relativistic corrections. - Estimation of the total

binding energy of an atom is extremely complicated
since at present there is no complete relativistic theory.
Bethe and Salpeter [12] have shown that, for mode-
rate Z, the relativistic effects may be considered
within the perturbation theory and have given the
expressions for the main corrections of relative
order (aZ 2 ), a being the fine structure constant,
a = 137.037-1.

In this paper we give an approximate expression
for the first order correction ER.
The leading relativistic correction may be written

as

where EB is the Breit-interaction and Eel is deter-
mined as [12]

Here pi, ri, ii and si are the operators of momentum,
position, azimuthal momentum and spin of the i-th
electron, £i = - ViV is the field intensity due to the
nucleus and electrons of atom. The second term in (19)
with the Poisson equation yields

The term due to the electron spin-orbit interaction
in (19) may be neglected ; it is essential for the des-
cription of the level splitting and has no effect on the
relativistic shift.

Then :

Here p(0) is the electron density at the nucleus,
 A &#x3E; is the expectation value of the operator A
for an atom.

In order to include the Breit-interaction, we use
the local-density approximation [13]. Taking the

leading term in the transverse exchange energy
expansion on a2 yields

Equation (22) allows rapid numerical estimation of
E’ using the nonrelativistic HF-wavefunctions.

The first analytical estimates of Ei for the systems
with a large electron number were made by Schwin-
ger [1] who obtained the exact asymptotic depen-
dence of the leading relativistic correction on Z for
neutral atoms within the TF-model with correct

treatment of strongly bound electrons

where bi = 5 n’/24 - C(3) -- 0.854; C(3) is the Rie-
man C-function,

In (23), the first contribution due to the electrons of
large momentum is calculated by summation of the
relativistic corrections - a2 Z 4 from Sommerfeld
formula and does not depend on the degree of ioniza-
tion. The second contribution depends on the degree
of ionization and includes the part of ( p4 &#x3E; given by
the TF-model.

Having calculated the integral in (24), Schwinger
has obtained for a neutral atom

Equations (23) and (25) include asymptotic estimates
of ( p4 &#x3E; up to relative order Z - 213 and the leading
term in p(0), proportional to Z 3. We will improve
the estimate of p(0), using the Kompaneets-Pavlovskii-
model [14]. Following this model there exists an
inner boundary of an atom at XI ~ 0.1 Z-211 [4].
The electron density at x 1 is

Bearing in mind that x i  1 and that the real elec-
tron density changes but slightly over the length
between x = 0 and x 1 it is possible to assume that
at x  x, p(x) = const. = p(x 1 ). Expanding (26)
with respect to Z - 2/3 and taking the first term of the
expansion give the approximation

where W’(0) is a function of N/Z and C1 and C2 are
coefficients.
We calculate C1 and C2 within the nonrelativistic

electron approach. The exact value of p(O) for this
approach is given by the expression
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Comparison of (27) and (28) gives

Here it is taken into account that "’(0) in the non-
interacting electrons model within the TF-theory is
equal to

/ , )/A

, /

With (29) in mind, we get from (27) and (22) an
expression for the leading relativistic correction

Here b3(N/Z)= -27/3(3 n)-2/3 Z-2/3N 2/3 *P’(N/Z).
For a neutral atom, expression (30) is quite simple

[15]

The analytical functions b2(NIZ) and b3(NjZ) for an
atom with an arbitrary degree of ionization may
easily be found by substituting series (11) into (30)
and (24)

where the first two coefficients are exact

, /

and the coefficients b22 and b32 are estimated nume-
rically as b22 = 0.426 and b32 = - 0.242.

Equations (30) and (32) give ER as a relativistic
Z-1 expansion [16]

the coefficients 81k(N) being expressed by

Expression (34) gives asymptotically the exact values
of the first two coefficients in 810(N) and asymptoti-
cally the exact coefficient at Nk- 1/3 in 81k(N) at k &#x3E; 0.
Note that the coefficient E 10 (N ) has a form diffe-

rent from 81k at large N ; whereas 81k(k &#x3E; 0) increases
as Nk-l/3, there is no dependence on N in the main
part of 810.
Some terms in the derivation of (32) were omitted.

Now, we estimate the order of magnitude of these
terms. There exists an oscillating contribution due
to the shell effects in the expectation value p4 &#x3E;,
with amplitude _ CX2 Z4 N -2/3 . The account of
oscillation must change the coefficients at N k-2/3
in (34). Other effects which were not included into
the derivation of (30) are proportional to ( p &#x3E;.
Having estimated p &#x3E; within the quasi-classical
consideration we obtain

that makes up a small part of the relativistic correc-
tions for an atom with an arbitrary degree of ioniza-
tion.

Thus, equations (30) to (34) determine the main
part of the leading relativistic correction to the

binding energy of an atom. These expressions give a
clear understanding of the change of E’ along the
isoelectronic series and allow a rapid estimation of
E’ for atom with an arbitrary degree of ionization.
For large Z, higher order contributions with res-

pect to (aZ)2 become essential. Estimation of these
terms is difficult and can be carried out for the non-

interacting electrons approximation only.
Let us estimate the second-order contribution ER .

Expanding the Sommerfeld formula up to the terms

Summation over j yields

-

which results in the first two terms of the E2o expansion in (nm + 1/2)-1 for closed shells
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Table II. - Coefficients of Z -1 expansion of the relativistic corrections (34) and (38).

In brackets are data [10, 18, 19] and 820(N) from (37)

The comparison shows that the asymptotical form
(38) agrees well with the exact values from (37) even
for N = 10 (Table II).
The first term in (38) is exact and independent of

the electron-electron interaction. The allowance for
the latter only leads to a somewhat higher absolute
value of the second term. With this in view, equa-
tions (36) and (38) can be used for the approximate
estimation of the relativistic correction E2
The analysis of the Sommerfeld formula shows

that the higher order terms have the same form ( 1 )

We shall show that equations (30) to (34) can be
used not only for qualitative but also for quantitative
estimates of the relativistic contribution to the

energy of an atom with an arbitrary degree of ioniza-
tion. First, we examine the accuracy of (34). Though
the coefficients 81k(N) are obtained with the assump-
tion that N &#x3E; 1, expression (34) reproduces well
accurate E 1 o and 811 [18, 19] at N &#x3E; 10 (Table II).
As far as N rises, the accuracy of Elk(N) obtained
from (34) rapidly increases.
We fail to compare (30) with the accurate values

of the leading relativistic correction for ions because
no data are available even for ions with moderate Z
and N. For neutral atoms alone it was possible to
perform a comprehensive comparison of ER with the
relativistic contribution ER calculated within the
Dirac-Fock method [20]. Equation (31 ) gives a

greater part of ER up to Z = 120. Inclusion of approxi-
mate ER from (36), (38) decreases the error in ER to
2 % at 25  Z  80 (Fig. 2).
With such an encouraging result in hand, we

calculate through the total binding energies for

(1) It should be noted that the asymptotic behaviour of
E" at large N given on the basis of the Vallarta-Rosen
equation [17] is erroneous; the exact asymptotic behaviour
may only be obtained with the correct treatment of strongly
bound electrons.

Fig. 2. - Relativistic corrections as a function of the atomic
number. 1) - Ei (Eq. (25)) ; 2) - ER (Eq. (31 )) ;
3) - E’ + ER (Eqs. (31) and (36, 38)); 4) ER, the data by
Desclaux [20].

neutral atoms in the Dirac-Fock approximation EOF
(Table III). It is seen that equations (9), (31) and (38)
perfectly reproduce EDF up to Z - 100. Estimating
EDF for Cu isoelectronic series, we obtain the same
result (Table IV). The estimate of EDF is made using
equations (10), (12j, (13), (17), (30) and (38). The
Pade-approximants are used at NIZ - 1, giving the
exact neutral atom values.
The analysis performed shows that within the sta-

tistical theory with quantum and relativistic correc-
tions it is possible to obtain not only qualitative
estimates but also reliable values of the binding
energy for atoms with an arbitrary degree of ioniza-
tion, which for the moment are not available. The
use of the leading relativistic correction (30) to (34)
and of the approximate second order correction from
(36, 38) allows a description of the total binding
energy for atoms in the wide range of N and Z

(10  N  Z  100) with an error less than 1 %.
To conclude, let us enumerate the main results of

this paper :

1) the analytical estimates of the nonrelativistic

binding energy including the inhomogeneity cor-

rection are obtained;
2) the coefficients of Z -1 expansion of the non-

Table III. - Total binding energy for neutral atoms

(*) Our results, equations (9), (31) and (36, 38).
(**) Data by Desclaux [20].
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Table IV. - Binding energy for isoelectronic series

of Cu.
relativistic energy are improved by including the

inhomogeneity and oscillation correction;
3) an approximate expression for the leading

relativistic correction to the binding energy is obtain-
ed with allowance for the Breit-interaction ;

4) the analytical estimates of the leading relati-
vistic correction are given for atoms with an arbitrary
degree of ionization;

5) the asymptotical expression of the coefficients
of relativistic Z -1 expansion series is found to be in
good agreement with accurate quantum-mechanical
data.

After the work has been completed, we became
aware of the Schwinger’s paper [22] in which the
consistent treatment of the Z - 2/3 -order correction to
the binding energy in TF-model is done.
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