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Phase equilibria involving microemulsions
(Remarks on the Talmon-Prager model)

J. Jouffroy, P. Levinson and P. G. de Gennes

Physique de la Matière Condensée, Collège de France, 75231 Paris Cedex 05, France

(Rep le 1er mars 1982, accepti le 23 avril 1982)

Résumé. 2014 Nous présentons ici un modèle statistique pour les microémulsions inspiré d’une idée de Talmon et
Prager (mais comportant quelques modifications). On suppose que le surfactant est insoluble à la fois dans l’huile
et dans l’eau et qu’il est distribué en minces feuillets séparant les domaines d’huile et d’eau. Le feuillet a une lon-
gueur de persistance 03BEK. Deux éléments successifs (d’aire 03BE2K) ont des orientations indépendantes. Ceci apporte
au film une certaine entropie S. L’énergie libre inclut : a) la tension interfaciale 03B3 ; b) l’entropie S ; c) un terme
de courbure dont le signe est déterminé par la règle de Bancroft. Les effets d’interaction entre gouttelettes (ou autres
formes de dispersion) apparaissent simplement comme renormalisation de 03B3. Nous montrons que, dans ce modèle,
tous les équilibres présentant un intérêt ont lieu pour les très faibles valeurs de 03B3 ~ kT/03BE03B12K, c’est-à-dire au voi-
sinage immédiat d’une courbe bien définie (courbe de Schulman), correspondant à 03B3 = 0 dans le diagramme de
phase temaire. La structure détaillée des lignes d’équilibre est fortement dépendante de la forme donnée au terme
de courbure. Cependant les formes plausibles simples que nous avons introduites pour ce terme ne peuvent engen-
drer que des équilibres à deux phases et non à trois phases. Nous en concluons que des effets plus complexes
(incluant le voisinage d’un point de trouble ou des attractions fortes entre gouttelettes) sont nécessaires pour
expliquer les équilibres à trois phases.

Abstract 2014 We discuss a statistical model for microemulsions, inspired by an idea of Talmon and Prager (but
with certain modifications). The surfactant is assumed to be insoluble in both oil and water, and to be distributed
in thin sheets, separating oil and water regions. The sheet has a persistence length 03BEK. Consecutive pieces (of area
03BE2K) have independent orientations. This gives a certain entropy S to the film. The free energy includes : a) the
interfacial tension y; b) the entropy S ; c) a curvature term whose sign is defined by the Bancroft rule. Interaction
effects between droplets (or other shapes) appear simply as a renormalization of 03B3. We show that in this model
all equilibria of interest take place for very low 03B3 ~ kT/03BE2K, i.e. very close to a particular line (the « Schulman
line ») corresponding to 03B3 = 0 in the ternary phase diagram. The detailed structure of the tie lines depends sensi-
tively on the structure of the curvature term. But for plausible forms of this term we are able to generate only
2-phase equilibria, and we do not reproduce 3-phase equilibria. We conclude that more complex effects (involving
the vicinity of a cloud point or strong attraction between droplets) are requested to explain the observed 3-phase
equilibria.
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1. Introduction. - In some favourable cases, a

system oil + water + surfactant can exist as a fluid,
transparent, isotropic liquid called a microemulsion [1].
In pertain limiting cases a microemulsion is simply
made of « swollen micelles » : : oil droplets in water
(or the inverse), the oil/water interface being saturated
by surfactant molecules [2]. However when the oil
and water fractions are comparable the system is

probably « bicontinuous » [3] : the oil regions have
the structure of a connected random network and
the same property also holds for the water regions.
One major question amounts to understand why
these structures do not collapse into ordered systems
(lyotropic liquid crystals or crystals). In a recent

review [4] C. Taupin and one of us suggested that the
answer may depend on the persistence length ÇK
of the interface. Small values of ÇK (-100 A) cor-
respond to very wrinkled interfaces and favour

microemulsions, while large ÇK ( N 500 A) favour

liquid crystal phases. The length ÇK is an exponential
function of the local rigidity of the film, and should
thus be very sensitive to additives : in practice micro-
emulsions are often obtained by addition (to the

oil/water surfactant base) of a short alcohol (o cosur-
factant »). As suggested long ago by Schulman [5]
the main role of the cosurfactant is probably to reduce
the local rigidity of the hlm.

Another remarkable feature of microemulsions is
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related to their phase equilibria [6]. For instance when
increasing the water fraction of a microemulsion (M)
made with droplets of water in oil, one often reaches a
solubility limit : at this point a phase separation bet-
ween M and a water rich phase occurs. Various ener-
gies contribute to these phase transitions [7] :

1) The oil (or water) regions tend to coalesce because
of long range Van der Waals attractions : a system
of droplets may show, on a large scale, the analog of
the liquid-gas transition of monoatomic fluids.

2) Because the interface is expected to be wrinkled,
the entropy of the interfacial film may become signi-
ficant. The role of this entropy has been analysed in
a pioneering article by Talmon and Prager (T.P.) [8].
They showed that it could lead to remarkable phase
transitions, without any ingredient of type 1). The
present work is based on this idea, but with four modi-
fications :

a) T.P. described the geometry of the random film
by a subdivision of space into Voronoi polyhedra,
with a certain characteristic size; the meaning of this
size was unclear. In our picture this meaning is natural :
the size is the persistence length ç K ;

b) we replace the Voronoi system by a simpler
division of space into cubes of edge ÇK’ This brings
in considerable simplifications : the phase transition
(for the simplest case) maps directly into an Ising
model;

c) T.P. considered that the interfacial area per
surfactant molecule r was fixed (E = E *) - and thus
that the surfactant volume fraction (0s) controlled
entirely the size of the interfacial area (per unit volume).
We remove this assumption : starting from a general
form for the equation of state of the interfacial film,
we show that phase equilibria should occur close to
(but not exactly at) a situation of zero interfacial
tension y ;

d) T.P. attempted to incorporate a certain pre-
ference for curved interfaces, through a geometrical
trick. They attributed a lower energy to curved inter-
faces, but this energy was taken to be the same for
both signs of curvature : i.e. for droplets of oil in water
or for droplets of water in oil. Models of this type
lead rather naturally to 3-phase equilibria (between
two microemulsions of opposite curvature, and a
microemulsion of zero curvature). Talmon and Prager
were aware of the somewhat artificial character of this
construction. In the real world, the film tends to bend,
with the better solvent of the surfactant on the outside :
this is known for macroscopic emulsion droplets as
the rule of Bancroft [9]. Thus only one sign of curva-
ture is preferred : we take this dissymmetry into
account here, and characterize it by a certain « Ban-
croft parameter » A.

All our description is based on the notion of thin
surfactant sheets separating regions of oil and water
which are larger than the sheets : this means that we

restrict our attention to the vicinity of the O-W edge
in a triangular phase diagram.

This restriction may well be inadequate for the dis-
cussion of real phase transitions in microemulsions
where short range interactions between neighbouring
sheets may play an essential role. However we hope
that our discussion of this (relatively) simple limit of
dilute sheet may provide some useful insights. In

particular we show that (contrary to our original
belief) the incorporation of curvature energies is pro-
bably not sufficient to explain the 3-phase equilibria
which are sometimes observed at suitable salinity and
temperature.

2. The model free energy. - 2.1 DESCRIPTION OF
THE SURFACTANT FILM. - We divide space into adjacent
cubes of size ÇK (volume çl). Each cube is filled either
with oil (probability ql) or with water (probability
1 - 0). When two adjacent cubes are filled differently,
they are separated by an interface of area çi. The
average amount of area available per cube is thus

We assume that the surfactant film at the interface is
much thinner than ÇK : this is an idealization, but it
simplifies the notation significantly. If we call 0, the
volume fraction of surfactant, we are discussing only
the portion of the phase diagram where 0.,  1. We
also assume a single surfactant : in many cases an
additive (cosurfactant) is included, but there do exist
microemulsions with a single surfactant. The number
of surfactant molecules per cube is

where w is the volume of the surfactant molecule. We
assume that all the surfactant is at the interface (no
solubility in oil or water). The area per surfactant
molecule E is thus

The free energy of the film (computed per surfactant
molecule) may be written quite generally in the form

where yo is the interfacial tension of oil/water, while
G,(Z) describes the interactions between surfactant
molecules. The energy G(L) is minimal for a certain
value E = 2;*. At this point the interfacial tension

(where H(E) is the surface pressure) vanishes :

The importance of the state E = L * has been pointed
out first by Schulman and Montagne [11]. We call
the state f = E * the « saturated states. Inserting
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r = E * in equation (3) gives a parabola in the (0., ql)
plane. We call this parabola the Schulman curve S
(Fig. 1). We shall see that in our model, the tie lines
describing two-phase equilibria between microemul-
sions and nearly pure oil or water are expected to end
up very near S.

Fig. 1. - « Schulman curve », giving the amount of sur-
factant required to saturate the interface. This curve is also
(very nearly) the limit of the one phase region. We show
here the tie lines corresponding to a Bancroft parameter
A/4 a = 1, 2, from q = - 22 (flat point) to il = + 20(" = Ux).

We shall also show later that a full knowledge of
the function G(L) is usually not required, because G
is rapidly very large (when compared to other energies
in the problem) when we move out of the Schulman
curve. In fact it will be quite sufficient for our purposes
to write

The main interest of the approximate form (7) is that
we need only one parameter y’(E *) to describe the
equation of state of the film. Finally, the surfactant
contribution per cube is of the form

2.2 THE ENTROPY OF THE FLUCTUATING INTERFACE.
- With our division into cubes, this entropy is counted
very simply : it is simply the entropy of mixing for a
set of cubes filled with oil, mixed with a set of cubes
filled with water. In a mean field approximation the
resulting free energy is (per cube)

2.3 CURVATURE EFFECTS. - Let us return for
a moment to a description of the interface as a conti-

nuous surface with a complex shape. At any point on
this surface there is a certain curvature

(where R1, R2 are the principal radii of curvature).
The curvature C may be positive or negative : we
choose to take C &#x3E; 0 when the interface is bent as it
is in a direct micelle (with the water on the outside)
and C  0 for inverse micelles. The energies associated
with C are very small. But, because we deal with sys-
tems where the interfacial tension y is ultraweak, the
curvature terms cannot be omitted : we shall see that

they control the detailed shape of the phase diagram.
The curvature energy for fluid interfaces has been

constructed and discussed some years ago by W. Hel-
frich [10]. It is (per cm2 of interface)

The constant K has the dimension of an energy, and
is called the rigidity. The constant Co has the dimen-
sions of an inverse length, and is called the sponta-
neous curvature of the interface. The Bancroft rule
tells us the sign of Co. We wish to map the Helfrich
energy (11) into a 0 dependent contribution to the
free energy per cube :

a) The average square term 2 KC2 must be mini-
mal where l/J = 1/2 and should give a contribution
(per cube) F3(0) = - pK§(I - 0) where we have
used the simplest (parabolic) form. The parameter p
can be estimated from the limit 0 -+ 0 when we are
dealing essentially with isolated droplets of diameter
ÇK’ From this remark one concludes that p is simply
a numerical constant of order unity. We shall not
refine the estimate of p because as we shall see, F3
can simply be lumped into Fl, both having the same
ql dependence.

b) The cross term - KCo C in equation (11) is
more interesting : we shall see that this term controls
the dissymmetry of the phase diagrams [12]. If we
take an average of the CCO term we get (per cube)
an energy

The average curvature C( Ø) must change sign when
we interchange the oil and the water (Ø - 1 - 0).
It must also be of order l/çK when 0 -+ 1 (i.e. when
we deal with isolated droplets of size ÇK)’ We may
summarize the above properties by setting

where f3(o) is a dimensionless function, satisfying
the conditions
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and A is a dimensionless constant, which from (12]
we may take in the form

We shall discuss two (slightly different) plausible forms
for f3 (0) :

a) A simple assumption amounts to put

and to take the area per cube proportional to 0(1 - 0)
as before. This then gives a cubic form for f3(o) which
we write :

b) Another, more systematic, approach is then to
expand the function f3(o) in a Fourier series where
each term satisfies (14)

We now assume that a plausible representation of f3
is obtained by retaining the first term, and write

We shall call A, as defined above, the Bancroft para-
meter : in ionic systems A will often be controlled by
salinity, while in non ionic systems it will be adjusted
through the temperature [1]. Note that all our des-
cription makes sense only if the spontaneous curva-
ture Co is a weak correction on the scale of c;K, or
I Co I c;K  1. Since in most cases we expect K - kT,
we then see from (15) that I À. I : 1.
A simplification - hidden in equations (12) to (17)

- is that we took F3 dependent on 0, not on 0..
More generally we would expect F3 to be a function
of both 0 and 0.. However, as already announced,
the states of interest will be close to the Schulman curve
and os is then a known function of 0

Thus, in a correction term like F3(0, 41s) we may
substitute equation (18) and obtain a function of one
variable F3(0).
The two forms proposed for F3(o) appear very

similar at first sight : the graphs for the two curves
are very similar (Fig. 3). However, we shall see that
for a discussion of phase equilibria what is really
relevant is the third derivation F 3(41) : this is very
sensitive to slight changes in the formulation.

3. Reduction to one variable. - Using equations
(9, 10, 16, 17) we can now write the free energy (per
cube) as :

The parameter x is proportional to E (interfacial
area per surfactant chain).

1) To discuss phase equilibria we write down first
the chemical potentials J-l (conjugate to 0) and ,us
(conjugate to 41s)’ The surfactant potential turns out
to depend only on x :

The last form displays the usual relation between p.
and the free enthalpy of the film. Our procedure will
be to choose a given Jls - this in turn defines a value
of E, or a value of x through equation (22).
The oil/water potential is

(where the primes denote derivatives).
2) If we want to have an equilibrium between a

phase (01, 0,,,) and a phase (02, 0,,,) we must have
the same chemical potentials for both. But we must
also ensure that the tangent planes to the free energy
surface at points 1 and 2 coincide. (p and p., keep
fixed values on this common tangent plane). This
imposes (’)

It is then convenient to introduce a reduced potential

For fixed Jls (fixed x), the potential G depends only
on one variable ql, and the condition for equilibrium
(24) becomes (2)

(’) Condition (24) is necessary for equilibrium, but is not
always sufficient : the curve F(o, 0.) must be above the
tangent plane to ensure a 2-phase equilibrium.

(2) Eq. (9) is a special case of a very general theorem
on Legendre transforms : if a surface FO(oo.) has a doubly
tangent plane at two points (1, 2), we may consider the curve
defined by

This curve, when projected on the plane (Fo, 4» has a
bitangent at 01 and 02; the common slope being ôF 0/84&#x3E;.
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The pairs (4)2, 01) are then obtained by the classic
construction of figure 2.

Fig. 2. - Thermodynamic potential versus concentration :
01 1 cP2 concentrations correspond to stable two-phase equi-
libria.

4. Discussion. - 4.1 THE INTERFACE IS NEARLY

SATURATED. - It is important to realize at this stage
that there is a small parameter in the theory : in

equation (26) F2 and F3 are of order kT. The first
term is of order y(Z) çi. All terms compute and will
be comparable. Thus

Even in the most flexible systems, we expect ÇK to be
of order 50 A to 100 A : thus y is small (  0.1 dyne/cm)
and we must be very close to the Schulman curve.
More precisely if we use the expansion (7, 8) together
with (28) we can write

The parameter e is expected to be small (of order 0.1
or less). This represents a considerable simplification
for all discussions of the phase diagram : in our model,
all the tie lines describing 2-phase equilibria have
both their extremities very close to the Schulman
curve :

a) On figure 3 we show separately the three compo-
nents to the potential G,,,(O) when F3 is « cubic »

(Eqs. (16) and (30a)). The overall form of G,.(O) with
various values of A and tj appears on figure 4. For
a given Bancroft parameter A we find two possibilities :
at low q, q  flc(À.) the plots of GJLs(!» are entirely
convex : we are dealing with a one phase region. At
higher q (&#x3E; flc(À.)) the potential G JLs( !» has two inflec-
tion points and a bitangent line can be constructed :
we have a 2-phase equilibrium.

Fig. 3. - Contributions to the free energy versus concen-
tration (together with their 1 st and 2nd derivatives). F, :
interfacial energies; F2 entropy term; F 3a curvature energy
(cubic shape); F 3b curvature energy (sinusoidal shape).

Fig. 4. - Plots of the « reduced potential » G,. (with a
« cubic » curvature term) for several (tl, A) values. Note
the two typical regions. The limiting curve corresponds to
G" = G"’ = 0.s s

b) The case where F3 is « sinusoidal » (Eqs. (17)
and (30b)) is more complex. Again we show the three
components of G,.(O) in figure 3. In figure 5, we show
again G,.(O) for various values of A and j7. The situa-
tion is here more complex : there are regions in the
(tlA .plane) which give more than two inflexions.

However, the convexity conditions leaves us always
with at most a two-phase equilibrium. A typical phase
diagram is shown (for /)./4 7c = 1.2) on figure 1.

4.2 QUALITATIVE FEATURES. - Let us now apply
the construction of figure 2 : we progressively increase
the surfactant potential /l-s, or (equivalently) increase
the interfacial tension y(E). (Remember that /l-s and
are linked by equation (22)). When y(E) is negative,
the terms Ay + F2(0) in equation (26) coincide
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I

Fig. 5. - Plots of the « reduced potential » G,, (with a
« sinusoidal » curvature term). Note the three typical
regions. The limiting curve corresponds to G;5 = Gue = 0.

exactly with what we have in a compatible binary
mixture, and whenever the third term is small (low
A 1) we have no phase transition.

Finally when y reaches a certain critical value y, a
double root 01 = 02 = 0,, appears in the construc-
tion of figure 2. We can locate the double root by
the usual conditions G;s(4)) = G §[(ql) = 0. The results
depend critically on the detailed shape of F3

« Cubic » shape :

« Sinusoidal » shape

giving il = il, and A = Å.c for a given l/Jc.

5. COnCIUSiOnS. - 5.1 COMPARISON WITH THE

ROBBINS APPROACH. - The first conclusion, due
primarily to Talmon and Prager, is that purely entropic
effects, for a deformable interface, may lead to phase
separations. For instance, if we start with isolated

droplets of water in oil, and increase their size pro-
gressively (by decreasing the surfactant fraction 0,,,
while keeping 0 constant), we expect to reach a limit,

beyond which a pure water phase separates from the
microemulsion. In our version of the Talmon-Prager
model, the diameter of the droplets at this point is ÇK.
This is very different from the picture set up by Rob-
bins [12], where the size R of the maximal droplets
is controlled by the spontaneous radius of curvature
Ro.
We believe that Robbins is right when I Ro I  ÇK =

then we have tight spherical droplets, and all our
considerations on vary interfaces may become

meaningless. On the other hand, for weak spontaneous
curvatures and soft interfaces (I Ro I &#x3E; ÇK) the Rob-
bins approach fades out : in particular, droplets of
average size Ço will not be spherical, and will often,
in fact, break down into smaller units.
Thus our discussion is restricted to a certain (possi-

bly small) subclass of surfactants. Other restrictions
will be discussed below.

5 . 2 STRUCTURE OF THE PHASE DIAGRAM. - Our free

energy (25) contains only two adjustable parameters :
the persistence length ÇK and the Bancroft parameter A,
measuring the ratio ÇK/ Ro (I A I - 1). It is interesting
to note that all the complex phenomena associated
with : a) the Langmuir equation of state of the film,
b) the long range Van der Waals interactions can be
lumped into such a simple structure !

Accepting (21) as a starting point, we obtain a
2-phase region which lies (in the ternary phase dia-
gram) below a certain « Schulman curve ». The tie
lines end up nearly on this curve i.e. in states of very
small interfacial tension. The detailed arrangement of
the tie lines depends critically on the structure of the
curvature energy and on the magnitude of the Ban-
croft parameter A.
Within our simple choices for the curvature energy

f3(o) we do not fmd any situation where 3 distinct
phases coexist (the «type III » equilibria of Winsor
[16]). Thus at this point we depart from the initial
conclusions of Talmon and Prager [8] : these authors
did find type III, but they had to assume a very special
form for the curvature energy. Similarly, in our model,
if we allow for functions f3(o) which have a rather
sharp minimum at some point (o = Om), we can
generate 3-phase equilibria, where a microemulsion
(of oil/water fraction close to 0,,,) coexists with nearly
pure oil and nearly pure water (3).

But we have not been able to find a convincing
argument for the existence of a sharp minimum in
f3(Y’)·

5. 3 PHYSICAL PROCESSES LEADING TO 3 PHASES

EQUILIBRIA. - Two distinct effects, which are not

(3) For instance, if we add a second Fourier component
to the expansion of curvature energy staying :

F3(0) = A, sin 2 no + Å,2 sin 4 7ro

three phases equilibria do appear (cf. Fig. 6).
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Fig. 6. - Schulman curves with tie lines showing the three
phase equilibria which would be obtained with a curvature
energy F, = À. sin 1tp (this choice, however, is probably
unrealistic).

incorporated in the present model, may control the
Winsor type III equilibria.

5 . 3 .1 Denser packings. - Our discussion was based
on cubes of size ÇK’ However, if we want to increase
the surfactant content, we may, for instance, stack the
surfactant films in a lamellar structure with successive
0 and W regions, and an overall repeat period d
which can be relatively short.

These denser packings may be forced in practice
by the long range Van der Waals interaction, and lead
to phase equilibria which have been discussed by
Cantor [15] for non ionic surfactants. The basic idea
amounts to assume that consecutive surfactant films
will be put into contact by the Van der Waals attrac-
tions : any oil or water which is beyond the film is
squeezed out and goes as a pure, separate phase.
When this is calculated in detail, one does find 3-phase
equilibria as shown on figure 7, which do resemble
the observations. Of course, in our case, we should
not assume an ordered lamellar phase, but a disordered
microemulsion (because ÇK is small). But the principle
remains.

Ultimately, for large surfactant fractions, the diffe-
rent surfactant sheets may come into close contact.
This may take place when the « two-dimensional dis-
tance » and the « three-dimensional distance » of two
surfactant molecules come to be of same order :

We might then focus our attention on the sheet-
sheet interaction (rather than on the water-water, or
oil-oil interactions). If the sheet density is proportio-
nal to 0(1 - 0), the sheet-sheet interaction would vary
like 02(l _ 0)2 . This would add to our Ising problem

Fig. 7. - Phase diagram for lamellar phases of block copo-
lymers in the model of Cantor [15] where Van der Waals
attractions are important. Point C for instance represents
a system of stacked lamellae with the hydrophilic parts
swollen by water while point A represents lamellae where
each part is swollen by its own solvent. The AC line represents
« intermediate » lamellae; these are still stacked on the

top of each other (because of Van der Waals attractions).
The WAC region represents two-phase equilibria between
these lamellae and pure water. The OAW region represents
3-phase equilibria.

the analogy of a biquadratic interaction; the latter is
known to favour first order transitions.

5. 3.2 Cloud points. - All our discussion assumed
that oil (water) were both excellent solvents for the
corresponding aliphatic (polar) part of the surfactant
When this ceases to be the case, adjacent portions of
the film tends to stick in each other, and effects some-
what similar (but more complex) than these discussed
in 5 . 3 .1 above, are expected to occur. These attractions
will occur for instance near the cloud point of non
ionic surfactants, where the polar (ethylene oxide)
part of the molecule becomes less soluble in water.
We hope to come back to this aspect in future work..

Acknowledgments. - This effort was initiated by
a very stimulating seminar of Dr. S. Prager; the advice
and positive criticism of C. Taupin and R. Ober have
been of constant help. Remarks by D. Langevin,
A. M. Cazabat and J. Meunier are also gratefully
acknowledged



1248

References

[1] SCHULMAN, J., HOAR, T. P., Nature 152 (1943) 102.
For a general introduction to the subject, see :
Micellisation, solubilisation and microemulsions,
K. Mittal, ed. (Plenum, N.Y.) 1977.

[2] See for instance OBER, R., TAUPIN, C., J. Phys. Chem.
84 (1980) 2418. 

[3] SCRIVEN, L., in Micellisation, solubilisation and micro-
emulsions, K. Mittal ed. (Plenum, N.Y.) 1977,
p. 277.

[4] DE GENNES, P. G., TAUPIN, C., To be published in
J. Phys. Chem.

[5] SCHULMAN, J., MCROBERTS, M., Trans. Faraday Soc.
42B (1946) 165.

[6] For a general discussion of the phase diagrams,
including a cosurfactant see BELLOCQ, A. M.,
BIAIS, J., CLIN, B., GELOT, A., LALANNE, P.,
LEMANCEAU, B., J. Colloid Interface Sci. 74

(1980) 311.
[7] MILLER, C., HWAN, R., BENTON, W., FORT Jr., T.,

J. Colloid Interface Sci. 64 (1977) 554.

RUCKENSTEIN, E., CHI, J., J. Chem. Soc. Faraday
Trans. II.71 (1975) 1690.

RUCKENSTEIN, E., Chem. Phys. Lett. 57 (1978) 517.
[8] TALMON, Y., PRAGER, S., J. Chem. Phys. 69 (1978)

2984.

[9] BANCROFT, W., TUCKER, C., J. Phys. Chem. 31 (1927)
1680.

[10] HELFRICH, W., Z. Naturforsch. 28C (1973) 693.
[11] SCHULMAN, J., MONTAGNE, J., Ann. N.Y. Acad. Sci.

92 (1961) 366.
[12] See for instance ROBBINS, M. L., in Micellisation,

Solubilisation and Microemulsions, K. Mittal ed.
(Plenum, N.Y.) 1977, vol. 2, p. 713.

[13] CAZABAT, A. M., LANGEVIN, D., MEUNIER, J., POU-
CHELON, A., To be published.

[14] FOURCHE, G., BELLOCQ, A. M., BRUNETTI, C., J. Colloid
Interface Sci., To be published.

[15] CANTOR, R., Macromolecules 14 (1981) 1186-1193 .

[16] WINSOR, P. A., Chem. Rev. 68 (1968) 1-40.


