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Nuclear spin diffusion in a rare spin species
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Résumé. 2014 Nous développons une théorie approchée du tenseur de diffusion de spin pour un système de spins
rares inclus dans un système de spins abondants, avec référence spéciale à 43Ca dans CaF2. L’utilité de la théorie
est illustrée par la description d’une étude du ferromagnétisme à domaine des spins de 19F, où la connaissance
de la constante de diffusion de 43Ca permet de déterminer l’épaisseur des domaines ferromagnétiques.

Abstract. 2014 We derive an approximate theory for the spin diffusion tensor in a rare nuclear spin species imbedded
into an abundant one, with special reference to 43Ca in CaF2. The usefulness of the theory is examplified by the
description of an investigation of ferromagnetism with domains of the 19F spins, where the knowledge of the 43Ca
spin diffusion constant allows a determination of the ferromagnetic domain thickness.
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1. Introduction. - In a system of nuclear spins at
normal concentration in a solid, it is well known that
flip-flop processes between the spins tend to smear
out the inhomogeneities of polarization or dipolar
temperature. The evolution of these inhomogeneities
is tentatively described by a diffusion equation. The
whole process is known as « spin diffusion ». It plays
a central role for nuclear spin-lattice relaxation by
fixed paramagnetic centres randomly distributed at
low concentration in the solid, and accounts reasona-
bly well for the experimental observations (see e.g.
Ref. [1], p. 378).

In an experimental investigation of nuclear ferro-
magnetism with domains in CaF2 [2], which will be
recalled at the end of this article, we have observed
phenomena attributed to the spin diffusion of the rare
isotope 43Ca, which could be used to determine the
domain thickness if the spin diffusion constant of 43Ca
were known. This was the incentive for obtaining a
theoretical estimate for this diffusion constant.

In the system that we consider, the spins S are ran-
domly located on a fraction c  1 of the sites of a

crystalline lattice, and are imbedded into a regular
lattice of different spins I much more abundant than
the spins S. We assume that there is a spin diffusion
among the spins S, and we use a simple argument to
calculate their diffusion tensor.
The article is arranged as follows. In section 2 we

calculate the flip-flop rate between two spins S. In
section 3 we recall briefly the theory of diffusion within

a regular lattice, and we show why its naive extension
to a diluted lattice is incorrect. In section 4 we develop
the approximate theory of the spin diffusion tensor
for a diluted lattice. In section 5 we compare this theory
with a different approach [3]. Finally, section 6 des-
cribes the use of the diffusion constant in the investi-

gation of nuclear ferromagnetism with domains.

2. Flip-flop rate between two spins S. - We use a
frame which is rotating with respect to each spin species
at its respective Larmor frequency. In this frame, the
effective Hamiltonian reduces to the secular dipole-
dipole Hamiltonian

with

The coefficients are :
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where, say, rpv is the distance between spins I,, and 7y
and 0 pv the angle between r pv and the external field H.

Since the spins S are rare, one has

and the only observable effect of the small coupling
X’s is to induce flip-flops between spins S.
We suppose that the density matrix a is of the form :

and we look for the time evolution of

S’ commutes with X’j and JC’s, and its evolution
is entirely due to K§s. By a standard second-order
expansion of the density matrix with respect to the
perturbation JC’s (see e.g. ref. [1], p. 276), one obtains :

where :

whence

We use reduced traces, such that Tr 1 = 1.

Through the use of equations (3c) and (4) one
obtains after a little algebra :

The evolution cof S,’ (t) is determined by the longi-
tudinal dipolar field

which is more or less randomly modulated by the
flip-flops between the spins I in the vicinity of the
spin S.. The evolutions of two spins S whose distance
is much larger than the interatomic spacing between
spins I will therefore be uncorrelated. If the spins Si
and Sj are well apart, a trace such as :

will be non-negligible only if, say, Sk is close to S; or
is the spin Si itself, and S, is close to Sj or is Sj itself.

This trace is then approximately equal to :

The concentration c of the spins S being very small,
very few spin S will have another spin S in their vici-
nity and, to within a negligible correction of order c,
the only traces to be retained in the right-hand side
of equation (8) are of the form :

and similar terms for the y components. Since Ki is
invariant by rotation around Oz, it is easily shown
that :

The approximation (9) is incorrect for spins Si and
Sj which are at short distance. This is of no conse-
quence since, as will be seen in section 4, flip-flops
between spins S at short distance play a negligible
role in the spin diffusion.
With the approximation (9), and using the fact that :

is the same for all spins Si, equation (8) becomes :

where :

and :

is the free-induction decay function of the spins S,
independent of K§s for c  1.

In the case when ys  yj, one has :

where - M2 and M4 are the 2nd and 4th derivatives
of G(t) at t = 0, and it can be shown (Ref. [1], p. 122)
that G(t ) is approximately exponential :

with

where j is a numerical factor of order unity.
In CaF2, where y,lys L--, 14 (S = 43Ca ; I = ’9F)

and c = N(43Ca)/N(4°Ca) 1.3 x 10-’, a nearly
exponential f.i.d. is indeed observed for 43Ca [4].
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When G(t) is of the form (13), equation (11) yields :

or else, according to equation (3c) :

with :

The remarkable simplicity of the rate equation (10x
where Wij is independent of the various ak, is a direct
consequence of the presence of the abundant spins I.
In a system containing a single spin species, either at
normal or low concentration, rate equations of the
form (10) are but a crude approximation.

Equations (10) are valid only in the limit when the
polarizations of the spins S are small (cxi  I). We
assume in the following that this is the case.

2.1 INFLUENCE OF THE POLARIZATION OF THE SPINS
I. - In the above calculation, we have assumed
through equation (4) that the spins I were not pola-
rized. The existence of a non vanishing polarization
of the spins I will modify the transition rate Wij
through its influence on the free-decay shape of the
spins S, which will be of the form :

where the density matrix Qj, of the form :

corresponds to a polarization p of the spins I.
We limit ourselves to the case when ys  1’1 and

to spins I = 1/2, a case pertaining to CaF2.
A straightforward calculation not given here yields

the result that both M2 and M4 are proportional to
(I _ p2 ) so that, according to equations (14) and (15) :

and

3. Summary of diffusion theory. - Consider a par-
ticle which can be located on each one of a set of
fixed sites, and jump between sites i and j with a pro-
bability per unit time Wr The rate equations for the
probabilities ai of occupation of the various sites are
identical with equation (10). In the following we
discuss diffusion in terms of this model of a particle
jumping between sites.

Let us first consider the case when the No available
sites form a Bravais lattice. By using the space Fourier
transforms :

equation (10) can be written :

We consider the limit when q = I q is small : qa  1,
where a is the lattice parameter. Since Wij = Wij,
we have :

where n = q/q. D(n) is the diffusion coefficient in the
direction n. With respect to n it is a tensor with three
principal values and orthogonal principal axes, say
Dx, Dy,and Dz.
When the vectors q characterizing the distribution

of the on, are small, i.e. when the variation of the oc
takes place over distances much larger than the
interatomic spacing, one may replace this discrete
variation by a continuous one : a(r). By performing
a space-Fourier transform of equation (22) one obtains,
according to equation (23) :

which is the usual form of a diffusion equation. The
preceding treatment of diffusion is standard.
When Wij is of the form (161 equation (23) yields :

where flij is the angle between n and rij-
Consider for instance a t:c.c. lattice of parameter a,

with Ho // q f [ 111 ]. A computation of equation (24)
yields :

where N = 4 a- 3 is the number of sites per unit
volume.
The proportionality of D to N ’1’ is general, and

not restricted to a particular lattice.

3 .1 REMARK. - We cite without proof a classical
result of diffusion theory (easily derived from equa-
tion (22’)) :
When the particle is at a given site at t = 0, the

average of the square of its displacement in a direc-
tion n at time t is :
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i.e. it is obtained by summing the squares of the dis-
placements along n of the various jumps. This result
is typical of independent random processes.

Equation (26) is valid only when (R.n)2 &#x3E;1/2
is much larger than the inter-site distance, that is
when the time is sufficiently long. This results from
the fact that equation (23) holds only for small vec-
tors q.
When Wij is of the form (16) we can estimate the

value of D oc  (R.n)2 &#x3E; by neglecting in equation (24)
the angular factors and replacing the discrete summa-
tion by an integral :

where ro is of the order of a, which yields the qualitative
conclusion that in this case diffusion proceeds essen-
tially through frequent jumps to short distances
rather than unfrequent jumps to large distances.

3.2 NAIVE EXTENSION TO A DILUTED LATTICE. -
The sites available to the particle are now randomly
distributed over the lattice points of a Bravais lattice
at a concentration c  1. We can tentatively use

the same kind of treatment as above, with the only
difference that each lattice point would be weighted
by the probability that is a site available to the par-
ticle : when the particle is at a site i, the probability
per unit time that it jumps to another site j of the
Bravais lattice is Wj multiplied by the probability
that the site j is available. The latter is equal to c
for all sites of the Bravais lattice, since these sites are
available at random at the relative concentration c.

We thus obtain :

that is, according to the first equation (25) :

a form independent of the lattice. The number N
of available sites per unit volume being proportional
to ca- 3, we obtain from equation (28) :

which means that at constant N, D is larger the
smaller c, that is the smaller the parameter of the
Bravais lattice. D would tend to infinity if at constant
concentration per unit volume, the available sites
were randomly distributed in the continuous space.

This conclusion is erroneous. The more refined

theory developed in the next section in the limit
c  1 will yield a value of D proportional to N 413
but independent of c.
The flaw in the present treatment is the following.

Let us consider a pair of sites 1 and 2 at close distance,
however rare such a case may be. The concentration c

being very small, the probability is very small to find
another site close to them. In most cases, the nearest

sites to the pair will be at a distance comparable with
the average inter-site distance. If at a given time the
particle is, say, at site 1, its subsequent motion will
consist on the average of many fast jumps back and
forth between sites 1 and 2 before escaping to another
site. These jumps between 1 and 2 do not contribute
to the diffusion, whereas in the present treatment
each one is included into the book-keeping for

computing the square of the average displacement
of the particle. According to equation (27), these
short jumps yield a large contribution to the computed
value of D, which is therefore grossly overestimated.

4. Diffusion in a diluted spin system. - In this
section we develop an approximate theory for the
correlation between successive jumps of the particle
in the limit of vanishingly small concentration c.

We derive for each pair of sites i, j an « efficiency »
coefficient Aij, defined as the probability that a jump
between i and j contributes to increasing (R.n)2.
We obtain then for the diffusion coefficient D, in

place of the first equation (24) :

The limit c  1 corresponds to the case when the
available sites are randomly distributed in a conti-
nuous space. The probability of finding a site in a
volume element dv around r is :

where N is the average number of available sites per
unit volume.

In this limit, equation (30) is replaced by :

4.1 SCENARIO FOR CORRELATED JUMPS. - We take
a large statistical set of systems where sites available
to the particle are distributed at random at an average
concentration of N per unit volume, and consider
statistical averages over this set. Each system of the
set has a site at the origin, called site 1.
We begin by selecting the subset of systems with

a second site at a position 2, and where all other sites
are subjected to the conditions :

We suppose that at t = 0 the particle has arrived
at site 1, coming from elsewhere than site 2, and we
make a partial book-keeping of the subsequent
jumps of the particle, irrespective of the time at

which they take place, as follows.
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Starting from site 1, the particle may jump either
to site 2 or to another site k. In the subset, a fraction :

of particles go to k :A 2, and a fraction (1 2013 p) go to
site 2.

Among those which have gone to site 2, the next
jump will send a fraction :

to a site j :A 1, and a fraction (1 - p) will jump back
to site 1.
For the latter, the two successive jumps cancel

each other and have no net effect on the displacement
of the particle.

In order to determine the effect of those which

jumped to j :A 1, it would be necessary to investigate
the correlations between jumps involving 3 and more
sites. On physical grounds, such correlations will be
important only if the various sites are at distances
smaller than the average inter-site distance. The

probability for such configurations being very small,
we will neglect multi-site correlations and assume
that the jump 2 - j has rendered the preceding jump
I -+ 2 « efficient ». For sites distributed at random
in the continuous space we have on the average :

(r12.r2j) = 0 (36)

and the effect of the « efficient » jump 1 -+ 2 is to

increase ( (R.n)2 by the amount (rl2.n)2.
We continue the book-keeping of the jumps starting

from either 1 or 2. With respect to the number of
particles at site 1 at t = 0 in the subset, the propor-
tions of those involved in these successive jumps are
as follows :

lst jump :

2nd jump :

2n th jump :

(2n + 1 )th jump :

The total proportions of jumps 1 - 2, 2 - 1, and
2 - j are then :

Since the efficient jumps between 1 and 2 are those
followed by a jump 2 - j, the partial efficiency coeffi-
cient A 12 for this subset is :

which is independent of B.
According to equation (35) we have :

The efficiency coefficient A 12 for the whole set is
the average of (39) over all values of A :

where 3(A ) is the measure of the subsets where the
probability per unit time that the particle performs
a jump from site 2 is equal to A. The sites being dis-
tributed at random in a continuous space, this measure

 (A ) is independent of the fact that, according to
condition (33a), one should exclude the jumps to
site 1. It is therefore also independent of the distance
between sites 1 and 2.

4.2 SPIN DIFFUSION THROUGH DIPOLE-DIPOLE INTER-
ACTIONS. - The distribution function 5(A ) is cal-
culated in the Appendix for jump probabilities Wij
of the form (16). The result is :

with :

where K is given by equation (17).
Equation (40) yields then :

or else, by using the new variable

In the limit of large and small jump probabilities W,
the efficiency coefficient A takes the following values :

i) k2/8 W  1, i.e. W &#x3E;&#x3E; k2/8.
According to equation (42), this corresponds to :
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where d is the parameter of a f.c.c. lattice with N sites
per unit volume. This case corresponds on the average
to an inter-site distance r  d.

In the right-hand side of equation (43) we can
replace the exponential by unity and we obtain :

According to equations (16) and (42) the probability
for an efficient jump between two sites i and j at
short distance is

and the contribution of these jumps to the diffusion
constant, of the order of :

is negligible, by contrast with the naive model of
section 3.

ii) k2/8W,&#x3E; 1, i.e. W  k2/8.
Under the integral on the right-hand side of equa-

tion (43), the exponential decays much faster than
(1 + Z2)-1, which can be replaced by unity, and we
obtain :

so that each jump between distant sites i and j contri-
butes to the diffusion.
The diffusion constant, defined by equation (32)

depends on the direction n. Since according to equa-
tion (16) W(r) depends on the orientation of r only
through its angle 0 with the external field H, the
tensor D will be axially symmetric around the direction
of H, with principal values DII and Dj_. For the parallel
case, one has in equation (24) : cos2 flj = cos2 oij,
and for the perpendicular case :

According to equations (16), (32) and (44) the

expression for, say, D I is, writing cos 0 = u :

The integral over r is of the form :

where the r function

and

Then the integral over u is of the form :

The integral over z is of the form :

and we obtain, according to equations (42), (47) and
(48) and the numerical values of the integrals :

The calculation of D, differs from that of D II by the
form of the integral over u :

and we obtain

By comparison with equation (25), the fact of

letting the sites be randomly distributed over the
continuous space rather than regularly distributed
over an f.c.c. lattice increases the diffusion coefficient
D 11 merely by 1.6. The spin diffusion coefficient depends
therefore essentially on the concentration N of spins
per unit volume and is rather insensitive to the posi-
tions of these spins.

4.3 NUMERICAL ESTIMATE FOR 43Ca IN CaF2. -
The calcium spins in CaF2 form a f.c.c. lattice whose
parameter at low temperature is [5]

The spins of 43Ca occupy a fraction c = 1.3 x 10-’
of the calcium sites. Their spin is 7/2 and their gyro-
magnetic ratio :
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We limit ourselves to the field direction 0#[111]. The
experimental f.i.d. of 43Ca is nearly exponential, with
a time constant [4] :

We have then :

and, according to equation (17) :

Let p be the fluorine polarization. Equations (19),
(49) and (50) yield :

5. Discussion. Comparison with a different approach.
- The rare spins are located on a Bravais lattice,
and the fact of treating them as if they were distri-
buted in the continuous space introduces a number
of errors that are listed below.

i) The jump from site 2 to a site other than 1 is not
exactly uncorrelated with the jump 1 --+ 2, i.e. equa-
tion (36) is not strictly valid. However the correction
is noticeable only for those sites 1,2 whose distance
is comparable with the lattice parameter, that is much
smaller than the average inter-site distance. These

anomalously close pairs yield a negligible contribution
to the diffusion.

ii) As stated earlier, correlations between jumps
involving more than two sites were ignored, because
they are important only for groups of spins at ano-
malously short distances.

iii) The distribution function S(A) is different
from equation (41). On physical grounds, the diffe-
rence is likely to be small except for large values of A.
For spins on a Bravais lattice, there is in fact a
maximum possible value for A. This will significantly
affect the efficiency coefficient A only for large W,
that is for pairs of sites at close distance which contri-
bute little to the diffusion.

iv) Finally, as stated in section 2, the flip-flop rate
between close spins is not given by equations (16)
and (17).
The error resulting from these approximations is

likely to be of the order of c, the fraction of occupied
sites of the Bravais lattice. A strong argument in
favour of this estimate is that the value obtained for
the diffusion tensor differs little from that for a regular
f.c.c. lattice with the same spin concentration. One
may indeed reasonably expect that by keeping the
spin concentration constant and varying the lattice
parameter, the diffusion constants will vary smoothly
between c = 1 and c --+ 0.

It is instructive to compare the present theory with
a different approach to spin diffusion through dipole-
dipole interactions in a diluted system, developed

by Vugmeister [3]. We sketch briefly the principle
of this theory.
The rate equation (10) for the probability a, can be

formally integrated and yields :

One then takes the average of both sides of this
equation over a statistical set of systems. The first
term on the right hand side yields :

where the function F(t) is computed in the Appendix
(Eq. (A. 9)).
For the second term the author uses the decoupling

approximation :

where, in the last line, the index j runs over all sites
of the lattice of the spins S.
To proceed, one replaces the discrete summation in

equation (53) by an integral over space variables,
introduces the Laplace-Fourier transform :

and obtains, in the limit k, z --+ 0 an expression of the
form :

whence, returning to the time variable :

which is a diffusion equation. The diffusion constant
D(n) is of the same form as equation (32), with :

The calculation of D and Dl is analogous to that
developed in the preceding section. One obtains the
same anisotropy DID,, as for equations (49) and
(50), and :

which is a factor 0 76 lower than the value (49).
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What is open to criticism in this theory is the

decoupling approximation (54) which assumes that
in the statistical set, the value of oej(t’) is not correlated
with the existence of a site at the position i and with
the distribution of the other sites.
The consideration of these correlations is the central

point of the theory developed in section 4. The argu-
ment used for deriving these correlations is so simple
and so transparent that it is our feeling that our
approach is based on more convincing physical
grounds than that of Vugmeister.
From a practical point of view the difference bet-

ween the estimates obtained by these two methods
for the diffusion tensor is insignificant.

6. Ferromagnetism of 19F and spin diffusion of
43Ca in CaF2. - We describe briefly the salient

points of ferromagnetism with domains observed
on the 19F spin system in CaF2 [2, 6].

Nuclear magnetic ordering is produced in two
steps : firstly a dynamic polarization of the nuclear
spins by microwave irradiation close to the Larmor
frequency of paramagnetic impurities (TM2 I in CaF2),
which decreases the nuclear spin entropy, and secondly
a nuclear adiabatic demagnetization in high field

by a fast passage stopped at resonance, which trans-
forms the Zeeman order into dipolar order.
When the demagnetization is performed at negative

spin temperature with the external d.c. field H//. [111],
the theory predicts that the ordering of the 19F spins
is ferromagnetic, with domains in the form of thin
slices whose short axes are parallel to H, and whose
magnetizations are parallel or antiparallel to H.
This ordering shows up by the splitting of the 43Ca
resonance signal into two lines : 43Ca spins located
in different domains experience opposite dipolar
fields from the ordered 19F spins.

It is possible to produce an imprint of the positions
of the domains by saturating one of the 43Ca lines :
the 43Ca polarization is then zero in the domains of
one type and unaltered in those of the other type.
It is observed that when the 19F spins are remagne-
tized and then demagnetized again, the 43Ca resonance
line which had been saturated, and whose amplitude
was zero, is now visible, but with an amplitude
between 15 and 20 per cent of the total signal ampli-
tude. This shows that the new ferromagnetic domains
have nearly come back to the positions of the initial
domains.

However, the « memory » of the 43Ca signal,
defined as the ratio (31 - 32)/(Jl + J2), where .3, 1
and ’32 are the intensities of the two lines, is observed
to depend on the time spent in the remagnetized
state prior to the second demagnetization. As a

function of this time, it decays nearly exponentially
with a time constant of the order of 20 h. This time
is much longer than the dipolar spin-lattice relaxation
time (of the order of 1 h), and much shorter than the
Zeeman relaxation time (at least several hundred

hours).

The decay of the 43Ca signal memory is attributed
to the spin diffusion of the 43Ca spins which smears
out the imprint of the domains.

If we assume a uniform domain thickness d, and
an initial 43Ca polarization varying from po to 0
along Oz -in adjacent domains, we have :

and at time t :

where D is the diffusion constant D I I -
The term n = 1 becomes quickly dominant. The

43Ca signal memory being proportional to the diffe-
rence of average polarizations between different

domains, is expected to decay exponentially with a
time constant :

The 19F polarization in the domains was about p - 0.7,
and the diffusion coefficient is according to equa-
tion (51) :

(A different value was used in reference [2], because
of a numerical error). For 1 £r 20 h, equation (62)
then yields a domain thickness :

This value is sufficiently larger than the average dis-
tance between 43Ca spins ("-I 30 A ) to warrant the
description of the evolution of the 43Ca polarization
by a diffusion equation. This thickness is comparable
with the average distance between the paramagnetic
impurities of Tm2 +, which in this sample is about
130 A, and suggests that the formation of the ferro-
magnetic domains is triggered by the paramagnetic
impurities.

This result was later confirmed by a neutron dif-
fraction study of nuclear ferromagnetism with domains
in LiH [7]. The existence of domains which are thin
in the direction of the (vertical) external field shows
up by a vertical angular broadening of the diffracted
neutron beam, as observed with a neutron multi-
detector. The average thickness of the domains can
be obtained from this vertical elongation, and is
found to be comparable with the average distance
between paramagnetic impurities.
The consistency of these two experiments confirms

the interpretation of the decay of the 43Ca memory
as being due to spin diffusion and shows that the
theoretical estimate (56) for the parallel spin diffusion
coefficient has the right order of magnitude.
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Appendix : distribution function T(A ). The system
considered in section 4 consists of a random distri-
bution of sites with an average of N sites per unit
volume. A particle can jump between sites with a

probability per unit time of the form (16). We look
for the proportion T(A) of sites from which the pro-
bability per unit time of jumping elsewhere is equal
to A.

This is done through the calculation of its Laplace
transform :

This problem is formally identical with that of nuclear
Zeeman spin-lattice relaxation through fixed para-
magnetic impurities in the absence of spin diffusion [8],
the only difference being in the angular variation of
the transition probability : cos’ Oij sin2 Oij, rather
than (3 cos’ Oij - 1)’ in the present case.
As in section 4, we consider a statistical set of

systems with a particle in the site 1 and calculate

averages over this set.
The function F(t) is :

where the bracket means the average over this set.
Consider a subset F(W) defined by the condition

that all Wij  W, i.e. that there is no site in a volume
v(W) surrounding the site 1. The average over this
subset of the decay function is called f (W, t) :

We have evidently :

Consider now the subset F(W + dW) with all

W lj  W + d W, that is with no site in a volume :

surrounding the site 1.
In this subset, there is a proportion 1 - N dv

of systems with no site in the volume dv, for which the
average decay function is equal to f(W, t), and a
proportion N dv of systems with one site in the
volume dv, for which the average decay function is
f(W, t ) x exp(- Wt). We have then :

whence :

We calculate now the derivative dv/dW. An element of
volume is of the form :

where u = cos 0.
The angle 9 varies from 0 to 2 7c and u varies from

- 1 tao 1.

According to equation (16) we have

whence

The derivative dv/dW is :

that is, according to equation (A. 6) :

By inserting this value into equation (A. 5) we
obtain :

whence :

and



1058

with : The distribution function S(A) whose Laplace trans-
form is equal to F(t) is [9] :
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