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Résumé. 2014 Une analyse théorique de la dépendance des cinq viscosités hydrodynamiques d’un cristal liquide
nématique incompressible, en fonction du paramètre d’ordre et de la température est présentée. Cette analyse
est la généralisation d’une théorie moléculaire de la viscosité rotationnelle 03B31 proposée récemment par les auteurs
(Port. Phys. 9 (1975) 129 et Mol. Cryst. Liq. Cryst. 66 (1981) 133); elle est basée sur le concept de volume libre et
sur la théorie des processus cinétiques. Des formules théoriques sont proposées pour chacune des cinq viscosités
en fonction de huit paramètres moléculaires, du paramètre d’ordre S(T), de la température T, et d’une tempé-
rature fixe T0 au-dessous de laquelle le mouvement visqueux des molécules n’est plus possible par manque de
volume libre suffisant. Ces formules sont comparées avec les résultats expérimentaux disponibles pour le M.B.B.A.
et on constate un assez bon accord dans tout le domaine de la phase nématique.

Abstract. 2014 A theoretical analysis of the order parameter and temperature dependence of the complete set of five
independent viscosities of incompressible nematic liquid crystals is presented. It is an extension of a previous
theory by the authors on the thermal dependence of the twist viscosity in nematics (Port. Phys. 9 (1975) 129 and
Mol. Cryst. Liq. Cryst. 66 (1981) 133) and develops from the concept of free volume and the theory of rate pro-
cesses. Theoretical expressions are derived for each of the five viscosities in terms of the order parameter S(T),
the current temperature T, eight parameters which depend on molecular properties, and some fixed temperature T0
below which viscous molecular motion is not possible due to the lack of enough free volume. These expressions
are contrasted with the experimental data available for M.B.B.A. and all of them are found to be in good agreement
with the data, over the full nematic range of this material.
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1. Introduction. - The order parameter of the

nematic liquid crystal phase is given by a symmetric
traceless tensor formed with the components ni of
the director n :

where S is the degree of order expressed by

0 is the angle between n and the long molecular axis,
and  ... &#x3E; is an ensemble average [1].
An incompressible nematic has five independent

viscosity coefficients [2, 3], depending in general on the
temperature and on the order parameter, itself tempe-

rature dependent. Up to now, various expressions
have been proposed to account for the order para-
meter dependence of the nematic viscosities [4, 5],
but less attention has been payed to the explicit
temperature dependence of these viscosities. The
twist viscosity yi is an exception, and its temperature
and order parameter dependence have already been
considered in different ways [6, 7, 8].
The aim of this paper is to derive theoretically both

the order parameter and the temperature dependence
of the complete set of nematic viscosities : al, a4, yi, y2,
and y3 (defined below). The order parameter depen-
dence of these viscosities is derived in the next section.
In section 3 we discuss their temperature dependence,
starting from a generalization of our previous theory [8]
of the temperature dependence of y 1. To lowest order
in Q, our new results are :
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where the mi(T) are the nematic viscosities as defined
in [9], S is the degree of order, T is the temperature, and
the other symbols represent parameters that are

(nearly) temperature independent. These expressions
are contrasted in section 4 with the experimental data
available for the nematic material M.B.B.A. (4-metho-
xybenzilidene-4’, n-butylaniline), and they are found
to be in fairly good agreement with the data, over the
full nematic range of this material. Finally, in section 5,
we present the main conclusions of this paper.

2. Order parameter dependence of the nematic
viscosities. - The hydrodynamic equations of motion
of an incompressible and isothermal nematic liquid
crystal may be written :

where p is the density, (Jji is the stress tensor, aj’i is the
viscous stress tensor, and hi is the molecular field [2, 3,
9]. The molecular field is the functional derivative of
the free energy density f with respect to the director :

and the stress tensor is the functional derivative of f
with respect to the strain tensor Djui, where ui is the
displacement along the direction i,

The entropy production 1; is given by [9] :

where Ni is the director velocity with respect to the
environing fluid :

U}i is the symmetric part of the viscous stress tensor,
and Aij is the symmetric part of the velocity gradient
tensor :

Expressions (2.4) and (2.6) may be re-written in a
more convenient way, if we consider the free energy
density f as a functional of Qij (instead of ni) and
Djui.

Expression (2.6) then reads :

where the time derivative is evaluated along one flow
line and with respect to the environing fluid, i.e.

A direct comparison of equations (2.6) and (2.9)
gives :

Returning back to equation (2.9), we see that - 6 f/6Q
and W’ may be chosen as thermodynamic forces, and
bQ/bt and A as the corresponding fluxes. Then, if the
linear response theory holds, we may write

where V is a volume, 1:b 1:13’ i31 and i3 have the dimen-
sions of time, and R is a tensor with the symmetry of the
nematic phase. The Onsager relations impose further

Equations (2.12) and (2.13) may be considered as
the relaxation equations respectively for orientation
stresses and shear stresses. Thus, tl and i3 are the
characteristic times for the relaxation of orientation
stresses and shear stresses, respectively, and ’r2 is a
mixed time for the coupling between orientation and
flow. These relaxation times were first considered by
Hess [5].
The tensor R of equations (2.12) and (2.13) must be

symmetric in i, j and k, I because it links two symmetric
tensors. In addition it should reflect the ordered cha-
racter of the medium, and therefore we assume it to be a
function of Q which we may expand as follows, up to
order Q 2 :
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where the a; are numerical coefficients. In the expan-
sion (2.15) we have omitted the terms containing 6y
or bkl for the following reasons. First both aij and

bflbqij are indeterminate to arbitrary terms of the
form - pbij (the scalar pressure) or - Abj (the
director stress), so that terms containing bij may be
included in aij or bflbqij. Second, the terms containing
bki vanish for both Q (by definition) and A (because the
fluid is incompressible) have zero trace. Substituting
(2.15) into equations (2.12) and (2.13), and using
(2.10) and (2 .11 ) we find :

where

Equations (2.16) and (2.17) reduce to the Leslie
equations [2, 3, 9] by putting :

For S = 0, i.e. in the isotropic phase, only a4 is non-
zero and its value is twice the ordinary isotropic
viscosity i7i.., as seen from equation (2.23).

Equations (2.19)-(2.23) display the order para-
meter dependence of a complete set of independent
nematic viscosities. They agree with those of Hess [5],

except for the S 2-terms in Y3 and a4 which are missing
in his expressions. Imura and Okano [4] proposed an
analogous expansion of the viscosities in powers of Q,
but they assumed that the coefhcients of S were
« weakly temperature dependent &#x3E;&#x3E; [4]. By comparison
of our expressions (2.19)-(2.23) with those of refe-
rence [4] we find that they are in general agreement
except that Imura and Okano wrote

and from our expressions C1 = 0. The proportiona-
lity of yi to S2 may also be proved from a general
thermodynamic argument [10]. On the other hand, as
we shall see below, the coefficients of S (i.e. the rela-
xation times ri) show a strong temperature depen-
dence, in contrast to what has been assumed by Imura
and Okano [4].

3. Thermal dependence of the viscosities of nematic
liquid crystals. - Besides the degree of order S, itself
temperature dependent, the relaxation times Ti, i2
and r3 are functions of temperature and show a strong
contribution to the overall thermal dependence of the
nematic viscosities. On the other hand, the parameters
ai are « geometrical », rather than dynamical para-
meters, and their temperature dependence (if any)
may be neglected. In the following we shall only consi-
der the thermal dependence Of T 1, T2 and ’t 3.

Recently we have shown that the twist viscosity ’1’1
may be related to the equilibrium frequency vo of
reorientational jumps of 7r radians performed by the
molecules against the intermolecular potential. The
relation is :

where l/Vi ’" S Z (this volume is the molecular
volume as extrapolated from the isotropic phase to
the temperature T and should not be confused with
the volume Y in expression (2.19) - see reference [6]).
The frequency vo was computed in references [6] and
[8], and may be expressed as :

where kT/h is a fundamental frequency, exp(- eSlkT)
is proportional to the probability that the reorien-
tating particle (one molecule or a small group of
them) has enough energy to overcome the potential
barrier due to the molecular field created by the other
molecules, and exp[ - 01 S’I(T - To)] is propor-
tional to the probability that the particle finds enough
free volume to jump. (For details see Ref. [8].)
By comparison of (2. 19) with (3 .1 ) and (3. 2) we

find :
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In this expression, and in the following, we ignore the
factor exp(sSlkT) because the temperature variation
of S2/(T - To) dominates that of SIT in most

practical cases (see Ref. [8]).
The same type of argument may be used to find the

thermal dependence of i3. One must then consider the
translational jumps between two equilibrium positions
instead of the rotational jumps of n. The result is

In view of (3.3) and (3.4) it seems reasonable to
assume a similar thermal dependence for the mixed
parameter T2, i.e. :

Finally, by substitution of (3. 3), (3. 4), and (3. )
into (2.19)-(2.23) we find the results (1.3)-(1.7)
announced in the Introduction (section 1) to this paper.
We do not give here a detailed derivation of equa-

tion (3.4) because it is analogous to that presented in
[8] for the case of Y 1 (T). Instead, we shall discuss
briefly the free volume factor, exp[Ok S2j(T - To)].
This factor dominates the thermal dependence of the
relaxation times considered, and may be written as [8]

where Vo is the molar volume of the nematic phase at
T = To and a is a thermal expansion coefficient, so
that Vo. a. (T - TO) is the free volume available per
molecule; it vanishes when T = To so that To is the
temperature at which ceases the particle mobility
related to free volume. 4 Vk (k = 1, 2, 3) is the increase
in free volume needed by one particle to jump; a
crude estimate of O Yk can be made by noting that near
the crystal-nematic and near the nematic-isotropic
transition temperatures, 4 V3 and O V 1 may be

compared respectively to the volume jumps observed
at these transitions. These relations, of course, are not
rigorous, but they are expected to be roughly correct.

4. Comparison of this theory with experimental data
about M.B.B.A. - The measurement of a complete
set of nematic viscosities was first done by Gahwiller
on M.B.B.A. [11]. He measured the thermal depen-
dence of the so-called Miesowicz viscosities, ’1ø ’1b
and q, and of the flow alignment angle 03C8. The Mieso-
wicz viscosities are the apparent viscosities measured
in a flow experiment between two parallel plates, and
correspond to the following geometries (we use here
the notation of Ref. [9]) :

a) director perpendicular to the direction of flow
and to the velocity gradient :

b) director parallel to the direction of flow :

c) director parallel to the velocity gradient :

The flow alignment angle 4/ is the angle between n
and v when a similar flow experiment is performed
without any external field imposing a given orientation
to n ; then # is given by :

A direct test of our theory with the data of [11] is
probably not meaningful because the reported values
of fie were questioned by different authors [12, 13],
suggesting that they were underestimated. This is
corroborated by new and more precise measurements
recently performed by Kneppe and Schneider [14].
Thus, we preferred to take together the data reported
up to now by different authors [11-23] and perform
our analysis on each viscosity over all the correspond-
ing data. For S ( T) we have used the data of refe-
rence [24].

This analysis may be summarized as follows :

1) First, the twist viscosity yi(r) was computed by
a least squares fit of equation (1. 5) to the data reported
in references [11], [13], and [15-22]. The best para-
meters found are g 1 = 1.066 P, 01 = 115.81 K, and
To = 255 ± 5 K. Figure 1 displays the best fit of

yl(TNI - T) so obtained, together with the experi-
mental points; we remark the good agreement between
our equation (1.5) and the experimental data.

2) Data about y2(T) were then obtained from two
different sources : one set of data was computed from
the #(T) values of reference [11] and the previously
evaluated curve of yl(T), using equation (4.4); the
other set of data was computed using equation (4.3)
and the data about flb(T) and ?1,(T) of reference [14].
A least squares fit of equation ( 1. 6) to all the data so
obtained gave To = 255 ± 5 K, as in the preceding
case, g2 = - 0.440 1 P, and 02 = 166.60 K. Figure 2
shows the experimental data together with the

Y2(TNI - T) fitting curve; the agreement is again very
good.

3) Data on y3(T) were obtained from the experi-
mental data [11, 14] on j7. and )7b and the preceding
computed curves of yi and y2 through the relation

The parameters b, 03 and To could then be directly
obtained by a least squares fit of equation (1.7) to
these data. We did not use this procedure, however,
because the data are too disperse (see Fig. 3). Instead,
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Fig. 1. - Twist viscosity }’1 versus TN, - T for M.B.B.A. The full curve is a least squares fit of equation (1.5) to the experi-
mental data, giving gi = 1.066 P, 01 = 115.81 K and To = 255 K. Data points : + : from Ref. [11]; x : from Ref. [15];
® : from Ref. [16]; lll : from Ref. [17]; a : from Ref. [18] ; D : from Ref. [19] ; * : from Ref. [13] using the data of references
[19], [20] and [21].

Fig. 2. - y2 versus TNI - T for M.B.B.A. The full curve
is a least squares fit of equation (1.6) to the experimental
data, giving g2 = - 0.440 P, 82 = 166.60 K and To = 255 K.
Data points : + : computed from Ref. [11]; x : computed
from Ref. [14].

we considered together these data on y3 and on a4
[11, 14], and using the equation

(which is obtained from equations ( 1. 4) and ( 1. 7)), we
got, by the least squares method, a = 0.268 P,
03 = 153.82 K and To = 255 K (again). The value of
a was checked through the relation

Fig. 3. - Y3 versus TNI - T for M.B.B.A. The full curve
is a least squares fit of equation (1.7) to the experimental
data, giving b = 0.188 P, 83 = 153.82 K and To = 255 K.
Data points : + from Ref. [11] ; x from Ref. [14].

where qi..(T+) and y3(TNI) were obtained by extra-
polation to TNI of the curves fitting the (rather precise)
data in references [11] and [14]. We found a = 0.296 P,
a value that is only 10 % higher than the previous one,
which is reasonable in view of the data available.

Then, with the values of 03 and To fixed, we used
equation ( 1. 7) and the data on y 3 ( T) to get b = 0.188 4P.

Finally, with the foregoing values of b, 03 and To
we computed the complete curve Y 3 (TNI - T) which is
shown in figure 3 together with the experimental data;
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Fig. 4. - a4 and 2 ’1iso versus TNI - T for M.B.B.A. The full curve a4(TN, - T) was computed using equations (4.7) and
(1.4) as explained in the text. The parameters in equation (1.4) are : a = 0.296 P, b = 0.188 P, 63 = 153.82 K and
To = 255 K. Data points : + from Ref. [11] ; D from Ref. [12] ; x from Ref. [14] ; * from Ref. [23]. The full curve 2 ’1iso(T NI - T)
was computed by a least squares fit procedure over the data of references [11] and [14] ; its analytical form is

in spite of the dispersion of the data, the agreement
found appears to be rather satisfactory.

4) At this point we already knew all the parameters
needed to compute a4(T ) through equation (1.4).
Choosing the second value of a, we computed the
curve CX4(TNI - T) shown in figure 4, to which we
superimposed the experimental points quoted from
references [11,12,14, 23]. No least squares fit was used
here. The agreement found was again very good,
except for one set of data (from Ref. [12]), which is
certainly overestimated.

5) To compute ai(T) from equation (1.3) only one
more parameter (ci) was needed. We took the appro-
priate experimental data from reference [14] and using
the previously computed values of 93 and To we got
ci = - 0.146 6 P by the least squares method; the
corresponding curve is shown in figure 5 together with
the data. Good agreement is found again (note that
the ordinate scale in figure 5 is five times expanded
relatively to that used in the other figures). However a
word of caution is necessary in this case. As pointed
out by different authors [11, 14], al(T) is hard to get
in a flow experiment because it is obtained through the
difference between two nearly equal terms, i.e.

where ?145 is the apparent viscosity measured when the
director is normal to the velocity gradient and makes

Fig. 5. - ai versus TNI - T. The full curve is a least

squares fit of equation (1.3), with the previously computed
values of 93 and To, to the experimental data in reference [14],
giving c 1 = - 0.147 P.

an angle of 450 with the velocity vector. The absolute
values of ai (T) so obtained may thus contain signifi-
cant errors. For example, Giihwiller [11] reports the
(single) value al = 6 ± 4 cP at TNI - T = 18 K,
which is at strong variance with the Kneppe and
Schneider’s [14] value ai = - 16.4 cP at the same
TNI - T (Fig. 5). Both values were obtained through
the measurement of 1145, ?lb and tlc, and application of
equation (4.8). But, as mentioned above, and as

shown by figure 7, Gahwiller’s data about Ic are
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Fig. 6. - ’1b versus T NI - T. The full curve was computed
through expression (4.2) and the previously evaluated

expressions for yl(T), y2(T), Y 3 (T) and (X4(T). Data points :
+ from Ref. [11]; x from Ref. [14] ; * from Ref. [23].

underestimated (= 15 cP from Fig. 7). If we use in
equation (4. 8) our value of ’1c(T NI - 18) from figure 7,
Giihwiller’s estimate of a 1 becomes al(TNI - 18 ) -
- 24 ± 4 cP which is now compatible with the
results in figure 5 (Giihwiller’s estimated error should
not be taken too seriously).

6) Finally, to conclude the analysis of the experi-
mental data, we computed ’1b(T) and ’1c(T) from
equations (4 .1 )-(4 . 3) and the theoretical curves of
YI(T), Y2(T), Y3(T) and a4(T) previously obtained.
Figures 6 and 7 display the computed curves super-
imposed to the experimental data available, showing
again good agreement and proving the self-consistency
of our analysis. Note that these curves are not least
squares fits.

Fig. 7. - tic versus T NI - T. The full curve was computed
through expression (4.3) and the previously evaluated.

expressions for y1 (T ), Y2(T), Y 3 (T) and a4(T ). Data points :
+ from [11]; p from [12]; x from [14].

5. Discussion. - The analysis performed in the

preceding section leads us to the conclusion that

equations (1.3)-(1.7) agree fairly well with the experi-
mental data reported about the nematic viscosities
of M.B.B.A. Our analysis also supports the sugges-
tion [12, 13] that the fie values of reference [11] are
underestimated, as it is seen from figure 7.
We remark that with only nine parameters (g 1, g2,

a, b, ci, 81, 82, 93, and To) we were able to compute the
temperature variation of the five viscosities yi, Y2, y3,
a4, and al in a fairly good agreement with the experi-
ment. In principle, according to our equations (2.19)-
(2.23) twelve parameters are needed to determine
completely the thermal dependence of five indepen-
dent viscosities of a nematic liquid crystal. However, as
a i is comparatively negligible, we may drop the S 2-
terms in equations (2.21) and (2.23) and yet compute
the parameters g,, g2, a, b, Cl’ 81, 02’) 03, and To with
excellent accuracy (just as done above). Moreover, if
the experimental values of fliso and a4 near TNI are
known with enough accuracy, one of the two para-
meters a or b can be directly computed from the size
of the discontinuity in a4 for T = TNI (see Eq. (4 . 7)),
therefore reducing the number of free parameters to
eight. If To can be measured by a different technique,
the free parameters reduce to seven when ai can be
measured or to six when ai lies within the experi-
mental error and is neglected.

It is interesting to note that our value of To is close
to one of the two transitions that have been found in
the supercooled nematic phase of M.B.B.A. around
200 K and 248-258 K [26].

Another (rough) check of our results can be done
by considering the values obtained for the parameters
0, and 03. As remarked before, it is expected that for
T - TNI :

where evN, is the volume jump at TN,. Taking
CX - OCN = 6.7 x 10-’ K-1 [25] and VN(TNI) - 259 cm’/
mole [25], we computed Vo - 248 cm’/mole. As
S(TNI) - 0.325 [24] we found OI.Vo.a.S’ - 2 cml/
mole which is somewhat greater than the experimental
value D VNl = 0.4 cm3/mole [25]. But a is actually the
thermal expansion coefficient of the free volume which
is necessarily smaller than the nematic one, i.e.,
a = aN - aK. On the other hand, we also expect that
for T - T KN :

where the subscript KN refers to the crystal-nematic
phase transition. For T = 293 K we find now

03-VO-a-S’ - 10 cm3/mole which is close to the

experimental value eYKN = 12 cm3/mole [25].

6. Conclusion. - We propose in this paper expres-
sions to account for the order parameter and tempe-
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rature dependence of five independent viscosities of
nematic liquid crystals. We have shown that besides
their thermal dependence on the order parameter, the
temperature dependence of the five viscosities is

mainly due to three relaxation times, respectively for
shear stresses, orientation stresses, and the coupling
between them, and that the thermal dependence of
these times is mainly a free-volume effect.

All our expressions are in fairly good agreement with
the corresponding experimental data so far reported for
M.B.B.A., over the full nematic range of this material.
Similar data on Merck-IV and pentylcyanobiphenyl

are currently being investigated and will be shown to
support as well the theory in this paper (Diogo, A. C.
and Martins, A. F., work in preparation).
New experimental data on the viscosities of other

nematic materials would be very welcome in order to
test the generality of the expressions proposed in this
paper. On the other hand, it would be interesting to
get a better insight into the meaning of the parameter
To either by this technique or by any other.
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