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Résumé. 2014 Nous construisons un système dynamique simple qui présente une transition vers la turbulence par
intermittence de type I. Nous démontrons que la stochasticité apparaît dès le franchissement du seuil de bifurcation.
De plus, bien que la transition entre régime laminaire et régime turbulent soit abrupte, certaines propriétés statis-
tiques du système varient continûment.

Abstract. 2014 We study a discrete dynamical system which presents a transition to turbulence via type I intermit-
tency. We demonstrate that chaos is already present just beyond the threshold of intermittency. Moreover, although
the transition from laminar to turbulent regime is abrupt, certain statistical properties of the system vary conti-
nuously.
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Intermittency. as a way to turbulence has been

recently the subjet of theoretical [1] as well as experi-
mental [2, 3, 4] studies. In this paper, we analyse the
statistical properties of certain intermittent transitions
to turbulence. For this purpose we introduce a discrete

dynamical system which accounts for the so-called
type I intermittency [1].
Such an intermittent behaviour occurs in the well-

known Belousov-Zhahotinski chemical reaction [3].
In Rayleigh Benard thermogravitational instability,
turbulence may also take place via an intermittent
transition for high values of the Prandtl number, as
shown by P. Bergé et al. [4] and by Maurer et a1. [2].
The former authors have even constructed a simple
model derived from the Baker transformation which
enables them to explain the observed transition in
terms of type I Intermittency.

Intermittent behaviour also appears in the study of
ordinary differential equations. Let us quote the

example of the saturation of plasma instability through
the non-linear decay of a linearly unstable H.F. wave
into linearly damped L.F. modes [8]. At low values of
the growth rate, the wave amplitudes exhibit regular
oscillations - as shown in figure la. At higher values
of the growth rate (Fig. lb) seemingly stable oscillations
of the wave amplitudes are randomly interrupted by
turbulent bursts. Increasing further the growth rate,
the duration of the laminar periods decreases more and
more until the system reaches a fully chaotic regime
(Fig. lc). Such a transition from a stable periodic

behaviour to a seemingly random alternation of long
laminar periods and short turbulent bursts denotes an
intermittent transition to turbulence. Moreover, if the
intermittent signal is recorded long enough, it appears
that the number of oscillations between two bursts has
an upper bound. This feature is typical of type I

intermittency.
For such a transition to turbulence, a question

arises : is chaos already present just beyond the onset
of intermittency, even though the behaviour appears
regular most of the time ? And, if so, what are the
statistical properties of the system near the transition ?

Usually, for a real system, it is impossible to conclude
about the stochastic or non-stochastic nature of a pro-
cess. But, fortunately, most features of the intermittent
transition are model independent. Indeed, we can
associate to such a system a one dimensional map
which keeps every important feature of intermit-

tency. We may, for instance, consider successive energy
peaks of one wave in the previous example. This gives
a sequence of numbers, Xll X2... XN-", connected by a
finite difference equation of the form,

The control parameter g is here a smooth function of
the growth and damping rates. When increasing 4 the
mapping XN+ 1 = f(XN, &#x26;) displays an intermittent
transition from the laminar to chaotic regime which
reproduces that of the real system. Such mappings
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Fig. 1. - Successive peak values of the low-frequency
wave energy in the decay problem : a) in the « laminar
regime » ; b) in the « turbulent regime » near the threshold ;
c) in the « turbulent regime » far from the threshold.

may be also deduced from experimental data [4]. The
explicit form of f is of course linked to the specific
problem one considers. However, every family of 1. D
maps displaying type I intermittency presents generic
features to be described hereafter.
Here we construct such a mapping. For this model,

it is possible to demonstrate that even at the intermit-
tency threshold, neighbouring trajectories separate
exponentially in the long term. Hence the system
bifurcates from a stable periodic regime to a stochastic
one, endowed with strong statistical properties (ergo-
dicity, strong-mixing...). Moreover, the probability of
finding asymptotically the system in a given state of
phase space, is well described in both regimes by an
invariant (under iteration) measure. In the laminar
regime, it reduces to a 6-function (which pictures
the constant value of the peak energy for the oscilla-
tions in the decay problem). We show that this inva-
riant measure continuously varies through the inter-
mittent transition to turbulence, and we give its

approximate expression near the threshold.
Let us recall the characteristic features of a map

which accounts for type I Intermittency. As shown
in [I], the « regular » oscillations between two bursts
can be described by the following generic local form of
the difference equation : x. I = f(x, a)

Indeed for negative values of the control parameter c,
the map has two fixed points; ± - 6. The stable
value (-.J=B) accounts for the stable periodic
regime before the intermittent transition. If c is posi-
tive, the fixed points of (1) vanish. Starting from a
slightly negative value of x, the successive iterates

x.’s, as given by (1), drift slowly towards positive
values. This slow drift corresponds to the laminar
period (Fig. lb). Far away from 0, the local form (1) is
no longer valid. The long distance behaviour, which
affects the burst structure has only to insure the

reinjection of the iterate in the region X - 0, thus
beginning a new laminar phase.
Here we introduce such a map XN 11 i = !(XN’ B)

which locally has the generic form (1), and which
moreover is tractable for analytical study of type I
intermittency. Namely, we consider the family of

mappings of the interval [0, 1] onto itself defined as
follows (Fig. 2). Let xo be a point of [0, 1/2], b a positive
constant and B a control parameter. Then we define f
by,
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Fig. 2. - The map of the interval [o,1] onto itself described
by equations (2).

constants b and x satisfy I - 13 x  b  1 , and0 120133xB x 

We can make this map C’, N &#x3E;, 2, by slightly modi-
fying f in neighbourhoods Of XA, xg as small as we like.
The origin is always an unstable fixed point. For

E = 0, xo is a stable fixed point. On the contrary, for
a &#x3E; 0, f has no stable fixed point. For E -+ 0+, a small
channel is created near xo between the representative
curve x. , 1 (x.) and the bissectrix x. +I = Xn (Fig. 2).
In the vicinity of x, - xo - a/Z where the slope of f
is 1, the curve Xn 11 (Xn) may be approximated by a
parabola of the generic form (1). Hence if we assume
an initial condition close to x,,, the iterate Xn first
gently increases in the vicinity of xo, and then more
and more quickly up to a point where it becomes
larger than 1/2 (« laminar phase »). Now due to the
discontinuity in the graph of f, this monotonic varia-
tion is suddenly interrupted A « turbulent » burst
occurs which returns the iterate into the region
XA 1 x  XS-

It is worthwhile to look at this mapping, since we
know an exact expression of the iterate fn(XI provided
that x and f*(x), 0  k  n, lie in the interval [xA, xB) :

Hence the number L of iterations required to drift
through the whole channel [xA, xB] writes :

L is also an upper bound for the duration of a laminar

phase. In the limit a - 0+, L diverges as nkfe-b.
If we increase 8 from 0 to a finite value Eo  1,

the bursts are not significantly affected whereas the
« laminar phases » become shorter and shorter. Thus
the recorded signal looks more and more chaotic as
pictured in figure 1. In order to determine if the system
is already stochastic near the threshold, and to make
sure it presents no stable periodic orbit (however
complicated it may be), we test the dependence on the
initial conditions.

Indeed a small error bx , on x 1 leads to an error
6X2 - f’(XI) 6XI on its first iterate X2 = f(Xl)’
After N iterations one gets in the limit where bxl  1

or

where

Here, the derivative f’(x) can be either smaller than 1
(in the interval IXA, xj) or greater than 1 (anywhere
else). Then bxp may be either greater or smaller than
bxi depending on the initial condition xi and on the
number of iterations performed. However for such a
one-dimensional map the sensitive dependence to

initial conditions is related to its so-called expanding
character. A mapping is expanding if there exists some
integer M and some real numbers A &#x3E; 1 and C &#x3E; 0
such that, for any integer N greater or equal to M,
the following inequality holds :

Therefore if the mapping is expanding, trajectories
exponentially separate in the long term since for bx,
small enough.

with A &#x3E; 1.

Let us define

the exponent yx is related to the amount of stochasticity
and to the expanding character of the map. For an
expanding map, y., is positive for almost every x in
[0, 1J.
Hence we first show that for 8 &#x3E; 0, the mapping
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defined by equations (2) is expanding. In order to
demonstrate this property for the mapping (2), we
calculate a lower bound for the derivative ( f N)’ (x)
for a given s, the number N of iterations being fixed.
Let us first consider L successive iterates of a point x.
As previously defined by (3), L presents the number of
iterations required to drift from x, to XB. A lower
bound of (f 1)’ (x), is obtained for a trajectory which
spends as much time as possible in the interval [xA, xj
where f’(x) is smaller than 1. Hence,

Moreover at the end of a laminar period, at least two
iterations are required to send back the image of x
into the interval [xA, XB] and

Besides, if p is any integer smaller than L + 2 and if I is
the number of iterations necessary to drift from xA
to xi, the following inequality holds since f ’(x)  1 in

IXA, XI].

Now let N be any integer. We can write

and the derivative (fN)’ (x) has for a lower bound :

Is 4( f L)’ (XA) greater than 1 ? Its exact expression is
easily deduced from (2) :

Let ÇB be the preimage of XB that belongs to [0, 1/2]

and the quantity 4(f 1)’ (XA) is larger than unity if
0  bxo  2/3. Therefore the mapping defined by (2)
is expanding for- 0  g  xo if we choose b and xo
such that

Indeed setting

and

as soon as N &#x3E; L + 2 the derivative (f)’(x) satisfies
the inequality :

Here, the constant c  1 denotes the existence of the
domain [xA, xj where f’(x) is less than 1. The exis-
tence of such a region could at first view jeopardize
the expanding character of the map. In fact it turns
out that the domain where f’(x) is greater than 1

prevails for this model, as is shown by the value of
A &#x3E; 1. For N large enough the derivative ( f N)’ (x)
is everywhere larger than 1. As a consequence every
periodic orbit of the mapping is unstable. Thus the
behaviour of the associated dynamical system is

unpredictible in the long term as soon as the threshold
g = 0 is crossed.
An estimation of the amount of turbulence in the

asymptotic regime, is given by the exponents y.,.
From the definition (4), then

In the limit where e --+ 0,, the maximum duration

of a laminar phase, L, diverges as L = 7r - , and
Eb

L + 2 &#x3E; n . On the other hand, the derivative

fL’(XA) remains finite if 8 -+ 0+. In a first approxima-
tionfL’(XA) does not depend on e -+ 0 +, and

Therefore we get a lower bound for yx which is of the
form

In order to describe from a statistical point of view,
the asymptotic behaviour of the system, for s &#x3E; 0, we
are now looking for an invariant probability density,
p(x), on phase space x E [0, 1]. Due to its expanding
character the mapping (2) possesses such an invariant
density, which varies continuously from point to

point [5]. Moreover, as shown in reference [5], the
measure, p(x) dx, endows the system with strong
statistical properties such as ergodicity and mixing.
Ergodicity enables us to calculate phase space averages
instead of time averages. The invariance of the
measure it(x) dx, under transformation f implies that
14x) dx = iXx) dx’ + M(x’) dx", where x’ and x"
are the preimage of x in [0, 1/2] and [1/2, 1] respecti-
vely.
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Hence J.l(x) satisfies

Here we do not solve exactly equation (5). But we are
going to look for an approximate expression of p(x)
in the limit where g - 0+. As the trajectory spends
most of the time near x = xo, whereas it only briefly
visits the region outside the channel [xA, XBI we expect
the density p(x) to present a sharp peak near xo and a
small value far from this point. Hence, for x near xo,
we drop the second term on the R.H.S. of (5), which
writes

An exact solution of (6) is a Lorentzian centred in
x = xo. Hence, we obtain

for x in the vicinity of xo.

On the other hand, as J1(x) is a continuous function of
x, we get

In fact, it can be demonstrated that the ratio of the

density values far from xo and near xo is of order 8 [6].
Then, if we normalize Jl(x) in such a way that the total
weight of the interval is 1, the constants A and B
are of order of unity. Hence near the intermittent
threshold, the probability density in phase space
is concentrated in a narrow region of width §
around xo. The peak value being of order IVFL
the total weight of this region is almost equal to 1. If 8
is decreased from positive to negative values, the inva-
riant measure continuously evolves from a Lorentzian
peak (E &#x3E; 0) to a 6-function (E  0). Of course, this
invariant probability density may be numerically
computed, by examining the distribution of the

successive iterates of a point in the course of a very
long run (Fig. 3), or by subtler means [7].
A consequence of the existence of the invariant

measure p(x) dx, is the ergodicity of the trajectories

Fig. 3. - The invariant probability density in the neigh-
bourhood of xo near the stochasticity threshold.

as soon as the intermittent threshold s = 0 is crossed.
Hence the exponents YoX’ previously introduced, do
not depend on x, y., = y. The exponent y is nothing
else than the so-called characteristic exponent which
measures the average rate of divergence for neighbour-
ing trajectories. In agreement with previous conjec-
tures (4), we can check that y continuously depends on c
and is of order., if £ - 0 + ,

Hence type I intermittency appears as an abrupt
transition between two very different asymptotic
regimes, namely periodic and turbulent. However
the quantities which measure the amount of stochasti-
city smoothly vary with the control parameter e,
thus yielding a certain continuous character for such a
transition. In principle from the knowledge of the
invariant measure, we can determine the properties of
the correlation function.
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