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Flow birefringence at the sol-gel transition
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Physique de la Matière Condensée (*), College de France,
11, place Marcelin-Berthelot, 75231 Paris Cedex 05, France

(Reçu le 6 juillet 1981, révisé le 30 octobre, accepté le 23 novembre 1981 )

Résumé. 2014 On discute les informations que pourrait fournir une experience de birefringence d’écoulement à la
transition sol-gel en phase sol. Deux effets sont en competition, la rotation des amas et la déformation élastique
des amas. En régime stationnaire ce sont les effets de rotation qui dominent A faible gradient de vitesse S on prévoit
un angle d’extinction x tel que 03C0/4 - x diverge avec un exposant de l’ordre de 3,4 c’est-à-dire un effet très impor-
tant. Au voisinage de la transition, la birefringence 0394n a la même divergence que la viscosité macroscopique. 

Abstract 2014 The information provided by a flow birefringence experiment at the sol-gel transition in the sol phase
is discussed There are two competing effects : cluster rotations, and cluster elastic deformation. In a steady state,
rotational effects turn out to be dominant. For small velocity gradients S we predict an extinction angle x such that
03C0/4 - x diverges with an exponent roughly equal to 3.4 i.e. a very strong effect In the vicinity of the transition,
the birefringence 0394n has the same divergence as the macroscopic viscosity.
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1. Introduction. - The singularities of various
mechanical properties at the sol-gel transition are now
quite well understood in the vicinity of the transition.
In the sol phase, the macroscopic viscosity I diverges :
I - s -’(where s measures the distance to the critical
threshold). The critical exponents is experimentally
of order 0.7 to 1 [1, 2]. On the other hand in the gel
phase the elastic modulus scales like T - eta In certain
radical polymerization experiments the exponent t
has been measured t  1.9 [3], in a polycondensation t
has been shown to be approximately 3 [4]. On the
theoretical side it may be possible to relate the gel
elasticity problem to the conductivity of random
resistor networks [5] and the viscosity to the conduc-
tivity of superconducting grains [2].

Here, we discuss another kind of experiment which
seems to provide useful information : the dielectric
tensor anisotropy D,,,, induced by a velocity gradient
SaP. In a simple shear flow vx = Sy one essentially
measures the extinction angle x and the difference An
between the ordinary and extraordinary indices. For
small shears these two quantities are related to the
dielectric tensor Dqo by

In a macromolecular solution such as the sol phase,
there are two different contributions to the birefrin-

gence :
- a local contribution proportional to the pola-

rizability anisotropy of the individual monomer

(Xjj p 
- tX 1.’ 
- a shape contribution which exists even for

isotrdpic monomers due to double scattering in the
anisotropic macromolecules and thus proportional
to the square of the monomer polarizability a2

For linear flexible chains the shape contribution is
usually negligible and the local contribution is always
dominant

There is however an important difference between
a dilute linear solution and a sol just below the gelation
point In a dilute linear solution the characteristic
relaxation times of the first mode of deformation of
the individual chains and of the rotation of a chain on
itself turn out to be nearly identical and one does not
have to distinguish between the two effects. In our
sol phase these two times are actually different; one
has to study separately the influence of the rotation
and of the chain deformation on the local contribution
to the flow birefringence.

In order to have a better understanding of the
relative importance of these two effects, we study in
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the next section the flow birefringence induced by a
simple shear on a solution of quenched or frozen
Gaussian chains where only rotation effects are pre-
sent. We can then generalize the result to a dilute
solution of frozen randomly branched trees which we
consider as closer to the gelation clusters. In section 3,
we use these results to make reasonable conjectures for
the flow birefringence at the sol-gel transition. In
conclusion we qualitatively discuss the cross-over of
these properties of the sol phase to the one of the gel
phase where the presence of an infinite cluster prevents
any rotation.

2. Flow birefringence for a solution of frozen chains.
- 2 .1 FROZEN OR QUENCHED CHAINS. - We consider
a linear chain of N monomers. A monomer i is repre-
sented by a bead big. The angles between consecutive
vectors bi and bi+ 1 are fixed but random (Fig. 1).

Fig. 1. - Frozen cnains.

The only allowed motions for the chain is an overall
translation and a rotation around its centre of mass.
Such a rotation can be characterized by the 3 Euler
angles : the precession t/J, the polar angle 0 and the
azimuthal angle 0 (Fig. 2).

After a rotation R(o, 0, 4» each bead of the chain is
characterized by a vector ai so that ai = R(OOO) bi or
denoting by Greek subscripts the cartesian coordinates
in a fixed frame (ijk)

Fig. 2. - Euler angles.

Such frozen chains might be physically realizable.
One can for instance imagine linear chains with big
side groups; in certain conditions, at least at short
times these side groups could quench the configu-
ration of the chain [6].

2.2 EQUATIONS OF MOTION OF THE CHAIN IN A ROUSE
APPROXIMATION. - We now consider the motion of
our frozen chain in a simple shear flow v(r) = (Sy, 0, 0).
The centre of mass of the chain is assumed to be at
the origin, the position of monomer i is given by a
vector ri. The force on monomer i is, neglecting all
the hydrodynamic interactions

In a steady state the total torque on the chain vanishes

We just consider here over all rotations l§gi, 0, 4» of
the chain. Each of these rotations is associated to a
rotation vector co

such that for every monomer

Introducing (4) in (3) one gets an implicit relation
giving w as a function of gi, 0 and 0 :

For simplicity we have introduced here the radius of
gyration

the quadrupolar tensor Q, 
.

and a vector

In the following, we are interested only in small
velocity gradients S and chains very close to a spherical
shape (the other configuration will have a negligible
weight when averaging over the angles between
consecutive beads). In a first approximation we can
then replace ( RG - Q) by its average value for an
ideal gaussian chain. This tensor becomes diagonal
and equal to 3 RG leading to
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In this formula QyZ and Qyy are functions of the
Euler angles.

. 

The next step amounts to writing a continuity
equation for the probability f(tf, 0, ql) that the chain
has rotated of (gi, 0, 0). For a small time interval dt we
can call dX the vector w dt. The probability current
associated with the rotation is w.f There is also a
diffusion current given by (Dro, Lf) where we call L
the operator d/dx. The continuity equation in a steady
state reads then :

The first term is the convection term driven by the
velocity gradient. The second term is a diffusion term;
in a first approximation we can use for Drot the average
rotational diffusion constant of an ideal chain.
For zero velocity gradient S the probability fo is

constant, we show in appendix B that up to first order
in S, bf = f - fo is given by 

One can express Qxy as a function of the vectors ai

2. 3 FLOW BIREFRINGENCE FOR A DILUTE SOLUTION
OF FROZEN CHAIN. - Up to first order in the velocity
gradient, the dielectric tensor D is given by

ajj ~ and al are respectively the polarizability of the
monomers parallel and perpendicular to their sym-
metry axis.
The averaging denoted by the brackets consists

first in an averaging over the Euler angles and then in
an averaging over all the frozen configurations of the
chain i.e. over all the orientations of the vectors bi.

Inserting the value (8) of bf we get

The 0 subscript means that the averaging over the
angles has to be done with the zeroth order distribution
function fo which means that the Euler angles tf84&#x3E;
are now randomly distributed.
For random distribution of the Euler angles and of

the frozen vectors b¡ the orientation of,the vectors ai
is also random and thus :

The only non vanishing components of the dielectric
tensor is then D,,y

The most interesting feature is that apart from
numerical constants the flow birefringence for a dilute
solution of frozen linear chains behaves exactly the
same way as the flow birefringence of a dilute solution
of ideal flexible chains [7]. This result was not a priori
obvious : for instance the N dependence of the di-
electric tensor of a rod like macromolecule is not

correctly given by (12), ( 17-18).
In the frame work of a mean field theory of branch-

ing (Zimm, Stockmayer) and in the Rouse limit one
can also calculate the flow birefringence for a dilute
solution of frozen randomly branched polymers. The
calculation is exactly similar to that of linear chains
and the flow birefringence is also given by equation (12).
(The diffusion constant Drot being of course different
for a linear and a branched macromolecule of same
molecular weights.) The reason is that both for linear
and branched molecules the relative orientation of
different beads is completely random. Of course the
summation over the different monomers in equa-
tion (11) is different but in both cases it gives the mean
square radius of gyration leading to identical results.

3. Flow birefringence at the sol-gel transition. -
We now come back to a sol phase close to the sol-gel
transition. We assume that in the vicinity of the gel
point the sol phase is well described by a percolation
model [9]. We focus on a given cluster of p monomers.
This cluster has two characteristic relaxation times.

i) A time T(P) characteristic of the rotation of the
cluster.

ii) The first relaxation time of the deformation
modes of the cluster T( .
Any individual cluster looks roughly like an

ellipsoid and its characteristic rotation time is given
by a Zimm formula.

rp is the longest axis of the cluster and 11 p is the viscosity
« seen by the cluster » i.e. the viscosity for a pertur-
bation of size rp. The structure of this viscosity has
been studied by De Gennes [2] with 3 basic assump-
tions.

1) For clusters of very small size the effective
viscosity qi is equal to the solvent viscosity qo.

2) For large clusters of size ç (the correlation length)
the viscosity becomes equal to the macroscopic
viscosity -q.

3) The viscosity is written as a scaling law
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One is then lead to

ç == as -v being the correlation length .

The first deformation relaxation time is given by a
Maxwell-type relationship

Ep being the elastic modulus of a cluster of size p which
can be derived by scaling arguments

insuring that Ep is e independent in the critical region.
E being the elastic modulus of the gel phase at the
same distance of the gel point.
A comparison between the two times for the larger

clusters (,. = Ç). gives .

We shall assume in what follows that 3 v &#x3E; t (this
agrees with certain data [3, 5] but not all). With this
assumption, equation (16) shows that rotations are
slower; the individual clusters behave as stiff objects
and the flow birefringence is actually dominated by
rotational effects.
The local contribution of the flow birefringence

might then be calculated by assuming for the dielectric
tensor a structure similar to that of quenched linear
chains.

np is the density of clusters of p monomers and of size
rp [9] (it plays the role of c/N in equation (12)). This
quantity is normalized so that the total monomeric
density is c i.e.

This leads to

LO = qo a3/kT being a microscopic rotation time.
The slope of the local birefringence as a function of
velocity gradient thus diverges with an exponent
approximately equal to 0.8 to 1.

In order to determine the extinction angle x one
would have to calculate the dielectric tensor of a
dilute solution of frozen chain up to second order,
it would give a scaling law for Dxx or Dyy

With the same conjectures as for q the extinction
angle given by (1) is

The divergence here is very strong (with an expo-
nent equal to 3.4-3.6) and experimentally one should
be able to measure such a big effect.
One now has to look at the shape birefringence [10].

On the average the clusters of p monomers have a
spherical shape but if we look at a given cluster of
the solution, it looks rather like an ellipsoid of long
axis rp and excentricity e - 1 (we make here a conjec-
ture of self similarity of the clusters and assume thus
an excentricity independent of the polymerization
index p).

For a dilute solution of ellipsoids of concentration
C/N and long axis R, each of them containing N
diffusive centres of polarizability a, we show in the

appendix that the shape birefringence is

e being the eccentricity and Trot the rotation time of
the ellipsoid
Assuming such a law for the gelation clusters and

summing over all the cluster sizes would lead to a

divergence being a

critical exponent characteristic of the molecular weight
of clusters of size ç [9] (a = 0.4 in 3 dimensions).
However, this double diffusion process is much

dependent on concentration. At very low concen-
trations the second diffusion is done by a monomer of
the same cluster and the birefringence is correctly
given by (20). When the concentration increases, the
second diffusion can be done by a monomer of another
cluster, the distribution of these other clusters around
a given cluster will compensate somehow the ani-
sotropy of the cluster and the shape birefringence is
much smaller than that given by (20). In the limit of a
melt (no solvent) the concentration is uniform all over
the sample and this shape effect disappears. At the
sol-gel transition, the solution is just at its overlapp
concentration and the shape birefringence has to be
strongly reduced (1).

4. Discussion. - When the polymer system is con-
centrated, we expect the rotational part of the local
birefringence to be the dominant

(1) As pointed out by a referee this conjecture should be
true only in the vicinity of the gel point. Above the gel point
the eccentricity of very large cluster should be zero.
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If the birefringence An shows a rather small diver-

gence (s = 0.8) the divergence of 7r x is very strong
(s + 3 v = 3.4) and one should be able to see it

experimentally.
It is interesting to compare the value of the bire-

fringence An to the shear stress (Jxy = iS. We predict
a ratio (Jxy/Dxy independent of E. This ratio often
called stress optical coefficient (S.O.C.) is well known
to be both molecular mass and velocity gradient
independent for solutions of linear chains in a very
large velocity gradient domain and even in concen-
trated solutions. Our stress optical theorem is here
more restricted, it is true only in the limit of small
velocity gradients (S -+ 0). This means however that
in this regime the dominant contribution to the stress
is due to rotations and not to the elastic properties
of the clusters. De Gennes has proposed a parallel
between the viscosity of a sol phase at the sol-gel
transition and the conductivity of percolating super-
conducting grains. For this percolation problem
dissipation occurs mainly in the normal fluid which
would correspond here to the rotational effect we are
talking about.

It is also interesting to discuss the cross-over pro-
perties between the sol and the gel phases. In the gel
phase we expect any measure to be sensitive to the
properties of the infinite cluster which does not have
any rotational effects. Considering now experiments in
an oscillatory velocity gradient of pulsation w. In the
sol phase we distinguish three regimes in a (cv, s)
plane (Fig. 3).

Fig. 3. - Cross-over from the gel phase properties to the
sol phase properties.

For small co, coTrot  1 the oscillatory effects are
not important and we expect the static results to hold.

For intermediate pulsations wTrot &#x3E; 1, wTe ,,  1
we expect the elastic effects to be dominant with
small rotation contributions coming from the small
clusters (clusters of size p so that wT,.,(p)  1).
The mechanical properties of the gel phase are expected
to be determined by the mechanical properties of the
infinite cluster.
For large co we expect the birefringence to behave

as a decaying power of co the only contributing clusters

being those clusters for which WTel(P)  1 leading to
a birefringence

According to a conjecture by Straaley t + s = 3 v [12].
This would lead to a birefringence independent both
on o,) and e.
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Appendix A

Quenched chain in two-dimensional flow birefrin-

gence (cf. [16]). - Before going to the rather compli-
cated problem of three-dimensional quenched chain
it might be more pedagogical to study the flow bire-
fringence of a two-dimensional frozen chain in a

simple shear flow v,, = Sy. The overall rotation of
the chain is characterized by a single angle a and the
configuration of the frozen chain by the set of angles
i that each frozen vector bi makes with the x axis.
After a rotation of angle a the vectors ai make thus
an angle a + t/1 with the x axis.
The rotation vector cu = aa/at can be calculated as

in equation (6), we find

The continuity equation (7) is very simple in two
dimensions

At zeroth order in S, f is a constant fo.
Up to first order 6f = f - fo is such that

6f has to be a periodic function of the angle a.

The integration constant has to be chosen equal to

Fig. 4. - Frozen chain in 2 dimensions.
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The only non vanishing term of the dielectric tensor
is then

In order to take the average we just have to weight
each configuration by bf sum over a and average over
all the VI values

integrating by parts :

Summation over a then averaging over the Oi gives

This has the same structure as the three-dimensional
result proposed in equation (12).

Appendix B

Solution of the continuity equation (7). - 1) OPERA-
TOR L. - The components of the operator L can be

expressed as functions of §0 and 0

The operator J T L/i verifies the usual commuta-
tion rules for the kinetic momentum operator in

quantum mechanics.

erlp), is the completely antisymmetric tensor. The

operators j2 commute with

the eigenvalues of which are integral numbers.
One can then find a set of eigenfunctions of the three

operators j 2, Jz and Jz with the respective eigenvalues
l(l + 1), m and p II, m, p &#x3E; I being an integer such that
m /,/?/ (Cohen-Tannoudji, Chapter 9).
For m = 0 one can check directly that

YiP being a spherical harmonic. The other eigenfunc-
tions can be got by successive action of J = Jx ± fjy.

2) ACTION OF L ON QIXO. - We first study the
action of a component Ly of L on an element of the
rotation matrix R’(qi, 0, 4». For a small variation otf,
a0, 04&#x3E; of the angles :

6R is a small rotation and can thus be written as a
cross product

6x being the rotation vector 6x = w dt we thus get :

Which means that

Using (1) and (9) one is lead to

3) SOLUTION OF EQUATION (7). - Application of
(B. 3) gives

One can then check that Q.,y is an eigenfunction of L2
for 1 = 2 leading to

Appendix C

Shape birefringence for a dilute solution of ellipsoids.
- We generalize here a problem studied in Landau
and Lifshitz, Electrodynamique des milieux continus,
p. 69.
For a dielectric ellipsoid in an electric field Eext’

due to external charges, the field inside the ellipsoid
Eint is
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e being the dielectric constant and n the demagnetizing
tensor of the ellipsoid.
For p ellipsoids one can calculate the average value

of the electric excitation

V being the volume of the sample.
In all the medium outside the ellipsoids D = so E

and there is no contribution to the integraL Inserting
(C .1) in the integral (C. 2)

W being the volume fraction occupied by the ellipsoids.
For revolution ellipsoids

n1 and n2 being the principal demagnetizing factors
and u a unitary vector in the direction of the long axis.

For small ’6 1 , the off diagonal part of eij isEO 

Averaging over the orientation of u brings in a factor
STrot [15] for bs,,Y. If every ellipsoid contains N diffu-
sive centres of polarizability a, the radius of gyration
of an ellipsoid being R, we obtain

where C is the concentration of diffusive centres.

References

[1] ADAM, M., DELSANTI, M., OKASHA, R., HILD, G.,
J. Physique Lett. 40 (1979) L-539.

[2] DE GENNES, P. G., C.R. Hebd. Séan. Acad. Sci. Paris
B 286 (1978) 131.

[3] GAUTHIER-MANUEL, B., GUYON, E., J. Physique Lett.
41 (1980) L-503.

[4] ADAM, M., to be published.
[5] DE GENNES, P. G., J. Physique Lett. 40 (1979) L-199.
[6] See for instance : DE GENNES, P. G., Scaling concepts

in polymer Physics, p. 24. An example of such
polymers could be the polyparadimethylphenyle-
neoxyde : C. NOËL, private communication.

[7] BIRD, H., HASSAGER, ARMSTRONG, R., Dynamics of
polymeric liquids (Wiley and Sons, New York)
1974.

[8] ZIMM, B., STOCKMAYER, W., J. Chem. Phys. 17 (1949)
1301.

[9] A good review of the percolation theory can be found
in : STAUFFER, D., Phys. Rep. 54 (1979) 1.

[10] DAOUDI, S., J. Physique 38 (1980) 1301.
[11] JANESCHITZ KRIEGL, M., Rheology Principles, Marucci

G. and Nicolais L., editors, p. 83.
[12] STRALEY, J. P., J. Phys. C 13 (1980) 819.
[13] COHEN TANNOUDJI, C., DIU, B., LALOË, F., Mecanique

quantique (Dunod, Paris) 1976.

[14] LANDAU, L., LIFSHITZ, E., Electrodynamique des milieux
continus (édition Mir, Moscou).

[15] TANFORD, C., Physical Chemistry of Macromolecules
(Wiley, New York) 1961 and references therein.

[16] PETERLIN, A. et STUART, H. A., Z. Phys. 112 (1939) 1,
129.


