
HAL Id: jpa-00209303
https://hal.science/jpa-00209303

Submitted on 4 Feb 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The role of the Pauli principle in metastability exchange
collisions

M. Pinard, F. Laloë

To cite this version:
M. Pinard, F. Laloë. The role of the Pauli principle in metastability exchange collisions. Journal de
Physique, 1980, 41 (8), pp.799-818. �10.1051/jphys:01980004108079900�. �jpa-00209303�

https://hal.science/jpa-00209303
https://hal.archives-ouvertes.fr


799

The role of the Pauli principle in metastability exchange collisions

M. Pinard and F. Laloë

Laboratoire de Spectroscopie Hertzienne de l’E.N.S. (*), 24, rue Lhomond, F 75231 Paris, France
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Résumé. 2014 Dans les expériences de pompage optique, les collisions d’échange de métastabilité peuvent servir à
transférer de l’orientation, alignement, etc... entre divers niveaux atomiques. Cet article est consacré à l’étude
de telles collisions et de la façon dont elles agissent sur l’opérateur densité décrivant les variables internes des
atomes. Le calcul présenté est valable pour des noyaux discernables ou identiques, ce qui rend possible une dis-
cussion détaillée des effets d’indiscernabilité des noyaux (champ magnétique fictif, etc...). Deux cas sont étudiés :
collisions sans dépolarisation (collisions He*-He), collisions avec dépolarisation partielle (Ne*-Ne par exemple).
Les effets d’indiscernabilité nucléaire devraient être observables dans des expériences de pompage optique avec
des gaz rares à basse température.
Dans un appendice est discuté un autre effet d’indiscernabilité des particules qui peut être observé par des expé-
riences de jets atomiques : au cours de la collision entre deux atomes 3He, tous deux dans le niveau fondamental,
l’état de spin des atomes diffusés dans une direction particulière peut être changé par un effet d’indiscernabilité
des noyaux.

Abstract. 2014 In optical pumping experiments, metastability exchange collisions are used to transfer orientation,
alignment, ... between different atomic levels. This article studies the effect of such collisions on the atom internal
variables density operator by a method used in a previous publication for spin exchange collisions. The calculations
are valid when the nuclei of the two atoms are distinguishable as well as when they are identical particles, which
allows a detailed discussion of nuclear identity effects (apparent magnetic field, etc...). Two cases are successively
studied : no depolarization of the electronic angular momentum (He*-He collisions) and partial depolarization
(Ne*-Ne collisions for example). The nuclear identity effects should be observable in low temperature optical
pumping experiments with noble gases.
In an Appendix, another particle identity effect is studied, which can be observed in atomic beam experiments :
during the collision of two 3He atoms, both in the ground state, the spin state of the atoms scattered in a particular
direction can be changed by nuclear indistinguishability effects.
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1. Introduction. - The role of the Pauli principle
in spin exchange collisions has been discussed in a
previous article [1]. In order to emphasize the effects
arising from the particle indistinguishability, all

particles were first supposed to be distinguishable,
and the Pauli principle was only introduced in a
second step. The same method will be used here, but
for metastability exchange collisions.

The importance of this type of collision in optical
pumping experiments is well known [2]. In" helium

experiments for example, direct nuclear polarization
of the ground state of 3 He cannot be achieved by using
the optical resonance line for various reasons (this
line belongs to the vacuum U.V. part of the spectrum ;

(*) Laboratoire Associé au Centre National de la Recherche
Scientifique.

the hyperfine structure of the 2 1P state of ’He is too
small to create a nuclear orientation during the
radiative lifetime). An indirect optical pumping
method can nevertheless be used, as shown by
F. D. Colegrove, L. D. Schearer and G. K. Walters [3].
The method consists in using the Â = 1 .08 p line of
helium (2 3S-2 3P transition) to create optically both
electronic and nuclear orientations of the 2 3S1
metastable state (which has a hyperfine structure of
approximately 6 GHz, much larger than its lifetime).
The nuclear polarization is then transferred to the

ground state of 3He by so called metastability exchange
collisions between the 2 3S, and ground state atoms.
The corresponding evolution of the internal variable

(I and J) density operator in both states has been
studied by R. B. Partridge and G. W. Sefies [4].
These authors evaluate coherence transfer effects in
3He optical pumping experiments, without including
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nuclear identity effects. One of the important physical
ideas used is that the nuclear and electronic parts of
newly formed metastable atoms are entirely uncor-

related. When the two nuclei can be labelled, it is
indeed clear that, after exchange, the metastable atom
contains the nucleus which was, before collision,
associated with a ground state electronic cloud.
On the other hand, when the two nuclei are identical
particles, it becomes impossible to tell which one

corresponds to a metastable or ground state atom,
so that a more careful examination seems to be

necessary. One of the aims of the present article is to
study precisely to what extent identical particle effects
modify the equations obtained for the internal
variable evolution. Actually, we shall find that in

many practical situations (room temperature expe-
riments, low nuclear polarization), the decorrelation
between electronic and nuclear spins, introduced in
[4], is the only important effect of metastability
exchange. This justifies the use of equations of refe-
rence [4] as a starting point for subsequent calculations
of the optical pumping process in 3He [5]. Neverthe-
less, we shall also find that it is possible to design
experiments where nuclear identity effects (fictitious
magnetic fields) are not negligible, or maybe even
dominant under appropriate conditions.

There are in the literature other references concern-

ing the effect of metastability exchange collisions in
helium optical pumping. A general paper on meta-
stable excitation transfer by H. J. Kolker and H. H.
Michels [6] includes a discussion of nuclear identity
effects, but without introducing density operators
for the internal atomic variables 1 and J. These authors
show why nuclear identity can rigorously be ignored
as far as only populations (longitudinal observables)
are of importance in the experiment. This is an

interesting result since, for example, it implies that
the maximum nuclear orientation obtained by optical
pumping does not depend on nuclear identity effects.
In section 2.2.2 of this article, we shall discuss this
point in detail and show how these effects nevertheless
do affect the evolution of the density matrix cohe-
rences (which is essential in magnetic resonance

experiments). Another related reference is a paper by
S. D. Rosner and F. M. Pipkin [7] which gives the
uncorrelated part (the part obtained in [4] for distin-
guishable nuclei) of the density operator and also
includes nuclear identity effects. The method we use
here is different (we wish to calculate one-atom density
operators for example) and some of the results we
shall obtain do not coincide with those of reference [7].

Helium is not the only noble gas which can be
nuclearly polarized by indirect optical pumping
through a metastable state. For example, experiments
with 2lNe [8, 9, 10] can be performed. In such a case,
the electronic angular momentum in the 3P2 meta-
stable state is no longer a pure spin momentum and
some depolarization can occur during the collision.
The present article gives a generalization of the

metastability exchange calculations to the general
case where the electronic internal variables can be
affected by the collision. Since the fact that one of the
atoms is metastable does not enter explicitly in the
calculation, it can be considered as a general study of
the effects of nuclear identity on depolarizing col-
lisions. In many experiments, these collisions occur
with the same probability in all directions and the
rotational invariance introduces an important simpli-
fication : the collision can be described in terms of
electronic coefficients y(1) (orientation destruction
constant), y(2) (alignment destruction), even in the

presence of a nuclear spin which is not affected by
the collision [2, 11, 12, 13]. We shall see how this
formalism must be adapted to take into account

energy transfer and nuclear identity effects.
Another particle identity effect, which cannot be

observed by optical pumping techniques, is briefly
discussed in an Appendix. This effect can be observed
in atomic beam experiments where a particular
scattering direction is observed, and occurs during
the interaction of two 3He atoms, which are both
in the ground state. It is related to the subject of this
article as far as it is a modification of the atom internal
variables arising from the Pauli principle. We shall
see that the density operator, describing the internal
spin variables of the atoms scattered inside a given
solid angle, is affected by particle identity effects.
In particular, interference effects occur in the forward
direction and change the spin state of the transmitted
beam, when the spins of the target and incident beam
are not parallel (or antiparallel). This effect is remi-
niscent of the Faraday effect where the polarization
of a light beam is rotated in an anisotropic medium.
At low collision energies, we shall see that changes
in the spin due to nuclear identity become the most
significant.

2. Metastability exchange in hélium. - Let us first
consider a specific case of metastability exchange colli-
sions between two helium atoms, one in the meta-
stable 2 3S1 state, the other in the ground state 1 iSo.
As mentioned in the introduction, one important
feature of these collisions is that practically no depo-
larization occurs, due to the fact that all angular
momenta involved are spins, which are practically not
affected in a collision (Wigner rule). In this sense,
the situation is exactly similar to spin exchange
studied in [1]. The major difference is that the electronic
clouds of the two atoms are now different : one atom
is in an excited electronic level, with angular momen-
tum J = S = 1, the other in the ground state with no
angular momentum (J = L = S = 0). The two atoms
therefore no longer play a symmetric role in the

process under study.
Throughout the present article, the fact that one

of the atoms is metastable does not appear explicitly.
The calculations are valid for any collision between
two atoms in different electronic states, provided
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that the collision is elastic and no J depolarization
occurs (3 3S1-1 1So energy exchange collisions for

example). During the collision, the internal variables
(orientation, alignment) of the atoms evolve and
we wish to study the consequences of the identity of
the two atom nuclei on this evolution. We shall see
that this identity results in interference effects which
are similar to those obtained in the case of spin
exchange collisions [1]. 

2. 1 DISTINGUISHABLE NUCLEI. - As a first step,
let us assume that the nuclei of the two atoms are

distinguishable. For example, they correspond to two
different isotopes.

2. 1. 1 Notation. - The ket

refers to a state of the atom motion in the centre of

mass frame, one ground state atom having a linear
momentum hk and one excited (metastable) atom
having a linear momentum - hk. We assume that
the ground state has no internal electronic angular
momentum, and denote by J the electronic momen-
tum of the excited state (J = 1 in the case of the
2 3S1 1 state). Oz is a fixed reference axis, M is the

quantum number associated with the eigenvalue of
Jz. Since the two nuclei may also possess non zero
spins, the quantum numbers ml and m1 will be used
to describe them. A complete description of the two
atom system is then given (in the centre of mass

reference frame) by the ket :

Another state accessible to the system, with exactly
the same energy (1), is :

We now have to write the S matrix elements between such states. Since we assume that no spin modification
occurs during the collision, these matrix elements do not depend either on M or on mj. We first have direct
processes :

(in this equation, the numbers 1 and 2 can be interchanged both in the bra and the ket). Also resonant transfer
processes correspond to the matrix elements :

2.1.2 Density operator after collision. - The initial density operator of the system is (we use the same
notation as in [1]) :

In this equality, pg(1) and pm(2, e) are the internai variable density operators associated respectively with
the ground state and excited (metastable) state before collision. After collision, we have to calculate four different
density operators : the nucleus 1 spin variable density operator pg(l) when this nucleus is associated with a
ground state density operator, and the similar operator pg(2) for nucleus 2; also two density operators pm(1, e)
and pm(2, e) describing metastable internai variables with either nucleus 1 or nucleus 2. We obtain for the two
ground state density operators :

and :

1 ’ ) If the two atoms belong to two different isotopes, we ignore any difference between the excitation energies of the two metastable
levels (nuclear mass or volume effect, etc...). This assumption is not essential and is made only for the sake of simplicity. As in the study
of spin exchange collisions, we also neglect any effect of the hyperfine coupling during the metastability exchange process. At very low
collision energies (low temperature experiments) both these approximations would no longer be valid.
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For the metastable state density operators, the result is :

For Pm(2, e), an analogous expression is obtained by simply interchanging the numbers 1 and 2 in (4).
Using (1), (2), (3) and (4), one then obtains :

that is :

with :

Similarly, if we set :

we obtain :

or :

[TrJ denotes the trace operation over the electronic angular momentum variables]. As for the two excited state
density operators, they can be obtained by analogous calculations. One finds :

or :

Finally, pm(2, e) is given by :

Before discussing the physical interpretation of these
results, it can be remarked that :

so that Ad will be replaced by 1 - At in all subsequent
calculations. The proof of (14) is quite analogous to
the proof of (12) in [1] and exploits the unitary cha-
racter of the operator S. Relation (14) insures that :

2.1. 3 Physical interpretation. - The interpretation
of (6) is straightforward : since 1 is not affected at
all by the collision, the density operator of nucleus 1

after collision is merely proportional to its value before
collision. The proportionality coefficient is nothing
but the probability that no electronic energy transfer
will occur during the collision. Equation (10) shows
that, if such an energy transfer actually occurs, the
density matrix of atom 2 in the ground electronic state
is the partial trace over electron spin variables of the
initial excited state density matrix. Again, this is

easily understood in terms of complete inertia of 1
during the collision.

Equations (12) and (13) can be commented on in
the same fashion. The latter shows that direct processes
do not alter the excited state density operator. The
former’indicates that, just after a transfer collision, the



803

internai density operator of the excited state is nothing
but the tensor product of the initial ground state
(nuclear) density operator by the trace over nuclear
spin variables of the initial excited state density opera-
tor (this trace is an electronic spin operator).

Let us now assume that the nuclear spins of atoms 1
and 2 have the same value, and that nothing in the
experiment considered allows to differentiate species 1
from species 2. We then define the total ground state
density operator by :

and the excited state density operator by :

One then easily sees that each metastability exchange
collisions changes :

and :

If we consider an ensemble of ground state and
metastable state atoms, with number densities ng
and nm respectively, the internai variable density
operator pg and pm evolution due to collisions is :

and :

where :

These equations are exactly equivalent to equations
(5.a) and (5.b) of Partridge and Series [4].

2.2 INDISTINGUISHABLE NUCLEI. - We now con-

sider collisions between atoms of the same isotope
having indistinguishable nuclei. If Pn is the exchange
operator between these nuclei, the initial density
operator of the 2 atoms is given by :

We assume here that the nuclei are fermions but, to
treat the case when they are bosons, it is sufficient to
replace 1 - Pn by 1 + Pn.

2.2.1 Internal density operator after collision. -

Let us calculate for example the excited state internal
variable density operator Pm after collision. This
calculation is very similar to the one of section 2.2
of reference [1]. The analogue of equation (19) of
this reference is now :

where 6;n;t is given by (2). As in the spin exchange
calculation, the two terms which contain either no Pn
or two such operators give the result already obtained
for distinguishable nuclei :

The two terms which contain one exchange operator
Pn are new, and they are equal to :

where :

and 1j is the identity operator in the electronic angular

momentum state space. CI is a pure imaginary coef-
ficient :

where AIexch is real. The proof is very similar to the
proof of (23) in reference [1] and one can show that :

which vanishes because the internal states e and g
are orthogonal.
Then, we obtain :
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As for the density operator of the ground state
after collision, pg, it can be obtained exactly by the
same method. A simple calculation shows that :

When the nuclei of the two colliding atoms are
identical, equation (16.a) and (16.b) must therefore
be replaced by :

and :

with :

(KI differs from the coefficient K of reference [7];
see Appendix).

2.2.2 Discussion. - The terms in KI appearing
in (24) and (25) are due to the Pauli antisymmetrization
principle. Both terms are commutators, and therefore
can be accounted for by the introduction of effective
hamiltonians inside the ground and excited states.

These hamiltonians act only on the nuclear spin
variables, which is not surprising since they result
from nuclear identity effects.

If we introduce the two partial traces :

it is possible to check on equations (22) and (23) that
the metastability exchange process changes the corre-
lations between 1 and J variables, but not their pro-
perties as isolated systems (the nuclear spin system
including both nuclei). The equality :

is practically obvious on (22) [the fictitious hamiltonian
does not act on the J variables]. In addition, since :

we see that the collision changes c-" + pg into :

As expected, the total nucleus density operator is

therefore unaffected, owing to the compensation of
the effects of the two effective nuclear hamiltonians.
One can also see that, when both pm and pg are close

to multiples of unity matrices (that is when orientation,
alignment, etc... are weak), the Pauli principle terms
can be neglected. This is because commutators are
of second order with respect to orientation, alignment,
etc... A similar result was obtained in the study of
spin exchange collisions [1]. In most optical pumping
experiments, where the pumping light is obtained from
a discharge lamp, only relatively weak nuclear pola-
rizations are obtained (  20 % in the case of ’He for
example), so that the apparent magnetic fields arising
from metastability exchange can be neglected in

practice. They should nevertheless be observable in
experiments with a high nuclear polarization (laser
optical pumping) and at low temperatures (at vanish-
ing collision energies, the coefficient x, oc A:xch beco-
mes much larger than At ; see Appendix).
A discussion in terms of interference between direct

and transfer processes can be given as in the case of
spin exchange. Here, only two diagrams can lead to
physically indistinguishable final states (cf. Fig. 1).

Fig. 1. - Two different scattering processes for labelled nuclei n,
and n2 are shown schematically in figures (a) and (b). Before and
after collision, one atom is in the ground state (g), the other in the
excited state (e). When the nuclei are distinguishable, these two
diagrams connect the same initial state to two orthogonal, physi-
cally différent, final states. For identical nuclei, the final states
become physically indistinguishable. Interference effects then

occur, giving rise to apparent magnetic fields acting on the nuclear
spins of the atoms.

If they are denoted by a and b respectively, 1 a 12
corresponds to the first term in the right hand side
of (24) and (25), / b /2 to the second (metastability
exchange) term, the interference term ab* + b* a to
the commutators (Pauli principle terms).

Let us now discuss in more detail the experimental
conditions under which the nuclear identity effects
are observable. We have already mentioned, in the
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introduction, the work of H. J. Kolker and H. H.
Michels [6]. These authors discuss nuclear symmetry
effects in general and state that these effects cancel
out in an optical pumping experiment for studying
metastability exchange, since only those collisions

resulting in a net change in the total population of a
magnetic substate are detected. Physically, when two
nuclei are in different spin states, they can in principle
always be distinguished by their spin (the collision
does not change spin directions), so that it is possible
to consider them as non-identical particles. Equa-
tions (24) and (25) allow us to perform a more detailed
discussion of this idea. We shall see that, if phenomena
like optical pumping orientation buildup (longitu-
dinal orientations) are indeed insensitive to nuclear
symmetry effects, others may depend on these effects
(for example the precession of transverse orientations,
not considered in [6]). We shall first discuss the 3He
ground state evolution, and then the metastable state.

(i) Ground state evolution.
In the case of ’He, the nuclear spin is I = 1/2 and

the 2 x 2 density matrices pg and Trj { Pm} are

entirely defined by the nuclear orientations 1 &#x3E;g
and 1 &#x3E;m inside the ground and metastable levels.
Equation (24) shows that the orientation ( 1 &#x3E;m acts
on  1 &#x3E;g like an apparent magnetic field proportional
to KI  1 &#x3E;m. Thus, if  1 &#x3E;g and  1 &#x3E;m are parallel
(or antiparallel), the Pauli principle term does not
affect the ground state evolution at all. On the other
hand, as shown for example in [5], the effectiveness of
metastability exchange collisions constantly tends to
equalize  1 &#x3E;m and 1 &#x3E;g, at least in room temperature
experiments where the metastability exchange cross
section is relatively large : with a helium pressure of
the order of 1 torr,  1 &#x3E;m follows 1 )g in a time
c-- 10 -’ s. Other causes of evolution in the
metastable state are the pumping process and wall
relaxation, with corresponding time constants rp and
,r, usually of the order of 10-3 or 10-4 s (we suppose
that the pumping source is a discharge lamp, not a
laser). Therefore, if there are no other causes for
evolution of the metastable orientations (the effect
of the evolution due to magnetic fields is discussed

below),  1 &#x3E;m and ( I &#x3E;g differ by only a few 10-3 in
relative value. In such a case, the Pauli principle term
in (24) is obviously completely negligible and the
effect of nuclear identity can be ignored, as stated
in [6].
Other situations can nevertheless be found where

the two nuclear orientations are not necessarily equal.
A first example is given by low temperature experi-
ments : the He metastability exchange cross section
drops very rapidly when the collision energy decreases
[14, 15] and, at a few degrees Kelvin,  I)m is no

longer very effectively coupled to ( 1 &#x3E;g. With a strong
optical pumping source, it should be possible to

maintain non parallel values for  1 &#x3E;m and ( 1 &#x3E;g.
Under these conditions, each orientation defines a

different quantization axis and it is no longer possible
to exclude nuclear identity effects by the reasoning
mentioned above (which was made in terms of popu-
lations only). Physically, two nuclei with non-anti-
parallel spins cannot be identified with certainty by
any spin measurement in quantum mechanics, and
nuclear identity effects may then occur.

Another way of obtaining non-parallel directions
for ( 1 B and ( 1 )m is to perform a magnetic resonance
experiment in the ground state. When rom tcoll » 1

(wm : Larmor precession frequency of the electron
spin in the magnetic field Bo), the coupling between
the transverse components of ( I &#x3E;g and the meta-
stable variables is completely non-secular, so that

( 1 )m remains practically parallel to Bo whatever the
direction of ( I &#x3E;g. A shift and a distortion of the
ground state magnetic resonance curve then results
from the term in xl. A more detailed discussion of a
similar phenomenon will be given below for the
resonance curves in the two hyperfine sublevels of the
metastable state (where the hyperfine structure allows
to perform more varied types of magnetic resonance
experiments).
The shift discussed here should not be confused

with another shift, proportional to At (instead of

AIexch) which arises from coupling of coherences of the
ground and metastable states when cm i 1 [16, 17].

(ii) Metastable state evolution.

Equation (25) shows that the ground state nuclear
orientation ( t )g acts on the metastable level like
an apparent magnetic field proportional to KI ( 1 ) g ,
only coupled with the metastable nuclear variables
(no direct coupling with J). The fact that two hyperfine
sublevels F = 1/2 and 3/2 occur in the metastable
states results in a little more complexity than for the
discussion of the ground state evolution.
The conceptually simplest case occurs when :

The 1 and J variables are then completely uncorrelated.
According to (25), no correlation is created by meta-
stability exchange collisions themselves (of course, the
strong hyperfine coupling inside the 2 3S 1 level tends
to correlate 1 and J, but for the sake of simplicity,
we first ignore this fact). The nuclear identity term is
then proportional to :

which is zero whenever pg and pm commute with each
other (that is when I &#x3E;g and I &#x3E;m are parallel).
The situation is the same as for the ground state

evolution : the Pauli principle terms subsist only
when I &#x3E;g and 1 )m define different quantization
axes. In other words, they subsist if pm has non-zero
coherences when pg is diagonal.

In the general case where 1 and J are correlated,
a convenient basis is given by the coupled F, MF &#x3E;
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states. In this case also, we shall see that nuclear

identity terms are related to the existence of cohe-
rences. The fictitious hamiltonian in xl 1 has two kinds
of matrix elements : elements coupling states belonging
to the same F = 3/2 or F = 1 /2 multiplicity (including
diagonal elements), and elements coupling the two
hyperfine multiplicities. Since the fictitious hamil-
tonian is much smaller than the hyperfine coupling,
we shall neglect the second kind of matrix elements
which have only a non-secular effect (coupling of
hyperfine coherences with populations or Zeeman

coherences; we assume here that the static magnetic
field is not strong enough to decouple the 2 ’S 1
hyperfine structure). The Wigner-Eckart theorem
can then be used to conclude that the apparent nuclear
field is proportional to F within each F multiplicity :

(p3/2 and Pi2 are the projectors onto the F = 3/2
and 1/2 multiplicities). The effect of the effective
hamiltonian is to introduce two opposite precessions
around ( 1 )g inside the two hyperfine sublevels (2).
When the static magnetic field Bo is not zero, these

precessions are additional to the Zeeman precessions
in these sublevels. Since the Landé factors are 93/2 =4/3
and 9 1/2 = 8/3, it is equivalent to say that two apparent
magnetic fields B3/2 and B1/2 are added to Bo (see
Fig. 2), with :

As long as 1 B{/2,3/2 1 Bo the components of
these fields normal to Bo can be neglected.

Let us assume that 1 )g is parallel to Bo which
defines the Oz axis. When the metastable density
matrix pm has no coherences between different
Zeeman or hyperfine sublevels, it is clear that B’1/2
and BI3/2 have no effect : they just slightly change the
energy level position, which does not affect the evo-
lution of the various populations. Such a case occurs,
for example, during the transient optical buildup
of the longitudinal polarization in the coupled ground
and metastable states. We see that nuclear identity
effects are then absent (if one excepts the non-secular
creation of hyperfine Am = 0 coherences from popu-
lations due to off-diagonal matrix elements of the
effective hamiltonian). On the other hand, if there are
Zeeman or hyperfine coherences in p., the apparent
fields B’ 2 and BI1/2 change the corresponding evo-
lution frequencies (figure 2 can be used to see the
modifications of the various Bohr frequencies). The

(2) Since J &#x3E; I, F and 1 are antiparallel inside the F = 1/2
sublevel (and of course parallel inside the F = 3/2 sublevel).

Fig. 2. - Energies of the Zeeman and hyperfine sublevels of an
3He atom in the metastable state, as a function of the static magnetic
field Bo. The zero-field hyperfine structure is about 6.7 GHz and no
hyperfine decoupling is supposed to occur. When the ground state of
the 3He atoms is nuclearly polarized, metastability exchange colli-
sions create fictitious magnetic fields BE/2 and BI3/2, which have
opposite signs for the F = 1/2 and F = 3/2 sublevels [we assume
in this figure that 1 &#x3E;g and Bo are parallel, and that x ( Iz &#x3E;g is

positive]. Figure 3 shows the resulting shift and distortion of the
magnetic résonance curves.

fictitious nuclear field may then have an important
effect on the metastable state evolution.

If, for example, a magnetic resonance experiment
in the F = 1/2 sublevel is performed, the apparent
field will clearly result in a change of the resonance
line position and shape. As discussed in reference [5],
the metastability exchange collisions produce an

effective coupling between the longitudinal orienta-
tions  Iz ) g,  Fz ) 1/2 and ( Fz &#x3E;3/2, but the coupling
between the transverse orientations can be neglected
(the only level with non-negligible transverse orienta-
tion is the F = 1/2 sublevel). The resonance can be
monitored by measuring any of the longitudinal
orientations,  Iz)g for example, and a convenient
way to do this is to detect the polarization of optical
lines emitted by the discharge in helium [18]. If  1 )g
were constant, BI1/2 would also be constant and the
fictitious field would simply shift the magnetic reso-
nance position for the F = 1/2 sublevel. This is

actually a good approximation if the radiofrequency
field is weak enough to produce small relative varia-
tions of the longitudinal orientations. A possible
experiment would then consist in doing magnetic
resonance with a weak radiofrequency field, and

comparing the resonance positipns for different values
and signs of the longitudinal orientations (which
can be produced by using différent pump intensities
or reversing the pump polarization). When the

radiofrequency is stronger and induces large relative
variations of  lz ), the shift of the resonance curve
depends on the value of ( Iz). The geometrical
construction of the new, non-Lorentzian, curve is
shown in figure 3.

Magnetic resonance experiments in the F = 3/2
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Fig. 3. - Geometrical construction of the magnetic resonance
curve inside the F = 1/2 hyperfine sublevel. ( lz ) g is the longitu-
dinal ground state orientation, Bo the static field (parallel to Oz),
BI/2 the apparent field acting in the F = 1/2 sublevel and arising
from nuclear exchange (an analogous construction is possible for the
F = 3/2 sublevel, but the apparent field has to be multiplied by
- 2). Since all levels are strongly coupled by metastability exchange,
the resonant variations of ( Iz &#x3E;g,  Fz &#x3E; 3/2 and ( F z ) 1/2 are simply
proportional. The apparent magnetic field BI 1/2 is proportional to
( Iz )g so that the resonance curve obtained (full line) is shifted and
distorted, as compared to the curve which would be obtained in the
absence of nuclear identity effects (broken line).

hyperfine sublevel can also be performed. This does
not necessary require the présence of an orientation,
since the creation of an alignment is then possible.
The resonance shift and distortion can then be

suppressed by using a linear pump polarization which
creates no ground state orientation.
Another type of experiment would be to detect

the resonance of the hyperfine coherences, with an
oscillating magnetic field at about 6.7 GHz, as in the
experiment performed by S. D. Rosner and F. M. Pip-

kin [19]. The frequency shifts of the various coherences
are directly visible in figure 2.
We see that there are various possibilities to detect

nuclear identity effects by magnetic resonance in the
metastable states (actually, even when  1 )m =  1 &#x3E;g,
some effects can be expected, in opposition to the
ground state resonance). To our knowledge, the pre-
dicted shifts and distortions of the curves have not

yet been observed.

Remarks :

(i) The preceding calculation can be applied to

metastability exchange collisions for 2 S o metastable
states. The situation is then even simpler since no
electronic spin is then involved. Equations (22) and
(23) become, in this case :

in which the ground and metastable states play a
perfectly symmetric role. The nuclear orientation of
each level acts as an apparent magnetic field for the
other (of course, the total nuclear orientation is
conserved whatever the directions of  I)g and

 1 &#x3E;m).
(ii) One can wonder whether any nuclear fictitious

magnetic field exists for two colliding ’He atoms both
in the ground electronic staté.

If, initially, the nuclear density operators of the
two atoms are pl and p2, a calculation similar to the

preceding ones gives :

Since S is an unitary operator, we obtain :

with :

But :

so that :

This shows that there is no nuclear identity term in -
this case. Nevertheless, the cancellation of the non-

linear exchange term in pl p2 and P2 Pi arises strictly
from the summation over kf. For each scattering
direction kf, nuclear identity effects do occur. Let us
consider a beam experiment where atoms with a
nuclear polarization ( 1 &#x3E;1 collide with target atoms
having a different nuclear polarization 1 &#x3E;2. The
nuclear orientation of the atoms scattered in a given
direction kf is not simply a weighted average of ( 1 &#x3E;1
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and  I &#x3E; 2’ but also comprises other terms including
a term in   I)1 x (I)2 which can be described by a
effective spin hamiltonian. The coefficient of this term
(and its sign) depends on the scattering direction.
This last effect averages out only if one takes the
summation over all possible final states (scattering
in all directions or no scattering at all). For example,
if only the spherical scattered wave is taken into
account (the plane transmitted wave being ignored),
nuclear identity effects change the internal variable
density operator. These effects are studied in more
detail in Appendix II of this article.

In the calculation of the diffusion coefficient in a
dilute atomic gas, the integral over kf generally
includes geometrical factors like 1 - cos 0 (linear
momentum transfer). All final states do not therefore
play the same role in this case. One might then expect

that the nuclear identity terms in pi P2 and P2 Pl
could then remain to some extent. In other words,
it seems possible that, in spin diffusion experiments
in ’He at low temperature, the evolution of nuclear
magnetization is modified by nuclear identity effects
related to the effective hamiltonian discussed in the

present article.

3. Metastability exchange with depolarization. -
Let us now study how the preceding equations must
be modified when the collision does not completely
conserve the electronic angular momentum J.

3.1 EVOLUTION OF THE DENSITY OPERATORS. -

Since the quantum number M can now be changed
during the collision, equations (1.a) and (1.b) have
to be replaced by :

(we still assume a complete inertia of the nuclear spin) and :

The density operator pm describing the internal variables of the metastable atom after collision is still given by
(18) when the two nuclei are identical. We now have to introduce the coefficients Ad(M, M’ ; M", M"’) and
At(M, M’ ; M", M"’) defined by :

The terms in (18) containing either no P. operator or two such operators can then be written :

The terms containing one Pn operator depend on the coefficients :

and, finally, we obtain :

The same kind of calculation gives the density operator of the atom in the ground state after collision :

where the operator E, acting on the nuclear variables is defined by :
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Equivalently, one can write :

with :

The operator KJ acts only on the J variables.
From definition (37) of Ad and Ao one obtains :

This relation and (39) imply that :

and we check that pm is an hermitian operator (the same can easily be done for pg).
From the unitary character of the S matrix, one can show that :

and :

Combining these equations with (39) and (40), we obtain :

We have used the fact that, since pg Q 1j is an operator
acting only in the 1 variable state :

Equation (45.b) is actually equivalent to :

or :

Thus, if we set :

the last term in the right hand side of (40) takes the
form :

(HI plays the role of an effective hamiltonian arising
from nuclear identity.) Using this last result, (40) and
(45. a), it is easy to check that :

Until now, we have not made use of rotational
invariance. If the Oz quantization axis is parallel to

the initial collision axis [defined by u(k)], cylindrical
symmetry around Oz imposes that :

and similar equalities for At and E, : only coherences
associated with the same value of the difference
M - M’ are then coupled by the collision.

In most optical pumping experiments, collisions
occur in all directions of space and a full rotational
invariance is obtained. The values of A d,t and CI
must then be averaged over all possible initial relative
velocities of the atoms, and it is convenient to expand
the density operators on a basis formed by irreducible
tensor operators [20]. One then obtains, for any
choice of the Oz quantization axis [13, 2] :
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Equation (43) is then equivalent to imposing the

reality of all coefficients otk d @, (but the fl§’s may be
complex). Replacing the number (- 1)M-M" by :

in equations (51) and using the sum rule for the
Clebsch-Gordan coefficients, one can show that :

(the latter equation implies that Kj is proportional to
unity).
The two unitarity relations (45) then give :

Relations (51) also imply that :

as well as similar equalities for the Ei.
When all coefficients ag are equal to ao, all coef-

ficients e, equal to oc, 0 and all coefficients fl§ equal to
Pl (which is pure imaginary), it is then easy to see on
(51.a) and (51.b) that the coefficients Ad,t and CI
are different from zero only if M = M", M’ = M"’,
and independent of M and M’. This corresponds to
the case studied in the preceding section (helium
metastability exchange).

3.2 DlscussloN. - We shall first study the evo-
lution of the ground state density operator, then the
evolution of the metastable state. One notices that (40)
has a simpler structure than (39) : for example, for
the ground state evolution, only coefficients A and
CI with M = M’ play a role, and they are always
summed over M.

(i) Ground state evolution.
The evolution of pg is, according to (40), due to

the sum of three contributions : a direct term (Pg)d’
a transfer term ( pg)t, and a term (Pg)I which can be
described by an effective hamiltonian HI defined by
(41) and (48).

Direct term. - The structure of (Pg)d is very simple :
it is the product of pg, the unmodified ground state
density operator before collision, by an electronic
coefficient :

This coefficient is nothing but the probability that no
excitation transfer will occur during a collision
between a metastable atom with I = 0 (even isotope),
having an internal density operator Tr, { Pm}, and
a ground state atom, when nuclear identity effects
are ignored (the second atom may be a different

’ isotope for example). Since the collision hamiltonian
does not act on the 1 variables, this is a physically
satisfying result [when rotational invariance is satis-
fied, this non-transfer probability is merely ad as can
be shown from (53)].

Transfer term. - The term (PgB has a structure a
little more complicated than ( pg)d. If one uses the
rotation invariance equality (53 . a), one can rewrite
this term in the form :

which corresponds to what we obtained in section 2 :
after metastability exchange, the ground state density
operator is merely the 1 variable density operator of
the metastable atom before collision. Another case
where an analogous result is obtained occurs when
1 and J are initially uncorrelated :

Then :

In this case, the density operator is simply pIn multi-
plied by a coefficient similar to (56), which gives the
probability that an excitation transfer will occur for
an even isotope with internai density operator pm
(when nuclear identity effects are ignored).

Nevertheless, in the general case where 1 and J are
correlated and no spherical average over the initial
velocities can be taken (collision between atomic
beams for example), equation (40) shows that the
situation is more complex : ( pg)t cannot be expressed
as a function of Trj { pm }. This result may seem very
surprising at first sight. The physical explanation is
that the transfer probability for an even isotope
depends in general on the initial quantum number M.
If 1 and J are correlated, the final state of 1 after

exchange may be different from the initial one. When,
for example, the + &#x3E; state of 1 is correlated with a
value of M having a strong excitation transfer pro-
bability, the - &#x3E; state with a M value with a low
transfer probability, the final state of 1 is more likely
to be + ) even if, initially, 1 is unpolarized.
Nuclear identity term. - The remaining terms in

(40), which are expressed in (49) as functions of HI,
are a specific consequence of the nuclear identity.
They actually have the properties already discussed
in section 2 for a collision without action on the J
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variables. For example, if the metastable state density
operator p. is proportional to identity (no orientation,
etc...), we obtain from (41.a) :

which shows that HI can only shift the energy of all
ground state sublevels by the same amount. The
effect of HI can then be ignored as far as the evolution
of pg is concerned.
When p. is given by (57), that is when the 1 and J

variables are uncorrelated, the fictitious hamiltonian
is proportional to pm. This is also true, even when I
and J are correlated, if rotational invariance can be

used, since equation (53 . b) gives the simple result :

[where the coefficient (iP7)is real according to (54.b)].
This result exactly coincides with what we obtained
’in section 2. It shows that the effective hamiltonian
in the ground state, due to nuclear identity, does not
dépend at all on the depolarization, de-alignment,
’etc..., properties of the electronic collisions [as far
as these collisions occur in all directions with the same

probability and only one J electronic level is involved].
We shall see below that the situation is less simple
for the metastable state evolution.

In the general case where 1 and J are correlated and
no rofàtional invariance is satisfied, equation (41)
shows how the nuclear effective hamiltonian HI = iEj
depends on the whole density matrix p,,,,and not only
on p.,. 

(ii) Metastable state evolution.
The right hand side of (39) is the sum of three

contributions : a direct term (Pm) d depending on the
coefficients Ad, a transfer term( Pm)t depending on
the At’s and a term (pm)I_arising from nuclear identity
which is function of the CI coefficients.

Direct term. - The first term describes the effect
of collisions in the excited states when all transfer

processes are ignored. This term is obtained in the

study of low energy collisions between atoms having
different electronic levels [transfer processes are then
negligible]. If rotation invariance is satisfied, it is
convenient to write pm in the form [12, 13] :

One can then show that (pm)d is obtained from p. by
replacing all the p((1 by :

This classical result expresses that 1 is not affected by
the collision. It is also possible to evaluate the two
partial density operators :

Equation (39) shows that (pm)d has exactly the same
form as for an even isotope (I= 0). This again
expresses the fact that the collision only acts on the
electronic variables. To evaluate (P!n)d, the rotational
invariance equation (53.a) can be used and gives :

which is physically satisfying for the same reason.
Nevertheless, when the collisions do not occur with

the same probability in all directions, this result is no
longer true. Although the expression for (pm)d is
still completely independent of nuclear variables, no
simple expression like (64) can be found for (pm)a in
general. The physical reason is the same as for the
term (Pg discussed above : when 1 and J are correlated
and when the probability for a direct process depends
on the direction of J, after such a process, the state
of 1 can be modified. To confirm this interpretation,
one can easily check that, when equation (57) is

satisfied, that is when 1 and J are uncorrelated, a result
similar to (64) is recovered (even in the absence of
rotational invariance) :

Also, it is physically clear that the total density ope-
rator of the nuclear spin of atom 2 (we assume here
that the nuclei are distinguishable) cannot be modified

. if one includes all possible final states. This can also
be checked on equations (39) and (40) since the

unitarity relationship (45.a) implies that :

Transfer term. - The term (pm)t has a simpler
structure than (pm)d and can be written as a tensor
product :
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with :
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Thus, after a transfer process, 1 and J are completely
uncorrelated, and the density operator (’P:n)t describing
the state of the J variables is the same as for an even

isotope with I = 0 (when nuclear identity effects are
ignored).

Nuclear identity terms. - The most interesting
terms in the right hand side of (39) are probably
the nuclear identity terms in E, and Ci. It can be first
checked that, when 1 and J are uncorrelated, that is
when pm is given by (57), these terms take the form :

where the purely electronic operator Qm is defined by :

The presence of the products [p., pg] and [pg pIm]
implies that the nuclear identity term vanishes each
time the two nuclear spins are in two orthogonal spin
states (particles distinguishable by their spin direc-
tions). For an even isotope, (68. a) becomes :

When I 0, the operator written in (68. a) is not the
tensor product of xch by a nuclear operator,
except if pm and pg commute with each other. Since
initially 1 and J were supposed to be completely
uncorrelated, and the collision hamiltonian acts only
on J, it may seem very surprising that some correlation
between 1 and J has been introduced in the atom which
is metastable after collision. The physical explanation
is that the initial directions of the two nuclear spins
determine the way the two electronic processes (direct
and transfer) interfere in the final state. Of course,
this correlation does not change the trace of the

density matrix, since (45. b) implies that : 9

It is also interesting to study how the two partial
traces pm and pi are affected by the nuclear identity
terms, still supposing no initial correlation between 1
and J variables. Equation (68.a) gives, for the 1

density operator, a contribution :

with :

Equation (45. b) shows that (exch is pure imaginary, so
that (71) reduces to a commutator [pm, pg]. On the
other hand, the J variable density operator contains
a contribution :

The J variables are thus affected and this clearly
shows that, in general, nuclear identity effects cannot
be described by an effective hamiltonian acting only
on ’the nuclear spin.

If rotational invariance is satisfied, we can simplify
the previous results. Equations (51.6) and (68. b) show
that Qm is simply obtained from pl by multiplying
each of the k, q tensor components of this operator
by fi,. If, in addition, all coefficients P’ are equal
(as in helium metastability exchange), we have :

[(iflt) is real ; cf. (54.b)] and (68a) becomes equal to :

We know from section 2 that, when the collision does
not affect the J variables, this result remains valid
even if pm is not a tensor product of p’ and pi and
rotational invariance is not satisfied.

Let us finally study the general case where 1 and J
are correlated. It is then convenient to rewrite the
terms in CI and Ci of equation (39) in a different
form. If we introduce the real coefficients XI and Y, :

and set :

the terms in CI and CÎ become :
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For an even isotope with I = 0, only the first term,
proportional to XÎ + iYi-, remains in this equation.
This remains true for an odd isotope when the ground
state has no orientation, alignment, etc.... The term
in X j + iY¡+ can actually be neglected each time
these observables have low values in both ground and
metastable states [they are of second order]. This is
very reminiscent of metastability exchange collisions
without electronic depolarization. In the same way,
it is easy to check that the term in Xi- + i YÎ changes
the 1 variable density operator after collision, but does
not change the J variable density operator.
When rotational invariance is satisfied, equa-

tion (51. b) implies that :

If, in addition, the collision does not act on the J
variables, all coefficients fl§ are equal to fl) which is
pure imaginary, so that :

In this case, only the last term in (77) subsists, and we
find again the results of section 2.

Rotational invariance equation (51. b) can also be
directly used with (39) to show that the nuclear

exchange terms can be obtained by replacing in

expansion (61) of Pm each operator :

by :

The comparison with equation (61) for example
shows that nuclear identity terms give a more complex
(non-linear) structure to the final density operator
Pm’ even when rotational invariance is included.

4. Conclusion. - There are practical situations
where nuclear identity effects do not strongly modify
the properties of metastability exchange collisions,
which are relevant in optical pumping experiments.
This fully justifies the fact that, to our knowledge,

they have never been included in the interpretation of
experimental data with the 2 3S1 optical pumping for
example. Nevertheless, we believe that the conside-
rations given in this article show that nuclear identity
effects can become important, in particular in low

temperature experiments. The realization of a c.w.
tunable laser at À = 1.08 g should allow obtaining
high nuclear polarization to be induced, enabling
identity effects to be observed. In the presence of
electronic depolarization due to the collisions, some
results remain unchanged (ground state effective
hamiltonian for example). On the other hand, the way
nuclear orientations in the ground state affect the
evolution of the electronic density operator pm,
through nuclear identity is not obvious and requires
some care in its evaluation.
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APPENDIX 1 

Phase shift calculation of the coefficients At and

AIexch.. - This appendix is the analogue of the Appen-
dix to reference [1], but applied to the case of meta-
stability exchange collisions instead of spin exchange.
We consider here two (fictitious) particles having all
properties of the nuclei of the colliding atoms, but spin
and indistinguishability. The spins of the electrons are
also ignored. The reasoning is actually almost iden-
tical to the one in [1], and we can define states of the
internal electronic variables by :

For such electronic states and for fixed positions of
the nuclei, the atomic potential curves are well defined
[ Vg and Vu]. Many calculations of these potentials
can be found in the literature (refs. [6], [15], [21-27]).
Let us set :

and :

If bg and bu denote the phase shifts respectively associated with Vg and Vu, one can write :

(the notation is the same as in [1]).
Now, using (B .2) and (B. 3) with definitions (1. a) and (1. b), one obtains :
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Therefore :

From (8) and (19), we then obtain :

and :

In this expression, the factor (- 1)l arises from the fact that a nuclear identity interference term is involved
(this factor has already been discussed for formula (A. 8) of the appendix of [ 1 ]).

Let us now take the function u(k) given in (A. .11 ) [Appendix of the preceding article]. We then obtain :

and :

We can therefore write :

and [cf. (26)] :

{ note that no (- 1)l appears in the coefficient x of
reference [7]}. Here also, as in the case of spin
exchange, one sees that Omctexch remains finite when
ko --+ 0 (low energy limit), but that KI diverges.
Nuclear identity terms should therefore become
dominant in very low temperature optical pumping
experiments with ’He or 3He-’He mixtures [28] (for
example, the shift of the magnetic resonance line
discussed in section 2.2.2 should exceed the width
of this line due to metastability exchange).

APPENDIX II

In this Appendix II, we study in more detail how
particle identity effects change the nuclear spin state
of two colliding ’He atoms, both in the ground state.
We have seen that no such effect can be observed in
optical pumping experiments where an integral is
taken over all initial and final velocities of the atoms.
Nevertheless, in atomic beam experiments, it is

possible to study the atoms scattered in a particular
direction. We shall then come back to equation (34),
but without summing over all possible final scattering

directions kf. This will lead us to distinguish between
the spherical scattered wave and the transmitted wave,
which depends on interference effects in the forward
direction. At low collision energies, we shall see that
the latter phenomenon is dominant and can be des-
cribed by a effective nuclear spin hamiltonian.

Âlthough the scattering cross section (defined in terms
of the external atomic variables) tends in general to a
finite limit at vanishing collision energies, the cross
section associated with the effective hamiltonian

diverges.
Let us call S2f the domain in the kf space which

corresponds to the observed particles. We shall also
, 
denote as - Qf the opposite domain obtained by
reversing all kf values. Only an angular selection (no
energy selection) of the particles is defined by Qf, and
we call Dr and - Dr the corresponding domains for the
angular variables of the vector kf. Equation (34)
is then replaced by (3) :

(3) We assume here that the atoms studied are fermions. For
bosons, a plus sign would replace the minus sign which stands in
front of the terms in C and C* in equation (C.1).
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with the notation :

The terms in A and Ê have a simple physical interpreta-
tion. For distinguishable atoms, A gives the probability
for observing a scattering event where an atom,
initially described by the wave packet u(k;), ends up
with a linear momentum kf inside the domain Qf.
The coefficient Ê gives the same probability, but for
the atom which was initially described in the centre of

mass frame by the wave packet u( - kj. The coefficient
C describes interference effects due to particle indistin-
guishability, and can be written :

where X and f are real. The two last terms in the right
hand side of (C. 1) then become :

The equations obtained are valid for any value of the
nuclear spin. For spin 1 /2 nuclei, we have :

(i, j = 1, 2 ; a is the operator with Pauli matrices as
components) with :

Then :

For spin 1/2 particles, the term in X changes the trace
of P(Qf) by an amount proportional to 1 + P1.P2.
Since Pl. P 2 &#x3E; - 1, this term decreases or increases
the trace of P(Qf), respectively when X is positive or
negative. In other words, the number of spins scattered
in a given direction depends on particle identity
effects, as is well known in collision theory (for
example, if Pi = P2, and Pl = P2 = 1, no particle
is scattered in a direction kf perpendicular to k;).

The term in Y gives a commutator, that is an effec-
tive nuclear spin hamiltonian acting on I1 and I2. We
have already discussed such effects in detail in the case
of metastability exchange. Also, a general discussion
of how the spin states modulate interference effects
can be given from (C. 4) [see § 2.2.2 of reference [1] ]
for a similar discussion].

Phase shift calculation. - Using the phase shift

method, we can write :

and obtain :

[the expression of Â(Qf) is simply obtained by sup-
pressing the sign factor ( - 1)l in the summation]. If
the domain Qf is extended to all directions (4 n ste-
radians), the integration over d’kf in (C. 8) gives
ôii, bmm-, so that the sum over 1 and m introduces a delta
function  ki - k &#x3E; peaked at opposite directions of
ki and ki. Since we assume that the product

u(k¡) u(- ki) is always zero, we find again that

C(4 n) = C = 0, as already obtained in § 2.2.2. But,
if Slf is a smaller domain, this cancellation does not
occur in general.

Also, if all the phase shifts ôi vanish, we expect that
C(Qf) = 0. This can be checked on (C. 8) because the
sum over 1 and m then gives a delta function
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 ki - kf &#x3E; peaked at ki = - kf, and the sum

over l’and m’ a delta function ( ki  kf &#x3E; peaked at

ki = + kf, so that the integration over ki and ki
gives zero.

In order to separate effects which occur in the sphe-
rical scattered wave from effects concerning the
transmitted wave, we set :

with :

All coefficients Â, B, C then appear as the sum of
4 terms, one bilinear in So, one bilinear in S, and two
crossed interference terms. The term bilinear in S
concerns the spherical scattered wave, and the three
others the transmitted wave.

Since we are interested here in particle identity
effects, we shall only study the four contributions to
C. Then, the first term, bilinear in So, actually vanishes,
as can easily be shown by replacing in (C. 2 . c) both S
functions by So. We then have :

with :

The number C3 (Qf) is simply obtained by replacing in (C.2.c) S by S. We note that

Particle identity effects in the spherical scattered wave. - If the domain Dr is chosen so that u(kf) and u(- kf)
are always zero inside this domain, the atoms which are studied are only scattered atoms. The numbers Cl
and C2 are then zero according to equations (C. 12), and therefore C = C3 in this case. Expression (C. 10) can be
used to evaluate C3 and one obtains :

Here, the presence of two convergence factors [e"61 - 1] and [e 2‘ t’ - 1] puts an upper limit on the values of 1
and l’ which significantly contribute to the sum [this was not the case in (C. 8)]. We can now use the wave packet
u(k) given in (A .11) in the appendix of reference [1] and take the limit e --+ 0, L ---&#x3E; oo, without convergence
problems. We then obtain :

The real part and imaginary part of (C. .14) give the anticommutator and effective hamiltonian terms in the spin
density operator evolution.

One can also assume that the observation domain Qf is extended to 4 n steradians. The integration over
d’kf in (C. 13) then gives bll’ bmm, and C3 takes on the value :

or :

C3(4 n) is therefore a real coefficient in this case [the effective hamiltonian term then disappears in (C. 4)].
Since the summation over 1 corresponds to an alternating series, C3 is likely to have larger values at low energies,
when only a few phase shifts have significant values.
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A cross section for change of the spin state of the scattered atoms can be defined by [see Ref. [1], equation
(A.19)] :

At low collision energies, only 1 = 0 contributes to this sum, and when ko --+ 0, fi3 tends to a finite value (4).

Particle identity effects in the transmitted wave. - If Dr is a very small angular domain, formula (C .14)
shows that C3 can be neglected. On the other hand, if Slf contains all kf values where u(kf) is not zero, the coeffi-
cient CI can be obtained by extending in (C. .12 . a) the integral over kf to all space. Nevertheless, if we assume
that u(kf) is always zero inside the domain - Qf, formula (C .12 . b) shows that C2 vanishes. The coefficient C is
then given by :

If u(ki) is given by formula (A. .11) of reference [1], we
obtain :

C (forward) =

Since :

C has in this case a real and an imaginary part, giving
rise to a commutator and an anticommutator in (C. 4)

Here also, é is given by an altemating series and is
likely to have negligible values at high energies, when
many values of 1 have an important phase shift. At
lower energies, when C is not negligible, the particle
identity effects change the spin density operator of the
forward scattered atoms (transmitted beam) accord-
ing to (C. 4) and (C .18).
We can define two quantities :

The latter for example could be called a cross section
for nuclear spin rotation (5) and describes nuclear
identity effects in the transmitted beam. At vanishing
collision energies, fil tends to a finite value, but fit

(4) Similarly, equation (C.14) allows one to study low energy
scattering in a particular direction. This equation shows that,
when ko - 0, the real part of C3(Qf) tends to a finite value, but the
imaginary part (effective hamiltonian) to zero.

(5) Since we do not study scattered particles here but changes of
the spin state of the transmitted particles, this is an extension of the
usual definition for a cross section.

diverges. The situation is reminiscent of the divergence
Of K and K’ discussed in the Appendix of reference [1].

Remarks :

(i) If Dr is changed into - Dr, Cl vanishes but C2
does not. It is actually simple to show that C2 is given
by the complex conjugate of expressions (C. 17) and
(C.18).
Changing Dr into - âf amounts to studying the

atoms in the target after interaction, instead of the
particles in the transmitted beam. We see that this
operation reverses the sign of the effective hamiltonian
(proportional to CI) acting on the nuclear spins. This
is physically satisfying since the total spin momentum
of the atoms is conserved during the interaction.
On the other hand, the anticommutators terms in

(C.4) remain the same.
If now the domain Qf is extended to 4 n steradians

in equations (C. 12), CI and C2 both differ from zero
and are complex conjugate. It is then easy to show
from (C .15 . b), (C.18) and (C.19) that, in this case :

The nuclear identity effects therefore disappear if all
atoms (scattered, transmitted, target) are taken into
account. This was predictable since no real nuclear
spin hamiltonian exists in the process which has been
studied.

(ii) The divergence of d’ is related to the phase of
the wave scattered in the forward direction. The

scattering amplitude is given by :

When the collision energy vanishes, the real part of
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fk(8) tends to a finite value but its imaginary part is
first order in ko. Then, according to the optical theorem

remains finite if ko - 0, but this is true only because

0’tot does not depend on the real part of the forward
scattering amplitude, which is much larger than the
imaginary part at low energies. On the other hand, the
modification of the spin states due to particle identity
depends on this real part, which is why particle
identity effects then become dominant.
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