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The role of the Pauli principle in spin exchange collisions

M. Pinard and F. Laloë

Laboratoire de Spectroscopie Hertzienne de l’E.N.S. (*), 24, rue Lhomond, F 75231 Paris, France

(Reçu le 20 novembre 1979, accepté le 14 avril 1980)

Résumé. 2014 Nous discutons le rôle des collisions d’échange de spin sur les variables atomiques internes (orienta-
tion, alignement, etc.) en insistant sur le rôle précis du principe de Pauli. Le calcul s’applique à des particules
discernables ou à des particules identiques, sans prendre comme point de départ un hamiltonien effectif d’inter-
action d’échange. On évalue l’opérateur densité d’un atome après collision sous une forme opératorielle qui facilite
la discussion de divers phénomènes physiques. Le premier terme qui apparait dans l’évolution de l’opérateur
densité est un terme de transfert qui existe, que les particules soient discernables ou identiques. Les termes suivants
sont des conséquences spécifiques du principe d’antisymétrisation de Pauli, appliqué aux electrons et aux noyaux.
Ces termes peuvent être décrits au moyen de champs magnétiques (ou gradients électriques) fictifs électroniques ou
nucléaires. De plus, on obtient des termes dont l’origine est l’échange combiné des électrons et des noyaux, en
particulier l’échange global d’atomes (qui sont des bosons dans le cas de l’hydrogène). Les équations d’évolution
des opérateurs densité sont appliquées à quelques cas particuliers : découplage hyperfin nul ou total, résonances
Zeeman ou hyperfines,...

Abstract. 2014 The effect of spin exchange collisions on the internal variables (orientation, alignment, etc.) of
colliding atoms is discussed, with particular emphasis on the role played by the Pauli principle. The calculation
presented is valid for distinguishable or identical particles, and the initial introduction of an effective exchange
hamiltonian for the spins is avoided. The one-atom density matrix of the internal variables is calculated after
collision, in an operatorial form which enables the discussion of various physical effects. The first term in the density
matrix evolution is a transfer term which does not originate from particle indistinguishability. The following terms
are indeed introduced by the Pauli antisymmetrization principle applied to electrons and nuclei, and they can be
described as electronic or nuclear apparent magnetic field (or electric gradient). In addition, terms arising from the
combined exchange of electrons and nuclei are obtained, in particular from the exchange of identical whole atoms
(bosons in the case of hydrogen). The evolution equations for the density operators are applied to a few particular
cases in order to evaluate spin exchange effects in various situations : weak or strong hyperfine decoupling, Zeeman
or hyperfine resonances, etc...
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1. Introduction. - The importance of exchange
collisions in atomic physics is well known. Spin
exchange collisions have been used in many optical
pumping experiments in order to transfer spin pola-
rization from one atomic species to a different one,
when direct optical orientation of the latter was not
feasible [1, 2]. Spin exchange collisions also strongly
affect the hydrogen maser operation, since they
broaden and shift the hyperfine transition of the
atoms [3, 4]. This phenomenon also occurs with the
rubidium maser [5, 6]. Spin exchange processes affect
the intensity of absorption or emission of the 21 cm

(*) Laboratoire âssocié au Centre National de la Recherche

Scientifique.

hydrogen line in radioastronomy, and this pheno-
menon stimulated some of the first calculations on the

subject [7].
It is clear that the Pauli principle (or symmetrization

principle if bosons are involved) plays an important
role in the evaluation of the effect of spin exchange
collisions. Most quantum mechanics textbooks discuss
the effect of particle identity on collision phenomena,
but the’ emphasis is generally put on how symmetry
interference effects modify the spatial distribution
of the scattered particles. In optical pumping expe-
riments, what is really important is the evolution of-
the internai atomic variables (orientation, alignment,
etc...). Usually, an average is taken over all atomic

velocities, before and after the collision. The aim of
this article is precisely to focus interest on the evo-
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lution of the density matrix describing the internai
atomic variables, and to discuss carefully the effects
of particle identity (electrons or nuclei).

There are already several articles in the literature
dealing with spin exchange collisions (see for example
references [7-13] or the references given in [1, 2]).
The point of view generally adopted is that, since the
two electrons are identical particles, the spin singlet
state (S = 0) must correspond to a bonding potential
curve for the transient H-H molecule, and their spin
triplet state (S = 1) to an antibonding potential curve.
This correlation between the spin states of the electrons
and their orbital binding energy can be accounted
for by using a phenomenological exchange hamiltonian
acting on the spins. Since we precisely wish to study the
effect of particle identity on spin exchange processes,
we adopt a different approach. First, we ignore the
electron indistinguishability and perform a complete
calculation of the evolution of the internal variables.
In the second stage, we take into account identity
effects for electrons and nuclei, and discuss the new
terms which appear in the equations. Another differ-
rence between the calculation presented here and

previous literature arises from the way the equations
are written. For example, in an important article,
L. C. Balling, R. J. Hanson and F. M. Pipkin [9]
discuss spin exchange collisions in hydrogen and
explicitely calculate the internal variable density
matrix for a system of two atoms. Since hydrogen
atoms possess 4 Zeeman and hyperfine sublevels in the
ground state, 16 x 16 density matrices are needed
(see also [11]). In the case of deuterium atoms,
36 x 36 matrices would appear. Here we shall
rather calculate the evolution of the one-atom density
matrix (4 x 4 matrix for hydrogen) in the general
case, and keep an operatorial formulation which is
not limited to a particular state basis (coupled or
decoupled basis for example : the same equations
are valid in a zero magnetic field or in a high field
producing complete hyperfine decoupling). Our

approach simplifies the discussion of the physical
meaning of the various terms obtained. For example,
the electron identity term emerges directly as an

apparent magnetic field term proportional to the
electronic spin polarization. We shall particularly
insist on the effects of nuclear indistinguishability,
which are not discussed in detail in the literature (and
sometimes simply ignored). These effects introduce
additional terms in the equation of evolution of the
density operators. One of them is similar to the
electron indistinguishability term and introduces a
nuclear apparent magnetic field, another term accounts
for the fact that atoms as a whole are identical particles
(bosons in the case of hydrogen atoms), etc...
The organization of this paper is the following.

In section 2, the one-atom density matrix calculation
is given, first for distinguishable particles, then for
identical electrons and finally for identical electrons
and identical protons. At each step, a physical dis-

cussion of the various terms obtained is given. In

section 3, the equations are applied to a few cases of
interest (calculation of the spin exchange shift in
various circumstances). Phase shift calculations, which
can be completely avoided as long as no numerical
calculation of the cross sections is needed, are recalled
in an appendix. This article is intended to be self
contained and accessible to a reader not already
familiar with the literature on the subject.

2. Calculation of the one-atom density operator. -
In this section, we study the effect of a collision
between two hydrogen atoms on their internal
variables. These variables are related to the existence
of a non-zero electronic and nuclear spin for each
atom. We first ignore the fact that both electrons and
both nuclei (protons for H, deutons for D) are identical
particles, and perform a calculation of the density
matrix where each electron and each proton is labelled
by a number, 1 or 2. Later we introduce the identity
effects of the electrons in order to see how the equations
are modified. Finally, the same process is repeated to
account for the nucleus identity effects.
No particular hypothesis is necessary concerning

the value of the spin of each particle. The nuclear
spin of the colliding atoms may be 1/2 (hydrogen),
1 (deuterium), etc... The calculation is actually valid
for any alkali atom, although in this case each atom
possesses several core electrons in addition to the
extemal valence electron. Since the electronic core
forms a complete shell (zero angular momentum), it

actually plays no essential role in this problem. For the
same reason, the calculation remains unchanged for
collisions between identical ions having one valence
electron (or hole). In principle, the electron spin could
also have any value in the following discussion

(although this value must of course be the same for
both atoms), but this generalization is rather academic;
even for exotic hydrogenic systems, the particle
playing the role of the electron is generally a spin 1/2
(or spin 0) particle.

2.1 DISTINGUISHABLE PARTICLES. - 2.1.1 Nota-

tion. - Let us consider two atoms, the first one
formed by electron ei and nucleus ni, the second one
by electron e2 and nucleus n2. Both atoms are in the
ground state, and el : qJn¡ &#x3E; (i = 1, 2) is the ket in the
extemal variable state space of electron 1 when it is

bound to nucleus ni; e2 : qJn &#x3E; (i = 1, 2) is the same
state for electron e2. Both electrons also have spin
variables, and 1 el : Ms &#x3E; is, in the spin state space
of el, the eigenstate of the projection Si,, of its spin Si
on an arbitrary quantization axis Oz (Ms = ± 1/2
for an electron). The spin states of e2 are noted in a
similar way. In addition to these electronic degrees
of freedom, the system under study also possesses
nuclear variables. The nuclear spin variables kets
can be written ni 2 : MI &#x3E; where mIn is the eigen-
value of Ilz or I2z, projection of the nuclear spin Il
ovni or 12 of n2 on the Oz axis.
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Finally, extemal nuclear variables have to be
included. Throughout the present article, we shall

study collision effects in the centre of mass reference
frame of the two atoms. In this frame, the external
state of the two atoms is written 1 nt : k ; n2 : - ka
where hk is the linear momentum of the n 1 atom,
- hk the linear momentum of the n2 atom.
No correlation is supposed to exist initially between

the extemal and internai variables of each of the two
atoms approaching the collision. In the same way,
no initial correlation is assumed between the internai

(spin) variables of the two atoms (this is an excellent
approximation in low density gases). Under these

conditions, the density operator of the whole system
before collision can be written :

In this expression, u(ki) is a complex wave function associated with a wave packet in the space of the two
atom relative particle (spanned by the kets 1 n 1 : k; n2 : - k ). We assume that u(ki) is normalized :

Since we want to include the possibility of any type of correlation between the internal variables of ei
and ni on one hand, e2 and n2 on the other, we have introduced the two density operators pi(ei,ni)
and P2(e2, n2) (’). These operators describe the initial internai variable state of the two atoms and, in general,
are not a product of an electronic by a nuclear spin variable density matrix (they act in the state space spanned
by the kets el : Ms &#x3E; (8) 1 nt : mI &#x3E; and e2 : Ms ) 0 ! I n2 : ml &#x3E; respectively). In the particular case of two
hydrogen atoms (1 /2 electronic and nuclear spins), pl and P2 correspond to 4 x 4 matrices.

We assume that pi and P2 are normalized so that :

2.1.2 Evolution operator. - We denote by S the unitary operator which describes the evolution between
time - t (long before the atoms interact) and + t (long after the collision). Since the collision time ’te is very
short (typically Te 10-12 s) and the main interaction between atoms is electrostatic, it is possible to neglect
completely the spin evolution during the collision. This implies that the various magnetic fields (external fields,
hyperfine coupling, relativistic effects during the collision) acting on the spins are not too strong (2). Such a condi-
tion is generally well fulfilled in most laboratory experiments (3). Neglecting the effects of collisions on spins is an
approximation which is very commonly used in atomic collision studies. When electronic spins are involved,
it is often referred to as the Wigner rule. In the case of nuclear spins, the approximation is generally even better,
and has been introduced by P. L. Bender in his thesis [14] (the nuclear spin inertia in a collision has sometimes
been called a spin Franck-Condon effect [15] or also nuclear flywheel effect).

The matrix elements of S between initial and final states are of two different types. The first type includes
elements like :

(’) The letter Q will be used for density operators acting in the state space of the 2 atoms (extemal and internai variables). The letter p
will refer to one-atom internal variable density operators (reduced operators).

(2) This can be true even if the hyperfine structure in the ground state of the hydrogen atoms is completely decoupled.
(3) Even when very small, the evolution of the spins during a collision is not always completely negligible. In the case of spin exchange

collision, very high precision experiments with the hydrogen maser have made it possible to observe the effect of the collision duration
Te [16]. In this article, we shall completely neglect these very small effects and consider that S is an operator which acts only in the external
variable state space of the particles.
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or, if spin variables are involved :

(S does not affect spin variables). In the initial as well as the final state, el is bound to n, and e2 to n2.
Since el and e2 behave in the same way during the collision, one can write :

Also, the fact that ni and n2 behave in the same way allow us to write :

We shall call all corresponding processes the direct processes. They are characterized by the fact that the
association between the numbered protons and electrons are not changed by the collision.

It is clear that other processes are also possible. We assume that all physical properties of el and e2 which
affect the collision are exactly the same (although el and e2 are here considered as distinguishable particles),
and the same holds for ni and n2. Therefore, the two final states :

(el is bound to n2 and e2 to ni in the second state) have exactly the same energy (exchange degeneracy). Both
states can therefore be reached after collision, and we introduce the notation :

(an analogous relationship including spin variables can easily be written as in (3b). One can also write :

and

The corresponding processes are called transfer processes (4).
Physically, the possibility that electron el becomes bound to n2 and that e2 transfers to ni can for example be

understood by considering ni and n2 as two classical particles fixed at two points RI and R2 respectively (in the
Born-Oppenheimer approximation, the motion of ni and n2 can be studied in a second step). Electrons el
and e2 are then attracted by two potential wells centred at RI and R2. At very large internuclear distances
(I R1 - R2 1 &#x3E; ao, Bohr radius), two degenerate states of the 2 electron system occur :

(el is bound in the Ri potential well, e2 in the R2 potential well, or the reverse). Actually (5a, b) are not strictly
speaking stationary states, since the tunnel effect allows both electrons to transfer froni one potential well
to the other (5).

At lower values of the internuclear distance, the tunnel effect is no longer negligible, the coupling between
the states removes the energy degeneracy, and an energy difference AE between the g and u states appears.

(4) They are sometimes called exchange processes since they correspond to collisions where nt and n2 exchange their numbered electrons.
Nevertheless, we shall reserve the word exchange for effects related to the Pauli principle (particle indistinguishability).

(5) Due to the interaction between el and e2, the states in which el and e2 are both bound to the same nucleus have a much higher
energy than the initial state; they are not considered here.
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Starting from the initial state (5a), the system will be found in the state (5b) after a time T = nhIAE. If now
1 R, - R2 is small enough to allow el and e2 to go classically from one well to the other, the transfer time
can be even shorter.

To emphasize that the transfer probability does not in itself include any electron identity effect, one can
consider a single electron problem : a collision between a proton and an hydrogen atom. In this simple case also,
the electron can jump from one potential well to the other. The probability of this process can be expressed
in terms of g and u potentials of the H i ion.

A more precise evaluation of the transfer probability can be obtained by calculating the energies Eg(R)
and Eu(R) of the two electronic stationary states as a function of the internuclear distance R = R, - R2 1
(Born-Oppenheimer approximation), and using the phase shift method. The principle of this calculation is
recalled in Appendix A.

2.1.3 Internal variable density operator after collision. - Let us first calculate the spin density matrix
of ei and ni if, after collision, el remains bound to n, (in other words, we only consider the projection of the
final state through the operator ei : (p., ; e2 : ({Jn2 &#x3E;  el : ({Jnl ; e2 : ({Jn2 I). We must therefore take a partial
trace over the external variables and over the spin variables of e2 and n2. The result is the density matrix pf(el, nl)
with elements :

The trace of P2 is equal to one. Then, if we set :

we merely obtain :

In a similar way, one gets :

Physically, these equalities are easy to interpret : since the collision does not change the spin states, when el
remains associated with n, or e2 with n2, their internai state density operator is not modified at all.

The other possibility is that el ends up in the IlfJo2 &#x3E; state, e2 in the 1 Pol&#x3E; state. Let us for example calculate
the internal density operator ovni and e2 when these two particles are bound after collision. We ôbtain :

where :
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We therefore obtain :

where Trs denotes a partial trace over the S variables, Tr, a partial trace over the 1 variables. Equation (11)
shows that, if e2 is bound to n, after collision, the internal variable density matrix of the corresponding atom is a
(tensor) product of nuclear and electronic spin density matrices (no correlation between the two spins).

Using the fact that S is an unitary operator (S+ S = 1) and relation (2), one can easily show from defini-
tions (7) and (10) that :

In the following, we shall therefore replace Ad by 1 - At. Another way to obtain equality (12) is to calculate the
spin density operator of nl after collision, which is, according to (8a) and (11) :

Since this operator must have a trace equal to one, (12) is necessarily true.
If now, in the experiment considered, the particles el and e2 play equivalent roles (although we still consider

here that they are theoretically distinguishable), it is convenient to define the density operator of the atom
labelled by nucleus n 1 as :

In the same way, the density operator of the atom labelled by n2 is :

Each collision between an atom of species 1 and an atom of species 2 changes p (atom 1) into :

[one can easily check on this result that Tr {pf atom 1) } = 1 when equations (2b) are satisfied]. Let us for
example consider an ensemble of atoms of one isotope (nI type nuclei, internal density operator pl), undergoing
collisions with atoms of another isotope (n2 type nuclei, internai density operator P2) (6). Without taking into
account Pauli’s antisymmetrization principle for the electrons exchanged, we then find that the density operator
evolution due to spin exchange collisions is :

or

In this expression, 1 / 7jjÎ is a rate constant which is proportional to the average over relative velocities v of the
product vA, for all possible collisions (average over energies and initial velocity directions), and also proportional
to the number density of atoms 2. Equations (16) show how collisions between atoms of type 1 and atoms of

type 2 transfer the electronic orientation from species 2 to species 1. It is clear that the density operator evolution
of species 2 evolves under the effect of the same collisions according to :

with :

where n, (resp. n2) is the number density of atoms 1 (resp. atoms 2).

(6) At this stage, the nuclear spin h and 12 of n and n2 can have different values.
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It is also possible to calculate the effect of collisions between atoms of the same species, having initially
the same internal density operator. To do this, we assume that pi = P2 = p, and the same reasoning gives :

This equation shows how spin exchange collisions tend to suppress the correlations between the electronic and
nuclear spin variables. One must nevertheless keep in mind that, here, we have only considered the effect of the
collisions on the density operator p. It is clear that, during the time between collisions, the hyperfine coupling
hamiltonian modifies the internal state of the atoms and can re-establish strong correlation between the spins
(in other words, 1 and S recouple after collisions).

2 . Z INDISTINGUISHABLE ELECTRONS. - In this section, we consider that the two particles el and e2 exchang-
ed by nuclei ni and n2, are two indistinguishable electrons, and therefore introduce totally antisymmetric wave
functions (Pauli principle) to describe them. We denote by Pe the exchange operator between these two electrons.
For example :

We still assume that ni and n2 are fundamentally distinguishable particles, even if the experiment considered
do not allow to distinguish between them (the role of nuclear identity of the 2 atoms will be studied in the next
section).

2.2.1 Density operator after collision. - The density operator of the system before collision is now :

where Finit. is given by equation (1). After collision, it becomes :

We now want to calculate the density operator Pf(n1, e) associated, after collision, with the internal variables
of the atom labelled by nl. To do this, we have to take the trace of the operator written above over all internal
variables of the n2-atom (quantum numbers mj, Ms) and over kf. Therefore, pf(nl, e) is given by :i 

s 

-

To obtain this expression, one can consider fully antisymmetrized final states (after collision). The operator
in the centre of the right hand side of (19) is then actually replaced by :

But, since S and S+ commute with Pe, and Pe2 = 1, one can easily obtain (19). It is also possible to write (19)
directly by using the fact that, when the initial state vector of the system has been fully antisymmetrized, it is
no longer indispensable to perform another antisymmetrization of the kets associated with the measurements
(see exercice 8 of complement D-XIV, Ref. [17]).

Four different terms appear in (19) : one term without any P, operator, one with two such operators, and
two terms containing one Pe either on the right or the left side. It is easily seen that the first of these four terms
is exactly the one which was calculated in (6). It is therefore equal to :
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The term which contains both P, operators is nothing but the expression calculated in (9). It thus gives a contri-
bution :

The two terms which contain Pe only once are new. To write them, let us introduce the coefficient :

The contribution to (19) of these two terms is :

and

It can be shown that C is pure imaginary. To do this (’), let us use (3) and (4) to calculate :

The intemal quantum numbers ml and Ms play no role here, and have been omitted (writing them explicitly
would amount to adding ô functions, see equations (3a) and (3b) for example). We can now use the closure
relationship :

and the unitarity of the operator S to write :

On the right hand side of (22), one recognizes the scalar product of two different initial states : in one of
the states, el is bound to ni and e2 to n2, in the other the opposite situation occurs. Since in the initial state the
nuclei are very far apart, the overlapping of the wave function of el and e2 is zero, and one then obtains :

We can therefore set :

where Cs is defined by (20) and Aexch. is a real coefficient (8).

C) In the Appendix, another demonstration using the phase shift method is given.
(8) The Schwarz inequality gives :
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If 111 denotes the identity operator in the 1 variable space, one can write :

In the same way :

These equalities allow us to write the terms in A Sexch. in an operatorial form, and we obtain for the density operator
p f(n 1, e) after collision :

In a similar way, the density operator of the atom labeled by n2 is, after collision :

2.2.2 Physical interpretation. - Equation (26) describes the evolution of the atomic internal variables
when the indistinguishability between electrons is taken into account. The equation analoguous to (16) is now :

where :

(this coefficient is noted x in Ref. [9]). One immediately notices that the first two terms of the right hand side of
(27) are nothing but the terms which already appeared in (16) : therefore, the electron identity does not affect
the way electronic polarization is transferred from nl-type atoms to n2-type atoms.

The only effect of the Pauli principle is to add to the right hand side of (27) a term proportional to xs [that
is to the coefficient Cs defined in (20)]. It can be seen on this expression that the new term arises from interference
effects between direct and transfer scattering processes in the same final direction kf. Since this term appears
as a commutator, it does not change the trace of the density operator; the introduction of the Pauli principle
is equivalent to an effective hamiltonian :

This hamiltonian acts on the electronic spin variables of atoms 1 and depends only on the electronic spin
density operator of atoms 2.

If :

(rotation invariant electronic density matrix for atoms 2), the Pauli principle term in (27) vanishes. More gene-
rally, since electrons are spin 1/2 particles, we can write :

where :
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and :

The Pauli principle term in (27) then takes the form :

In other words, spin exchange collisions involve an apparent magnetic field acting on the electronic spin of
atoms 1 (9). This apparent field is parallel and proportional to the electron spin polarization of species 2. The
fact that only the electronic orientation of each species affects the density matrix evolution of the other has been
pointed out by F. Grossetête [ 18] and P. Valberg [ 19] (see also [2]).

It is well known that indistinguishability terms relative to identical particles vanish when the particles are
in orthogonal spin states and when their spins remain unaffected during the physical processes under study
(see for example the discussion in chapter XIV, § D-2-b-p of Ref. [17]). Physically, this arises because, in principle,
the spin states could be used to distinguish the two particles. Let us assume that the internal electronic and
nuclear variables of atom 1 are not correlated, that is :

The electron spin exchange shift term then becomes :

where :

A necessary and sufficient condition for the two electrons to be in orthogonal spin states is that the density
matrices are such that :

This is obviously true if p’ and p’ are projectors onto two orthogonal states. Conversely, if condition (35) is
fulfilled, p i and p’ can be diagonalized in the same basis. If their product is zero, the matrices in this basis
never have non-zero populations in the same level and the electron spins are in orthogonal spin states. Now,
it is easy to see that condition (35) implies that the spin exchange shift term (33) vanishes, and we check in this
way that particle indistinguishability effects then disappear.

In fact, one notices immediately on (33) that condition (35) is too strong for the Pauli principle term to
disappear : it is sufficient that p’ and p2 commute with each other. It must nevertheless be kept in mind that this
condition is only valid because we chose in (32) a pl density matrix without correlations between the spins. In
general, when 1 and S are correlated, spin exchange shift terms can subsist even if pi = p2 (see § 3, where spin
exchange shift terms are calculated when pi = P2)-

2. 3 INDISTINGUISHABLE NUCLEI AND ELECTRONS. - We shall assume in this section that the two nuclei ni
and n2 are also indistinguishable particles. For example, the collision occurs between two hydrogen atoms,
so that n, and n2 are two protons (spin 1/2 particles). The notation P. will be used for the exchange operator
between ni and n2. This operator acts only in the nuclear variable state space, and :

(it must be kept in mind that states like el : ({Jn! &#x3E; are not invariant under the action of Pn).
2.3.1 1 Density operator after collision. - Before the collision occurs, the two atom density operator is (10)

(9) Hence the notation - p. ôH for H,011. in equation (VI. 8) of Ref. [2].
(1 °) We assume here that the nuclei are fermions. When they are bosons, it is sufficient, in all the following calculations, to change the

sign of all terms linear in Pn [terms in C, and DISJ. 
,
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where ui,,it. is still given by (1). Except for the fact that two exchange operators P now appear, the calculation
is very similar to the one of section 2.2. Equation (19) has to be replaced by :

To obtain this equality, we have made use of the fact that S commutes with both operators Pe and P,,,
and of the relationship Pé = p2 = 1. The factor 1 /2 which stands in front of the right hand side of (36) is neces-
sary if the integral over kf is taken over all kf directions (4n steradians). This is because the action of the operator

on the two kets

(we omit all spin variables which play no role here) gives the same ket. Therefore, in order to avoid counting
twice the same physical final states, either the kf integral in (36) must be restricted to a half space, or a factor 1/2
must be introduced as we have done.

When the two products [1 - PJ [ 1 - Pe] are expanded in (36), the number of terms which appears is 16.
Since we now discuss nuclear exchange effects, it is convenient to classify these terms according to the number
of operators P. involved. The first four terms contain no such operator at all and are actually nothing but the
four terms already discussed in the preceding section (multiplied by a factor 1/2). Their contribution is therefore
simply given by (26a). There are now four terms which include one Pn operator on both sides of SPinit. S + .

Calculating these terms amounts to doing the same calculations as before but after permutation of n, and n2
in the final state. In other words, these four terms merely correspond to the calculation given in section 2.2
for the density operator of atom n2 after collision. Equation (26b) therefore gives their contribution directly.

The remaining 8 terms have not been considered before and represent the effect of nuclear indistinguisha-
bility. Each of these terms contains one operator Po in the right or in the left of SQ;n;t. S+. We shall classify the
terms according to the number of operators Pe included. The first two terms have no operator Pe at all (pure
nuclear exchange) and include - Pn Spinit. s+ or - Spinit. S+ Pn-

The contribution of the latter for example to (36) is :

I f we set :

(we shall see below that CI, like Cs, is pure imaginary), we can write this contribution :

In the same way, the term in - P- ’S’omit. S+ takes the form :

LE JOURNAL DE PHYSIQUE. - T. 41, N° 8, AOÛT 1980
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Let us now consider the two terms in Pe Pn SQin;t. S + Pe and Pe SUinit. S + Pr P. (two operators Pe included).
The calculation is of the same type as previously, and one obtains for the first term :

and for the second :

There are now only four terms left to evaluate. Two of them are in Pe Pn Sainit. S + and SUinit S + Pe Pn
respectively. The latter for example gives a contribution :

The coefficient DIs is defined by :

The term in Pe Pn SO"init. S + is the hermitian conjugate of this result and is therefore equal to :

As for the last two terms, in Pe Sainit. S + Pn and Pn S6lnit. s+ Pe, they can also be calculated in the same way.
The former, for example, is found equal to :

In this expression, Tr2 = TrI2 TrS2 is the partial trace over all internal variables of atom 2, and Ejs is the coef-
ficient :

Before we discuss the physical interpretation of all the different terms which have been found, it is conve-
nient to remark that :

(CI is pure imaginary) and :

The proof of these two equalities is similar to the proof of (22). Using the same argument (and interchanging
particles n and e when necessary ; see (4b, c)) :
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Since S + S = 1, CI + Ct is the scalar product of two kets for which each of the nuclei moves in opposite
directions and each electron is bound to different nuclei. The integration over nuclear position variables then
gives zero and (41) is established. In the same way, one obtains :

This expression vanishes because the nuclear wave packets of the bra and the ket do not overlap.
1 t is also easy to see on definitions (40a) and (40b) that Djs and Els are real coefficients.
To summarize, the expansion :

corresponds for the internal variable density operator after collision to :

Here we have defined the real coefficient A éx,h. by :

2.3.2 Physical interpretation. - It can be first noted that, in equation (45), the two density operators pl
and p2 play a perfectly symmetric role, as can be expected when nI and n2 are identical particles. One can also
see that the only terms which contribute to the trace of pf(e, n) are the terms in At or (1 - At), that is the terms
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which were discussed in section 1.1 (distinguishable particles). All commutators have a zero trace, so the only
terms which do not obviously have a zero trace are the terms in Els. Nevertheless, since :

it can easily be shown that none of the indistinguishability terms changes the trace of pf(e, n).
Nevertheless, they do in general change the partial traces of this operator over either 1 or S variables. The

effect of the terms proportional to A Sexch., already discussed, is a rotation of the electronic spin variables around
z S )1 i or  S &#x3E;2 (electronic spin orientations associated to pi and P2). The terms proportional to Aléxch. are
similar, but the effective hamiltonian now acts only on the nuclear variables. This is not surprising since these
terms arise from the nucleus identity (no Pe operator involved). If either matrix pi or matrix p2 (or both) are
such that the nuclei are polarized (non-zero nuclear orientation), there is an apparent magnetic field associated
with the collision, and this field only acts on the nuclear variables (11). The nuclear identity effects are therefore
strongly reminiscent of the electron identity effects. Nevertheless, it should be noted that ASexch. involves inter-
ference effects between direct and transfer processes in the same direction of the vector kf (see (20)) but AIexch.
for opposite directions (see (37)). This is related to the fact that Po changes the velocity of both nuclei in the centre
of mass reference frame (interference effects associated with scattering processes towards opposite final directions
are typical of nuclear identity effects, and analogous results are obtained in the study of metastability exchange
collision). This direction change explains why the nucleus identity effects are often less pronounced than the
effects of electronic identity [20] : for example, if both Sd(kf, k.) and S,(kf, k;) are strongly forward peaked func-
tions (they are supposed to have negligible values if the angle between k; and k f is not small), A:xch. is practically
zero, but not necessarily ASexch.

The terms proportional to Els in (45) involve both the identity effects of electrons and of nuclei together.
The terms in pl x P2 and p2 x pi have been obtained from the action of the product operator Pe P.. This
operator exchanges both constituent particles of the atoms, that is exchanges atoms considered as complete
entities (atoms in the etymological meaning). These two terms can therefore be called the atom-exchange terms,
and the plus sign arises from the fact that atoms made up of two fermions are bosons (12). The two last terms
in (45) are more complex and arise from interference effects between electron and nucleus exchange. As dis-
cussed above, their presence exactly cancels the variation of the trace of the density operator due to atom-
exchange.

Figure 1 shows a schematical representation of the 4 physical processes which influence the density operator
evolution. They transform the same initial state with numbered particles into 4 different mathematical kets,
all corresponding to the same final physical state for identical electrons and protons. Therefore, interference
effects between any pair of these processes are possible. For simplicity, we shall denote them a, b, c, d respec-
tively. The various terms in equation (45) then correspond to the following combination (after an integration
over 0) : - --- , . , .

We conclude this section by remarking that, if either pi or P2 is proportional to’U , all particle identity terms
in (45) vanish. This is obvious for the terms in A s h. and AIexch. which have the form of commutators. Since :

(11) If the nuclear spins are greater than 1/2, there is also an apparent electric field gradient acting on the nuclei which depends on
the nuclear alignment, etc...

e 2) Of course, if the nuclei were particles with integer spin (deuterium for example), a minus sign would be necessary.
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Fig. 1. - Four different scattering processes are schematically
represented in diagrams (a), (b), (c) and (d). The particles are
labelled : ni and n2 are the two nuclei, el and e2 the electrons.
p and P2 are the density operators describing the internal variables
of the two atoms before collision. When the particles are distin-
guishable, these diagrams connect the same initial state to four
orthogonal, physically different, final states. For identical nuclei and
electrons, the final states become physically indistinguishable,
so that interference effects between the diagrams occur. As discussed
in the text, these effects introduce additional terms in the equations
giving the evolution of the atom internal variables, and produce
various apparent magnetic fields acting on the nuclear and electronic
spins.

is simply equal to :

if p2 oc 11, it is easily seen that the terms in Els also vanish in this case (the same is obviously true ifpi oc 11 ).
Therefore, if :

the exchange terms in At are first order in Api and AP2, but all the other terms are second order (crossed terms
in Api and Ap2).

3. Applications to a few spécial cases. - Let us now apply the equations obtained to a few special cases.
’ 

3 .1 COLLISIONS BETWEEN ATOMS WITH THE SAME DENSITY MATRIX. - Equation (45) is general and no assump-
tion has to be made concerning the initial density operators pi and P2. This equation can be used for example to
describe the effect of spin exchange collision between a polarized hydrogen beam and a hydrogen gas of atoms
having any internal variable state. Nevertheless, in many practical situations (optical pumping experiments
with an alkali vapour for example), no correlation exists between the internai state of an atom and its velocity,
so that the two initial density operators are simply equal. In (45), if we replace pi and P2 by p;, we obtain :

To write this equation, we have used the equality [only valid if

which can easily be shown from (48).
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We have already checked in the general case (pi # P2) that the trace of pf is equal to the trace of p ;. Other
quantities which are conserved are the angular moment  1 ) and Su (and therefore  F ). It is practically
obvious on (49) that the sum of the terms in (1 - At) and At has this property. In addition, this is also true for
the exchange terms in (49), since :

which shows that S ) is not affected by the commutator in As On the other hand, 1 commutes with an
electronic operator and ( il is not affected either. The same reasoning being clearly possible when 1 and S are
interchanged, so that neither of the terms in A s or A :xch. affect  1 ) and  S ). Finally, the term in Es also
has this property : 

Physically, since we have assumed that the collision does not act on the spin variables, it is satisfying that il
and S &#x3E; are conserved.

Equation (49) can be compared to equation (B .2) in Appendix B of reference [9], with the correspondence :

(for a more precise comparison of these four numerical coefficients, see the Appendix of the present article).
One has to take the trace of equation (B. 2) over the H variables. This calculation gives a first contribution equal
to :

Since :

we obtain results identical to three first terms of the right hand side of (49) (see also (31b)). The terms written
in (51) therefore contain the transfer effect and the electron indistinguishability effect. A similar agreement can be
found for the nucleus indistinguishability terms [terms proportional to ’UFI :

We have made use of the fact that [see (39)] :
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The term in - 4 p2 corresponds to the first term proportional to EIS in (49), the term in Tr2 { Pn P;(1) 0 P;(2) Pe Î
to the second term proportional to E1s. As for the term in K’, a reasoning similar to the one which gave (52)
shows that it is the nuclear identity term [proportional to Alxch. in (49)].

Remark. - If Pl =1= P2, the development of equation (B.2) of reference [9] gives a result in which neither
the terms in QSF nor the terms in 6sF are invariant when pl and P2 are interchanged. For example, (53) becomes :

which does not coincide with our result (45). We therefore think that the validity of equation (B. 2) of reference [9]
is restricted to the case when the internai state of the colliding atoms is the same. Otherwise, equation (45) should
be used.

3.2 SPIN EXCHANGE SHIFT OF THE 0-0 HYPERFINE COHERENCE. - As an illustration of the simplification
obtained when using equation (48) instead of relationships involving 16 x 16 matrices, we shall calculate the
effect of spin exchange collisions between hydrogen atoms on their ground state 0-0 hyperfine coherence. We
assume here that :

[the order of the states being
we use the same notation as reference

In the decoupled basis 1 ml Ms &#x3E;, this matrix becomes :

It is then easy to see that :

(1, S and F are respectively the nuclear spin, electron spin, and total spin divided by h).
Taking the two partial traces of (55c) leads to :

and
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(no coherence is left in p, and ps in this particular case). A straightforward calculation then gives PI (8) Ps and,
coming back to the F, MF &#x3E; basis, we obtain :

This matrix gives the density operator just after collision when all particle identity effects are ignored (i.e. only
the terms proportional to QSF oc At). It gives a generalization of the results of Appendix II of reference [8] to
the case when ( Fz &#x3E; =1= 0. Similar calculations give :

and finally :

As expected, the electron and nucleus identity terms are proportional to  Sz &#x3E; and ( Iz &#x3E; respectively (apparent
magnetic fields proportional to the orientation). The crossed exchange terms have a more complex structure as
shown by (58d ) and (58e). From these equations, it is possible to obtain the 0-0 hyperfine coherence (x + iy)f
just after collision

The first two terms in the right hand side of this equation show that, when a spin transfer occurs (term in At),
the hyperfine coherence x + iy is simply replaced by its real part x, the imaginary part iy being completely
destroyed. This can be understood physically from the equations :
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which show that y, but not x, depends on the correlations between 1 and S variables. We have seen earlier that
 1 &#x3E; and S ) are not affected by the collision which explains the complete conservation of x. On the other hand,
after a process where 1 and S are decorrelated,  Ix Sy - ly Sx ) is replaced by  Ix )  Sy &#x3E; -  Iy &#x3E;  Sx ).
Since the density operator (55a) is invariant under any rotation about Oz, this quantity clearly vanishes.

One can also see on (59) that all particle identity exchange terms (in A:xcb., A:xcb. and Ejs) vanish if there
is no initial population difference.

The time dependence of the populations a, b, c and d, and of the hyperfine coherence x + iy, are very
different : the former changes at a much slower rate than the latter (the hyperfine frequency is supposed to be
much larger than the atom exchange rate, the inverse relaxation or pumping time, etc...). Therefore, we must
distinguish in (59) terms which are secular (or resonant) and can have a significant effect, from non-secular terms.
Let us for example first discuss the term in A:xcb., which is proportional to  Sz ). The (quasi) static parti Sz )St.
of  Sz &#x3E; [the part which depends on the populations a and c ; see (56b)] gives a non-resonant coupling between
the hyperfine coherence and populations and its effect can be neglected (it is well known that a static magnetic
field does not affect the eigenfrequency of the 0-0 hyperfine coherence to first order). But, as noted in para-
graph VI. 6 of reference [2], ( Sz ) also comprises a time dependent part ( Sz )osc.(t) which oscillates at the 0-0
hyperfine frequency, that is exactly the frequency needed to resonantly couple x + iy and populations. The
physical interpretation of the term :

is then clear : the apparent oscillating magnetic field proportional ton Sz &#x3E;osc.(t) (and parallel to Oz) produces
a magnetic resonance effect between the two levels of populations b and d (0-0 hyperfine resonance). This explains
why the coherence is only coupled to the population difference of the two levels involved, as is well known in
magnetic resonance. The term in AIexch. can be interpreted in the same way, the only difference being that the
apparent field is now proportional to  I, &#x3E;osc.(t) and only acts on 1 (not on S, in contrast to what a real field
would mostly do). The last term in (59), proportional to Ejs, is the only one which depends on the imaginary
part y of the hyperfine coherence.

Equalities (56a) and (56b) clearly show the low frequency (terms in a - c) and high frequency (terms in x)
parts of  I,- &#x3E; and  Sz &#x3E; and since :

equation (59) can be re-written :

Therefore, the frequency shift of the hyperfine coherence due to spin exchange collision is [we use the same
notation as in equation (29)] :

where :

(see Appendix for a precise calculation of these coefficients). Equations (60a) and (60b) exactly coincide with
the results available from table X of reference [9].
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3.3 SPIN EXCHANGE SHIFTS OF ZEEMAN COHERENCES. - Another interesting situation occurs when there
are non-zero Zeeman coherences inside the hyperfine F = 1 sublevel :

[again we use the notation of reference [11]]. In the decoupled basis ml MHz, this matrix becomes :

One then finds :

and :

[p7 = ps because 1 and S are proportional operators inside the F = 1 sublevel, according to the Wigner-Eckart
theorem]. Equations (56) must now be replaced by :

where I+ and S+ are defined by :

One then obtains (in the  FMF &#x3E; basis) :

This matrix gives the term in At in the right hand side of (49). Similar calculations can be performed for the
terms in ASexch., AIexch. and Els but will not be reproduced here. Let us only calculate the mean value after collision
of  Fz ) and  3 F; - F(F + 1 ) ) (longitudinal orientation and alignment) and of  F t ),  Fz F t + F t FZ )
and ( Fi ) (transverse orientation and alignment).
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We can check on (64) that :

(the total angular momentum is conserved in the collision). One also obtains :

These results show how the various Zeeman coherences are resonantly coupled by the exchange processes
(the rotation invariance ensures that each observable inside the F = 1 sublevel is only coupled to other obser-
vables in this sublevel having the same Zeeman evolution frequency). The terms in At can be understood in terms
of complete decorrelation between 1 and S variables. For example, since :

(I2+ and S+ are identically zero for spin 1/2 particles), ( F+ &#x3E; is replaced in a transfer collision by :

(1 and S are proportional to F inside the F = 1 hyperfine sublevel according to the Wigner-Eckart theorem).
In the same way :

(I, I + + 1+ lz and Sz S+ + S + Sz are identically zero) and  Fz F + + F + Fz &#x3E; is replaced by :

We see on equations (65) that the term in ASexch. has the same form as the term in AIexch.. This is because 1
and S can be replaced by F/2 as long as we are only interested in observables inside the F = 1 sublevels. Both
electron and nucleus identity terms therefore correspond to a rotation of these observables around F &#x3E; (in this
way, we find again that F &#x3E; is conserved). Experimentally, the fact that, inside the F = 1 sublevel, only align-
ment variables are modified by particle identity effects can be used to isolate these effects : one can for -example
measure the difference between magnetic resonance frequencies for orientations and for alignment.

3.4 COMPLETE HYPERFINE DECOUPLING. - As a last example, let us study the effect of spin exchange colli-
sions in experiments where a static magnetic field produces a complete decoupling off and S (cf. Fig. 2). This kind
of situation can occur for instance in experiments where one wants to produce spin polarized H atoms in a high
field [21, 22, 23]. It has been considered already in the literature [24], but some of the results we shall obtain are
différent.
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Fig. 2. - Energies of the ml MS ) substates of a ground state
hydrogen atom in a magnetic field B. The levels are numbered in
order of decreasing energies (although, at extremely high fields,
levels 1 and 2 cross and their order is reversed).

We now assume that the initial density matrix in the decoupled basis ml Ms &#x3E; has the form (13) (we use
the j notation of reference [24]) :

with :

The partial traces p, and ps are equal to (the order of the base states is

We then obtain, still in the same base as in (66) :

(13) Note the order of the base states which is different from the order in (55c) ; hère we use the order ofdecreasing énergies of the
Zeeman substates.
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To simplify the calculation, we neglect all second order terms in and 0. Then, since the terms in AS , A,
and Els are of second order in ç and 0, equation (68) immediately gives the effect of a spin exchange collision
within this approximation.

One easily checks that neither Çl - Ç3 nor Ç2 - Ç4 are modified during the collision (this remains true if the
terms quadratic in ç, 0, are included). The reason for this is that :

and that we know that Iz &#x3E; and  Sz &#x3E; (actually all components of ( I ) and S » are exactly conserved by
equation (49).

The time variation (dp/dt)spin exch. of p due to spin exchange collisions is directly proportional to the 4 x 4
matrix written in the right hand side of (68) (within the linear approximation used). The coefficients of coupling
between the i differ from the coefficients Aij given in table 2 of reference [24]. When the main evolution of p
is due to spin exchange and when a stationary equilibrium is reached, the conditions :

are fulfilled. They can be interpreted in two different ways : the mean values of  Iz &#x3E; inside the two Ms = ± 1/2
multiplicities are equal (Çl - Ç2 = Ç4 - Ç3)’ or the mean values of ( Sz &#x3E; inside the two ml = ± 1/2 multi-
plicities are equal (ç 1 - Ç4 = Ç2 - ]Ç3)’

We also see that the various coherences are not affected in the same way by spin exchange collisions. Cohe-
rences between states having different values for both mi and MS are fully destroyed. Physically, this is because
these coherences give the mean value of operators like I, S+ (since 12 and S2 are identically zero) and because
 1+ S + &#x3E; is replaced by ( I + &#x3E;  S + &#x3E; in a decorrelation process (14).

On the other hand, half of the coherences between states having the same value for either ml or MS is pre-
served. The reason is that this coherence depends on orientations like ( 1+ ) and  S + &#x3E; which are completely
conserved, and on alignment components like  Iz S+ &#x3E; for example which are destroyed (and replaced by
( Iz &#x3E;  S+ ». Equation (68) shows how the replacement of  Ix,y,z Sx,y,z &#x3E; by  Ix,y,z &#x3E;  Sx,y,z &#x3E; also produces a
coupling between coherences : 012 and 0*34 are coupled with each other, as well as e23 with 0 14- With the energy
levels of figure 2, these couplings are non-secular and therefore negligible in most experimental situations (non-
overlapping resonance lines). This fact is related to the inversion of the order of the ml levels when Ms = ± 1/2
(see figure 2 : as long as the applied field is small compared to 106 G, the proton precesses in the field created by S
which changes sign for the two multiplicities 1, 2 and 3, 4).

Let us finally assume that all coherences except 634 (and 634) are zero (this is the experimental situation in
[22]), and calculate exactly all terms, including the particle identity terms. Instead of calculating 4 x 4 matrices p,
we shall only write thtir 2 x 2 restriction p to the subspace spanned by the two 1 - - &#x3E; and [ + - &#x3E; kets. We
then obtain :

(14)  7+ ) and S+ ) can be expressed as functions of AMS = 0 or AmI = 0 coherences respectively. The initial coherence

is therefore replaced by a second order product of A(m¡ + Ms) = 1 coherences.
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In this case, the only particle identity term which is not zero is the term in AIexch. (apparent nuclear magnetic
field). The absence of any electron identity term arises from the fact that, in subspace spanned by states 3 and 4,
Sx and Sy are identically zero, and Sz is proportional to the identity operator. The frequency shift of the cohe-
rence 034 has two different origins : a longitudinal apparent nuclear field proportional to (Çl + Ç4) - (Ç2 + Ç3)
which shifts levels 3 and 4 (and therefore the eigenfrequency of 034), and a transverse apparent nuclear field
proportionâl to 034 itself which creates a, coherence from the population difference Ç4 - Ç3’ The Ç3 and Ç4 terms
of both effects actually cancel out and only a dependence in the population difference ç 1 - ç 2 of the two upper
levels is found at the end.

4. Conclusion. - We have seen in this article how spin exchange processes are affected by the particle
identity effects. We have found various terms in the density operator evolution. The transfer terms (term in At)
are probably the most important ones in practice, since they can be used experimentally to couple the polarization
of different atomic species. The existence of these terms is not related to any particle identity effect. Particle
indistinguishability only explains the existence of the additional terms, which correspond to more subtle effects
(apparent magnetic fields, etc...). There is actually a large similarity between the terms arising from electron or
nucleus identity, but in the latter case, interference effects in two opposite final collision directions must always
be invoked. At very low collision energies, both kinds of identity effects should become important. As a conse-
quence, experiments with hydrogen masers at low temperatures [25] seem well adapted to the measurements
of such effects.
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APPENDIX

Phase shift calculation of the coefficients At, ASexch, A;xch and Els. - In this appendix, we recall how the
various coefficients which appear in equation (45) can be evaluated from the phase shift coefficients âg and bu
(1 = 0, 1, 2, ...). These coefficients are associated with the two interaction potentials Vg(R ) and Vu(R ) between
two hydrogen atoms in the ground state, fixed at a distance R from each other. Similar calculations can be found
in references [26] and [9] (see also references quoted in [2] and [9]).

We shall consider here four (fictitious) distinguishable particles without spin. Two of these particles, el
and e2, have the physical properties of electrons except spin and indistinguishability. The two others are in the
same way similar to protons. For fixed positions of pl and p2 at a distance R, we shall consider two stationary
states of the electronic clouds. One is invariant under inversion with respect to the molecule centre (centre of
gravity of pl and p2) and will be called the even (or « gerade ») state :

The sum of the (electronic) energy of this state and of the repulsion q2/R between pl and p2 will be called the
potential energy Vg(R). The other electronic cloud stationary state has a wave function which changes sign under
the same spatial inversion and will be called odd (or « ungerade.»)

In the same way, Vu(R) is the sum of the energy of this state and q2IR. It is well known that, when there is some
overlap between the wave functions associated to ni ) and 1 ({J02 ), V,(R) --A Vu(R).

Using the Born-Oppenheimer approximation, it is now possible to calculate the elements of the S matrix
when the electrons are either in the  G &#x3E; or in the U ) state. These matrix elements are :
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and :

Since Vg(R) and Vu(R) actually depend only on R , it is possible to use the phase shift method to evaluate
these quantities [27]. Let us note bg the phase shift of the 1 spherical wave in potential Vg, ôu the corresponding
phase shift for Vu. One then has [28] :

and, similarly :

In these expressions, Yl is the spherical harmonic of order 1, m, and k;, k,, etc... denote the angular variables
associated with vectors k;, kf, etc... respectively [d3k; = k2i dki d2ki].

The next step of this calculation is to express the functions Sd and St defined in (3) and (4) in terms of Sg and
Su. Actually, one sees immediately in (A. 1) and (A. 2) that :

and :

We can therefore write :

and :

These results can be brought in (10), (20), (37), (40) and then give :

and, similarly :
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At this point, we can easily check that Cs is pure imaginary. For Cl, we obtain :

We note that, in this expression, a factor ( - 1 )l appears. This fact arises from the fact that in (37) Sd is calculated
at + kf, + ki but S* at - kf, k’. As emphasized earlier, this is characteristic of a nuclear identity interference
effect. As for Dz and Els, the same type of calculation gives :

At this stage, further simplification can be obtained by assuming particular values for the function u(k;).
For example, an initial wave packet (for the relative particle) can be built so that a quasi-infinite plane wave in
direction y and z and a well defined energy are obtained. To do this, we introduce the top hat function 0.(X)

which, by definition, has the value 1 when - a/2  x  + a and zero everywhere else. We note that :

and :

Let us suppose that :

In this expression, the length L, which is supposed to be very large, is directly proportional to the lateral spread
of the wave packet in directions Ox and Oy. The factor Lll insures that the normalization condition (2a) is
satisfied. lïko is the mean value of the momentum of the relative particule, he the uncertainty on this impulsion
(energy spread : n2 ko elm). The wave function corresponding to (A. .11) is :

It can be compared with another normalized wave packet, having the same z dependence, but constructed so that
its lateral spread in directions Ox and Oy is exactly L with a simpler x - y dependence :

For this wave packet, the probability (integrated over all times) that the particle will cross a unit surface perpen-
dicular to Oz and near the origin is 1/L2. Since :

the same probability with the initial wave packet is 1/4 n2 L2. Therefore, if we calculate A, for the function u(k)
given in (A. 11), the spin exchange collision cross section is merely :
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This calculation can readily be done by letting L tend to infinity, a to zero and using relations (A. .10). We obtain :

All integrations over x and y components of Iq and k’ bring in factors 1 /L. The integrations over the z components
give a factor E/kô. Finally, the relation :

can be used, and one obtains :

The cross section QSF is then equal to :

Similar calculations may be performed for the other coefficients, and give :

The same type of calculation applied to (40a) would give for Dm the result :

but this series is not convergent. This is because, in the expression (A. 9) of D,S, the sum over 1 and m does not
include a convergence factor like sin’ (âg - ô’), which tends to zero when 1 --&#x3E; oo, but a factor cos’ (ôf - £5ï).
Therefore, the functions of k; and ki which appear in the right hand side of (A. 9) are highly singular and, even
when the incoming wave packet corresponds to a very large L and a small e, expression (A. .13) has no analogue
for Dm. It is nevertheless easy to obtain a correct expression for DIS and Em, by using (40b) and (44) which shows
that Dm = - Els. One then obtains :

The cross sections (1SF, (J Sexch. and (1Iexch. can be defined by :

These equalities are relations (B . 3) to (B. 6) of reference [9], with the notation :

LE JOURNAL DE PHYSIQUE. - T. 4I, N" 8, AOÛT 1980
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At low energies, when ko -+ 0, the phase shifts tend to zero and the main contribution to At, ASexch., ASexch.
and EIS comes from the 1 = 0 term. Since, when ko -+ 0 :

we see that (JSF and 6sF tend to finite value at vanishing collision energies, but also that both (Sexch. and (Sexch.
tend to infinity (1 5).

The origin of this divergence is an interference effect in the forward direction between the direct and transfer
processes. To check this point, it is convenient to write Sd(kf, ki) under the form :

[Sd is proportional to the reaction matrix]. From (A. 5), one easily obtains :

The coefficient USexch. is now the sum of two contributions :

with

In these formulas, Cs is obtained by replacing in (20) Sd by Sd, and Cs (forward) by replacing Sd by c5(kf - ki;).
Using (A. 22), we obtain by a simple calculation (16) :

and we see that, when ko -+ 0, as remains finite and that only uèx,h. (forward) diverges [more precisely, its real
part diverges, but its imaginary part remains finite].

The preceding considerations show that, in experiments at low temperatures (De Broglie wavelength of the
atoms comparable to, or larger than, the potential ranges), the dominant terms in the internal variable density
operator evolution, due to spin exchange collisions, are effective hamiltonian terms in USexch. and Qéxch. Spin
exchange frequency shifts should become an appreciable fraction, or even exceed, the line broadening due to
spin exchange collisions [in optical pumping experiments, an additional ko factor comes in when rate equations
are calculated, since the number of collisions is proportional to the impact velocity ; the line broadenings then
tend to zero at low temperatures, and the shifts to constant values]. This behaviour can be checked by using
numerical calculations like the ones of reference [29] (in the notation of this article, O’SF and QSF are proportional

It should nevertheless be kept in mind that, at very low temperatures, there is a breakdown of one of the
approximations that have been made : it is no ionger possible to neglect the effect of the hyperfine hamiltonian
during the collision. A more precise treatment of the collision is needed, taking into account potential curves
connected at long distances to several possible hyperfine internal energies of the atoms [30]. The evolution equa-
tion of the density operator must then be substantially different from the results of the present paper. Such an
equation should predict a relaxation of the internal variables so that a difference of the hyperfine populations is
obtained after many relaxation times (instead of a density matrix merely proportional to the unity matrix).

(15) At first sight, one could think that the same reasoning, using (A. 16) and (A. 17), shows that ASexch. and Ax,,h. also diverge when
ko - 0. Actually, we know that this is impossible since the Schwarz inequality requires that Aé ch. I 1/2. It must be remembered
that (A. .16) and (A. .17) were calculated by assuming that ko L &#x3E; 1, so that it is not correct to use them when ko goes to zero, L being fixed.

e6) Although their sum is real, each of the coefficients ëT:xch. and Gexch. (forward) may be complex. Their real part introduces a commu-
tator (hamiltonian) in the equation of evolution of the spin density operator, their imaginary part an anticommutator changing the trace of
the density operator.
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