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Résumé. — Nous discutons le role des collisions d’échange de spin sur les variables atomiques internes (orienta-
tion, alignement, etc.) en insistant sur le role précis du principe de Pauli. Le calcul s’applique & des particules
discernables ou a des particules identiques, sans prendre comme point de départ un hamiltonien effectif d’inter-
action d’échange. On évalue I’opérateur densité d’un atome aprés collision sous une forme opératorielle qui facilite
la discussion de divers phénomeénes physiques. Le premier terme qui apparait dans I’évolution de I’opérateur
densité est un terme de transfert qui existe, que les particules soient discernables ou identiques. Les termes suivants
sont des conséquences spécifiques du principe d’antisymétrisation de Pauli, appliqué aux électrons et aux noyaux.
Ces termes peuvent étre décrits au moyen de champs magnétiques (ou gradients électriques) fictifs électroniques ou
nucléaires. De plus, on obtient des termes dont ’origine est ’échange combiné des électrons et des noyaux, en
particulier I’échange global d’atomes (qui sont des bosons dans le cas de ’hydrogéne). Les équations d’évolution
des opérateurs densité sont appliquées & quelques cas particuliers : découplage hyperfin nul ou total, résonances
Zeeman ou hyperfines,...

Abstract.' — The effect of spin exchange collisions on the internal variables (orientation, alignment, etc.) of
colliding atoms is discussed, with particular emphasis on the role played by the Pauli principle. The calculation
presented is valid for distinguishable or identical particles, and the initial introduction of an effective exchange
hamiltonian for the spins is avoided. The one-atom density matrix of the internal variables is calculated after
collision, in an operatorial form which enables the discussion of various physical effects. The first term in the density
matrix evolution is a transfer term which does not originate from particle indistinguishability. The following terms
are indeed introduced by the Pauli antisymmetrization principle applied to electrons and nuclei, and they can be
described as electronic or nuclear apparent magnetic field (or electric gradient). In addition, terms arising from the
combined exchange of electrons and nuclei are obtained, in particular from the exchange of identical whole atoms
(bosons in the case of hydrogen). The evolution equations for the density operators are applied to a few particular
cases in order to evaluate spin exchange effects in various situations : weak or strong hyperfine decoupling, Zeeman
or hyperfine resonances, etc...

1. Introduction. — The importance of exchange
collisions in atomic physics is well known. Spin
exchange collisions have been used in many optical
pumping experiments in order to transfer spin pola-
rization from one atomic species to a different one,
when direct optical orientation of the latter was not
feasible [1, 2]. Spin exchange collisions also strongly
affect the hydrogen maser operation, since they
broaden and shift the hyperfine transition of the
atoms [3, 4]. This phenomenon also occurs with the
rubidium maser [5, 6]. Spin exchange processes affect
the intensity of absorption or emission of the 21 cm

(*) Laboratoire dssocié au Centre National de la Recherche
Scientifique.

hydrogen line in radioastronomy, and this pheno-
menon stimulated some of the first calculations on the
subject [7].

It is clear that the Pauli principle (or symmetrization
principle if bosons are involved) plays an important
role in the evaluation of the effect of spin exchange
collisions. Most quantum mechanics textbooks discuss
the effect of particle identity on collision phenomena,
but the emphasis is generally put on how symmetry
interference effects modify the spatial distribution
of the scattered particles. In optical pumping expe-
riments, what is really important is the evolution of .
the internal atomic variables (orientation, alignment,
etc...). Usually, an average is taken over all atomic
velocities, before and after the collision. The aim of
this article is precisely to focus interest on the evo-
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lution of the density matrix describing the internal
atomic variables, and to discuss carefully the effects
of particle identity (electrons or nuclei).

There are already several articles in the literature
dealing with spin exchange collisions (see for example
references [7-13] or the references given in [, 2]).
The point of view generally adopted is that, since the
two electrons are identical particles, the spin singlet
state (S = 0) must correspond to a bonding potential
curve for the transient H-H molecule, and their spin
triplet state (S = 1) to an antibonding potential curve.
This correlation between the spin states of the electrons
and their orbital binding energy can be accounted
for by using a phenomenological exchange hamiltonian
acting on the spins. Since we precisely wish to study the
effect of particle identity on spin exchange processes,
we adopt a different approach. First, we ignore the
electron indistinguishability and perform a complete
calculation of the evolution of the internal variables.
In the second stage, we take into account identity
effects for electrons and nuclei, and discuss the new
terms which appear in the equations. Another diffe-
rence between the calculation presented here and
previous literature arises from the way the equations
are written. For example, in an important article,
L. C. Balling, R. J. Hanson and F. M. Pipkin [9]
discuss spin exchange collisions in hydrogen and
explicitely calculate the internal variable density
matrix for a system of two atoms. Since hydrogen
atoms possess 4 Zeeman and hyperfine sublevels in the
ground state, 16 x 16 density matrices are needed
(see also [11]). In the case of deuterium atoms,
36 x 36 matrices would appear. Here we shall
rather calculate the evolution of the one-atom density
matrix (4 x 4 matrix for hydrogen) in the general
case, and keep an operatorial formulation which is
not limited to a particular state basis (coupled or
decoupled basis for example : the same equations
are valid in a zero magnetic field or in a high field
producing complete hyperfine decoupling). Our
approach simplifies the discussion of the physical
meaning of the various terms obtained. For example,
the electron identity term emerges directly as an
apparent magnetic field term proportional to the
electronic spin polarization. We shall particularly
insist on the effects of nuclear indistinguishability,
which are not discussed in detail in the literature (and
sometimes simply ignored). These effects introduce
additional terms in the equation of evolution of the
density operators. One of them is similar to the
electron indistinguishability term and introduces a
nuclear apparent magnetic field, another term accounts
for the fact that atoms as a whole are identical particles
(bosons in the case of hydrogen atoms), etc...

The organization of this paper is the following.
In section 2, the one-atom density matrix calculation
is given, first for distinguishable particles, then for
identical electrons and finally for identical electrons
and identical protons. At each step, a physical dis-

Neg

cussion of the various terms obtained is given. In
section 3, the equations are applied to a few cases of
interest (calculation of the spin exchange shift in
various circumstances). Phase shift calculations, which
can be completely avoided as long as no numerical
calculation of the cross sections is needed, are recalled
in an appendix. This article is intended to be self
contained and accessible to a reader not already
familiar with the literature on the subject.

2. Calculation of the one-atom density operator. —
In this section, we study the effect of a collision
between two hydrogen atoms on their internal
variables. These variables are related to the existence
of a non-zero electronic and nuclear spin for each
atom. We first ignore the fact that both electrons and
both nuclei (protons for H, deutons for D) are identical
particles, and perform a calculation of the density
matrix where each electron and each proton is labelled
by a number, 1 or 2. Later we introduce the identity
effects of the electrons in order to see how the equations
are modified. Finally, the same process is repeated to
account for the nucleus identity effects.

No particular hypothesis is necessary concerning
the value of the spin of each particle. The nuclear
spin of the colliding atoms may be 1/2 (hydrogen),
1 (deuterium), etc... The calculation is actually valid
for any alkali atom, although in this case each atom
possesses several core electrons in addition to the
external valence electron. Since the electronic core
forms a complete shell (zero angular momentum), it
actually plays no essential role in this problem. For the
same reason, the calculation remains unchanged for
collisions between identical ions having one valence
electron (or hole). In principle, the electron spin could
also have any value in the following discussion
(although this value must of course be the same for
both atoms), but this generalization is rather academic;
even for exotic hydrogenic systems, the particle
playing the role of the electron is generally a spin 1/2
(or spin 0) particle.

2.1 DISTINGUISHABLE PARTICLES. — 2.1.1 Nota-
tion. — Let us consider two atoms, the first one
formed by electron e; and nucleus n,, the second one
by electron e, and nucleus n,. Both atoms are in the
ground state, and | e; : @,, > (i = 1, 2) is the ket in the
external variable state space of electron 1 when it is
bound to nucleus n;; | e, : @,, ) (i = 1, 2) is the same
state for electron e,. Both electrons also have spin
variables, and |e; : Mg ) is, in the spin state space
of e;, the eigenstate of the projection S, of its spin S,
on an arbitrary quantization axis Oz (Mg = + 1/2
for an electron). The spin states of ¢, are noted in a
similar way. In addition to these electronic degrees
of freedom, the system under study also possesses
nuclear variables. The nuclear spin variables kets
can be written |n, , : m; ) where m; h is the eigen-
value of I,, or I,,, projection of the nuclear spin I,
of n, or I, of n, on the Oz axis.



Neo 8

Finally, external nuclear variables have to be
included. Throughout the present article, we shall
study collision effects in the centre of mass reference
frame of the two atoms. In this frame, the external
state of the two atoms is written |n, :k;n, : — k)
where 7k is the linear momentum of the n; atom,
— 7Kk the linear momentum of the n, atom.
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the external and internal variables of each of the two
atoms approaching the collision. In the same way,
no initial correlation is assumed between the internal
(spin) variables of the two atoms (this is an excellent
approximation in low density gases). Under these
conditions, the density operator of the whole system
before collision can be written :

No correlation is supposed to exist initially between

Oinit. = Jd”ci u(h)f 43 k] w¥(k))

—K|® e :@n <10 | ®|€2:0n,)<C2:0,, | ®
® pi1(ny, 1) @ pany, €;) . 4))

In, :ki;np 0 — K> <(ny i Kj;n,

) In this expression, u(k,) is a complex wave function associated with a wave packet in the space of the two
atom relative particle (spanned by the kets | n; : k; n, : — k ). We assume that u(k;) is normalized :

f a3k, u*(k;) uk) = 1. 2a)

Since we want to include the possibility of any type of correlation between the internal variables of e;
and n, on one hand, e, and n, on the other, we have introduced the two density operators p,(e;, n;)
and p,(e,, n,) (*). These operators describe the initial internal variable state of the two atoms and, in general,
are not a product of an electronic by a nuclear spin variable density matrix (they act in the state space spanned
by the kets |e; : Mg)> ® |n, :m; ) and | e, : Mg ) ® | n, : m; ) respectively). In the particular case of two
hydrogen atoms (1/2 electronic and nuclear spins), p; and p, correspond to 4 x *4 matrices.

We assume that p, and p, are normalized so that :

Tr{p,}=Tr{py}=1. 2b)

2.1.2 Evolution operator. — We denote by S the unitary operator which describes the evolution between
time — ¢ (long before the atoms interact) and + ¢ (long after the collision). Since the collision time 7, is very
short (typically 1. ~ 107'? s) and the main interaction between atoms is electrostatic, it is possible to neglect
completely the spin evolution during the collision. This implies that the various magnetic fields (external fields,
hyperfine coupling, relativistic effects during the collision) acting on the spins are not too strong (?). Such a condi-
tion is generally well fulfilled in most laboratory experiments (). Neglecting the effects of collisions on spins is an
approximation which is very commonly used in atomic collision studies. When electronic spins are involved,
it is often referred to as the Wigner rule. In the case of nuclear spins, the approximation is generally even better,
and has been introduced by P. L. Bender in his thesis [14] (the nuclear spin inertia in a collision has sometimes
been called a spin Franck-Condon effect [15] or also nuclear flywheel effect).

The matrix elements of S between initial and final states are of two different types. The first type includes
elements like :

[Kny rkesng t — Ko | ey in, <€ i@, [1S[Ing tkismna: — kD le t@n, > 1€ @n, 0] = Syke, k)
(€]

(*) The letter ¢ will be used for density operators acting in the state space of the 2 atoms (external and internal variables). The letter p
will refer to one-atom internal variable density operators (reduced operators).

(*) This can be true even if the hyperfine structure in the ground state of the hydrogen atoms is completely decoupled.

(®) Even when very small, the evolution of the spins during a collision is not always completely negligible. In the case of spin exchange
collision, very high precision experiments with the hydrogen maser have made it possible to observe the effect of the collision duration
7. [16]. In this article, we shall completely neglect these very small effects and consider that S is an operator which acts only in the external
variable state space of the particles.
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or, if spin variables are involved :

[Kny:kesnp o —Ke [ <y cmy [ Kng imp | <€y 2 @ay, Mg | <€ Z(Pnz,Msll]
S[le, : @n, Mg D> |€2:0,,,Ms' > |ny imy) |ny:my)|ng i k;ny:— k)] =
= Sd(kr, ki) 5m,m',' 5m',m;"5MsM's' 5M§M§" (3b)

(S does not affect spin variables). In the initial as well as the final state, e, is bound to n; and e, to n,.
Since ¢, and e, behave in the same way during the collision, one can write :

Sd(kfaki)=[<nl:kf;n2:_kf|<e1:(pnzl<e2:¢n1 l]

S[iny :kisny: — KD e i @n, ) |€2: 00, 0] (o)
Also, the fact that n; and n, behave in the same way allow us to write :
Sd(kfa ki) = Sd(‘“ kf’ - ki) . (3d)

We shall call all corresponding processes the direct processes. They are characterized by the fact that the
association between the numbered protons and electrons are not changed by the collision.

It is clear that other processes are also possible. We assume that all physical properties of €; and e, which
affect the collision are exactly the same (although e, and e, are here considered as distinguishable particles),
and the same holds for n, and n,. Therefore, the two final states :

In; :Ke;np :— ke |ngimy ) |ny :'m;>|el D Qny Ms ) | €31 @, Mg )
In; ckesnp t — Ky ngimpy|nyimp) e @n, Mgy |€;:@n, Ms)

(e, is bound to n, and e, to n, in the second state) have exactly the same energy (exchange degeneracy). Both
states can therefore be reached after collision, and we introduce the notation :

St(kf’ki)=[<nl:kf;n2:_kf|<el :(Pn2|<e2:¢n1 |]S
[Iny:ksnp: — KD lerion D€ :n, )] (4a)

(an analogous relationship including spin variables can easily be written as in (35). One can also write :

Sike, k) = [{ny :ke;np 0 — ke[ ey 1‘Pn,|<ez3fpn2|]s
[Iny :ksnp = Ki) e i gn, >l €0 @q, 0] ' (4b)

and :
Sk, k) = S(— ky, — k). @o)
The corresponding processes are called transfer processes (*).

Physically, the possibility that electron e, becomes bound to n, and that e, transfers to n, can for example be
understood by considering n, and n, as two classical particles fixed at two points R, and R, respectively (in the
Born-Oppenheimer approximation, the motion of n; and n, can be studied in a second step). Electrons ¢;
and e, are then attracted by two potential wells centred at R, and R,. At very large internuclear distances
(IR; — R, | > a,, Bohr radius), two degenerate states of the 2 electron system occur :

ley :@r, )€z : @r, > (5a)
l€2:or, > l€1:@r,> (5b)

(e, is bound in the R, potential well, e, in the R, potential well, or the reverse). Actually (5a, b) are not strictly
speaking stationary states, since the tunnel effect allows both electrons to transfer from -one potential well
to the other ().

At lower values of the internuclear distance, the tunnel effect is no longer negligible, the coupling between
the states removes the energy degeneracy, and an energy difference AE between the g and u states appears.

(*) They are sometimes called exchange processes since they correspond to collisions where n, and n, exchange their numbered electrons.
Nevertheless, we shall reserve the word exchange for effects related to the Pauli principle (particle indistinguishability).

(®) Due to the interaction between e, and e,, the states in which e, and e, are both bound to the same nucleus have a much higher
energy than the initial state; they are not considered here.
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Starting from the initial state (5a), the system will be found in the state (5b) after a time T = nh/AE. If now
| R; — R, | is small enough to allow e; and e, to go classically from one well to the other, the transfer time
can be even shorter.

To emphasize that the transfer probability does not in itself include any electron identity effect, one can
consider a single electron problem : a collision between a proton and an hydrogen atom. In this simple case also,
the electron can jump from one potential well to the other. The probability of this process can be expressed
in terms of g and u potentials of the H? ion.

A more precise evaluation of the transfer probability can be obtained by calculating the energies Ey(R)
and E,(R) of the two electronic stationary states as a function of the internuclear distance R = |R; — R, |

(Born-Oppenheimer approximation), and using the phase shift method. The principle of this calculation is
recalled in Appendix A.

2.1.3 Internal variable density operator after collision. — Let us first calculate the spin density matrix
of e, and n, if, after collision, e, remains bound to n, (in other words, we only consider the projection of the
final state through the operator | e, : @, ;€; 1 @,, > <€ : @, ;¢€; : @, ). We must therefore take a partial

trace over the external variables and over the spin variables of e, and n,. The result is the density matrix p,(e,, n,)
with elements :

Cmy, Ms | pny,ey) [ my, Mgy =3 5 | d%;

mf M§
[<nl :kf;n2:_kf|<nl :m1|<n2:m’l,|<el :(Pn1’MS|<CZ:(pn23Mg ]]
So-inil.s+

[In; :ke;np: — ke ) [ng imp ) |nyimyp)|e Z‘Pn.,Ms'>|ez3(Pnz,M§>]

=3 ¥ | &% u(k) fdk. u*(lq)jel?’kr Sk, k) S3(ky, k)

mf Ms
{my M | py | mp Ms ) {my Mg | p; | mp Ms ). ©

The trace of p, is equal to one. Then, if we set :

Aq = jd:’ki u(k;) j 43k u* (ki) jd3kf Salky, k) S3(k, k) , (N

we merely obtain :
pdny, e) = Ay p; . (8a)
In a similar way, one gets :

pr(ny, €2) = Ay ps . (8b)

Physically, these equalities are easy to interpret : since the collision does not change the spin states, when e,
remains associated with n, or e, with n,, their internal state density operator is not modified at all.

The other possibility is that e, ends up in the | ¢, ) state, €, in the | p,, ) state. Let us for example calculate
the internal density operator of n, and e, when these two particles are bound after collision. We obtain :

{my Mg | pdny, €;) |mp Mg ) = ZMZ d%k;
mf M§

[<n1 :kf;n2:“ka|<nl smyp|ny imy|< ey 3(Pn2,M§’|<325‘Pnl,Ms|]
Saini(.S+

[|n, ckpsnp =Koy ngimp ) |ny imy)|e 3<Pnz,M§> | e, 3‘Pn.,M§>]
=2 j d*k; u(k) J a2 K u* (k) j a3k, Siks, k;) S*(ky, k)

my Mg
Kmp Mg | py | mp Mg ) {my Ms | py | my Mg )
= A ) {my Mg |py |mp M5 )y {mj Ms|p, | mi Mg ) ©
Mg my

where :

4, = j d*k; u(k;) Jd"’ ki w* (k;) j d’k; Sk, k) S*(ky, ki) . (10)
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We therefore obtain :

pe(ng, €) = A, Trs{p  } @ Try {p,} . an

where Trg denotes a partial trace over the S variables, Tr; a partial trace over the I variables. Equation (11)
shows that, if e, is bound to n, after collision, the internal variable density matrix of the corresponding atom is a
(tensor) product of nuclear and electronic spin density matrices (no correlation between the two spins).

Using the fact that S is an unitary operator (S* S = 1) and relation (2), one can easily show from defini-
tions (7) and (10) that :

A+ Ay =1. (12)

In the following, we shall therefore replace 43 by | — 4,. Another way to obtain equality (12) is to calculate the
spin density operator of n, after collision, which is, according to (8a) and (11) :

pe(ny) = (Ag + A) Trs{ py } . (13)

Since this operator must have a trace equal to one, (12) is necessarily true.

If now, in the experiment considered, the particles e; and e, play equivalent roles (although we still consider
here that they are theoretically distinguishable), it is convenient to define the density operator of the atom
labelled by nucleus n, as :

p(atom 1) = p(ny, e;) + p(n,, e,) . (14a)
In the same way, the density operator of the atom labelled by n, is :

p(atom 2) = p(n,, ey) + p(n,,e,) . (14b)
Each collision between an atom of species 1 and an atom of species 2 changes p (atom 1) into :

patom 1) = (1 — 4) py + A Trs{p; } ® Tr; { p,} 15)

[one can easily check on this result that Tr { p; atom 1) } = 1 when equations (2b) are satisfied]. Let us for
example consider an ensemble of atoms of one isotope (n; type nuclei, internal density operator p,), undergoing
collisions with atoms of another isotope (n, type nuclei, internal density operator p,) (). Without taking into
account Pauli’s antisymmetrization principle for the electrons exchanged, we then find that the density operator
evolution due to spin exchange collisions is :

d
P lcon.1-2 o€ pe(atom 1) — p,
or
d 1
—=Pileoni—2 = =g [—P1 + Trs{p1 } @ Trr { p2 }]. (16a)
dr T, :

In this expression, 1/T¢) is a rate constant which is proportional to the average over relative velocities v of the
product v4, for all possible collisions (average over energies and initial velocity directions), and also proportional
to the number density of atoms 2. Equations (16) show how collisions between atoms of type 1 and atoms of
type 2 transfer the electronic orientation from species 2 to species 1. It is clear that the density operator evolution
of species 2 evolves under the effect of the same collisions according to :

d 1
= P2 leot1-2 = gy [— P2 + Trs {p2} @ Trr { p1 }] (160)
ds Tcoll.
with :
T, _M a7
Tc(gflA n;

where n, (resp. n,) is the number density of atoms 1 (resp. atoms 2).

(°) At this stage, the nuclear spin /; and I, of n, and n, can have different values.
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It is also possible to calculate the effect of collisions between atoms of the same species, having initially
the same internal density operator. To do this, we assume that p, = p, = p, and the same reasoning gives :

d 1
aplcoll.=T“ [-p+Trs{p} ®@Tr; {p}]. (18)

This equation shows how spin exchange collisions tend to suppress the correlations between the electronic and
nuclear spin variables. One must nevertheless keep in mind that, here, we have only considered the effect of the
collisions on the density operator p. It is clear that, during the time between collisions, the hyperfine coupling
hamiltonian modifies the internal state of the atoms and can re-establish strong correlation between the spins
(in other words, I and S recouple after collisions).

2.2 INDISTINGUISHABLE ELECTRONS. — In this section, we consider that the two particles ¢; and e, exchang-
ed by nuclei n, and n,, are two indistinguishable electrons, and therefore introduce totally antisymmetric wave
functions (Pauli principle) to describe them. We denote by P, the exchange operator between these two electrons.
For example :

Pelel :(panS;CZZ(onz’MSI> = |e1 :(pané;CZ:(pnl,MS)‘

We still assume that n; and n, are fundamentally distinguishable particles, even if the experiment considered
do not allow to distinguish between them (the role of nuclear identity of the 2 atoms will be studied in the next
section).

2.2.1 Density operator after collision. — The density operator of the system before collision is now :

1 1
'—'2' [1 - Pe] Cinit. — 7= [l - Pe] »

7 7

where o;,;, is given by equation (1). After collision, it becomes :

L8[ = Pdowll — PAS* .

We now want to calculate the density operator ps(n;, €) associated, after collision, with the internal variables
of the atom labelled by n,. To do this, we have to take the trace of the operator written above over all internal
variables of the n,-atom (quantum numbers mj, Mg) and over k. Therefore, p¢(n,, €) is given by :

{my, Mg | pe(ny, €) | my, Mgy = stka u(ki)j d3k u*(ki)J kY Y
m{ Mg
[<n1 ‘Ke;np s — Ke [y imy [Knp imi <€y i@, Ms| e, ifpnz,Mé' |]
{l - Pe] Sainit. S+[1 - Pe]

[lnl 3kf;n23—kr>|n1 :m;>|n2:mll’>|el :(pm’MSI>|CZ:¢n23Mg>]' (19)

To obtain this expression, one can consider fully antisymmetrized final states (after collision). The operator
in the centre of the right hand side of (19) is then actually replaced by :

s e s )

But, since S and S * commute with P,, and P? = 1, one can easily obtain (19). It is also possible to write (19)
directly by using the fact that, when the initial state vector of the system has been fully antisymmetrized, it is
no longer indispensable to perform another antisymmetrization of the kets associated with the measurements
(see exercice 8 of complement D-XIV, Ref. [17]).

Four different terms appear in (19) : one term without any P, operator, one with two such operators, and
two terms containing one P, either on the right or the left side. It is easily seen that the first of these four terms
is exactly the one which was calculated in (6). It is therefore equal to :

(1= A4){m, Mg |p, |my Mg .
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The term which contains both P, operators is nothing but the expression calculated in (9). It thus gives a contri-
bution :

A m, Mg | Trs{p } @ Trp{ pp } | mp, Mg ).

The two terms which contain P, only once are new. To write them, let us introduce the coefficient :

Cs = J d*k; u(k) jd3 ki u*(ké)j d*k; Sa(ks, ki) Sk, i({) : (20)

The contribution to (19) of these two termsiis :
= CsY Y {my, Ms | py | mp, Mg > {mj, Mg | p, | my, Mg )
my MY
and

— CEY ) my, Mg | py | mp, Mg ) {miy, Ms | p | my, Mg ) .

mf M§
It can be shown that C is pure imaginary. To do this (’), let us use (3) and (4) to calculate :

Cs+ C§ = J.da‘ki u(ki)J. d3k] u*(k{)J d3k;

[Kny:kesny i —ke[<ep:@n <€ i@, |Sl€1:0n )€ 00D 0 tksny: — k)
(ny:kizny: — K[ <ey i@, [ in, | ST 0y ket —Ked ey ign, Dlesign, )
+dngiKkesny i —Ke [ <€y i, [ <€, | SNy ckisny i — kD | ey :(pn|>|62:(pnz>
(npikizng i = ki[<epin, <2 @ | ST Inyikesnyt — ke e ipn, D€ 00,0]. (2D
The internal quantum numbers m, and M play no role here, and have been omitted (writing them explicitly

would amount to adding & functions, see equations (3a) and (3b) for example). We can now use the closure
relationship :

1I=jd3kf[|n1 tkeyng t — ke ) (ny tkeyng t — ke (]
@Ller:@adler > @n | 00|+ €1 :@n D€ 0y )€1 Py | 0y, ]

and the unitarity of the operator S to write :
Cs+ C¢ = f d3k; uk;) | d3k; u*(k)

[Cnyikisn, :— K [<ey i@ <& :0n [1[Ing i kisno:—kDles 190 dlesi00,0]. (22

On the right hand side of (22), one recognizes the scalar product of two different initial states : in one of
the states, €, is bound to n, and e, to n,, in the other the opposite situation occurs. Since in the initial state the
nuclei are very far apart, the overlapping of the wave function of ¢, and e, is zero, and one then obtains :

Cs+C¥=0. (23)
We can therefore set :
Cs = idgn. (29)

where Cs is defined by (20) and A, is a real coefficient (8).

(") In the Appendix, another demonstration using the phase shift method is given.
(®) The Schwarz inequality gives :
1

|Cs 1P = A5 " < dg 4 = A — A)< 3.
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If 1, denotes the identity operator in the I variable space, one can write :
{my, Mg | py % (1|1'®TTI{P2 })|m,’, M >
= 2 my Ms|py | my Mg ) Sy mir
my Mg
Y miy, Mg | py | my, Mg )
my

=3 2 my, Ms | py |mp, Mg ) {mij, Mg | p; |mj, Mg > . (250)

mi M
In the same way :
Cmyp, Ms | (1, @ Trp { p2 }) X py |my, Ms ) = Z Zﬂ(m’,’,Ms|p2Im}',Mg’)(m,,Mglp, | mp, Ms > .
e @5b)

These equalities allow us to write the terms in 4 3, in an operatorial form, and we obtain for the density operator
pe(ny, €) after collision :

pe(ny, €) = py + A1<Trs {pP1}®Tr {p,} - P1> — idgen[p1, 1 ® Try {p2}]. (26a)
In a similar way, the density operator of the atom labeled by n is, after collision :
L .
pe(nz, e) = py + At<TrS {p2}® Trr {p;} - Pz) — id5en.[p2, 11 ® Tr, { p, - (26b)

2.2.2 Physical interpretation. — Equation (26) describes the evolution of the atomic internal variables
when the indistinguishability between electrons is taken into account. The equation analoguous to (16) is now :

d 1 .
a—;p(atom D) leon. = Torn { —p1+ Trg{p1 }® Tr; {p2} + is[%® Tr; {p,}, Pl]} 27

where :
s
Ke = Aexch.
S A‘

(28)

(this coefficient is noted x in Ref. [9]). One immediately notices that the first two terms of the right hand side of
(27) are nothing but the terms which already appeared in (16) : therefore, the electron identity does not affect
the way electronic polarization is transferred from n,-type atoms to n,-type atoms.

The only effect of the Pauli principle is to add to the right hand side of (27) a term proportional to kg [that
is to the coefficient Cs defined in (20)]. It can be seen on this expression that the new term arises from interference
effects between direct and transfer scattering processes in the same final direction k;. Since this term appears
as a commutator, it does not change the trace of the density operator; the introduction of the Pauli principle
is equivalent to an effective hamiltonian :

Tuc
Hen, = — ﬁ LT Tr {p:}. (29
coll.

This hamiltonian acts on the electronic spin variables of atoms 1 and depends only on the electronic spin

density operator of atoms 2.
If :

Tr{py} oc s

(rotation invariant electronic density matrix for atoms 2), the Pauli principle term in (27) vanishes. More gene-
rally, since electrons are spin 1/2 particles, we can write :

Tr; {p2} = 2 [ + <6 2.6]

2
where :

h



778 JOURNAL DE PHYSIQUE Ne 8

and :
K6, =Trs{eTr; {p2}}. (31a)

The Pauli principle term in (27) then takes the form :

Ks

im[(“%-ﬂ',l’ll (31b)

In other words, spin exchange collisions involve an apparent magnetic field acting on the electronic spin of
atoms 1 (°). This apparent field is parallel and proportional to the electron spin polarization of species 2. The
fact that only the electronic orientation of each species affects the density matrix evolution of the other has been
pointed out by F. Grossetéte [18] and P. Valberg [19] (see also [2]).

It is well known that indistinguishability terms relative to identical particles vanish when the particles are
in orthogonal spin states and when their spins remain unaffected during the physical processes under study
(see for example the discussion in chapter XIV, § D-2-b-g of Ref. [17]). Physically, this arises because, in principle,
the spin states could be used to distinguish the two particles. Let us assume that the internal electronic and
nuclear variables of atom 1 are not correlated, that is :

p1=pl®p}. (32)
The electron spin exchange shift term then becomes :

is p1 ® [p3, pi], (33)

pi=Tr{p:}. (34)

A necessary and sufficient condition for the two electrons to be in orthogonal spin states is that the density
matrices are such that :

where :

pips=pipi=0. (35)

This is obviously true if p} and p3 are projectors onto two orthogonal states. Conversely, if condition (35) is
fulfilled, p§ and p3 can be diagonalized in the same basis. If their product is zero, the matrices in this basis
never have non-zero populations in the same level and the electron spins are in orthogonal spin states. Now,
it is easy to see that condition (35) implies that the spin exchange shift term (33) vanishes, and we check in this
way that particle indistinguishability effects then disappear.

In fact, one notices immediately on (33) that condition (35) is too strong for the Pauli principle term to
disappear : it is sufficient that p$ and p5 commute with each other. It must nevertheless be kept in mind that this
condition is only valid because we chose in (32) a p, density matrix without correlations between the spins. In
general, when I and S are correlated, spin exchange shift terms can subsist even if p§ = p3 (see § 3, where spin
exchange shift terms are calculated when p; = p,).

2.3 INDISTINGUISHABLE NUCLEI AND ELECTRONS. — We shall assume in this section that the two nuclei n,
and n, are also indistinguishable particles. For example, the collision occurs between two hydrogen atoms,
so that n; and n, are two protons (spin 1/2 particles). The notation P, will be used for the exchange operator
between n; and n,. This operator acts only in the nuclear variable state space, and :

Polng:ksny =Ky [nyimy)|nyimp) e i@n )€ :@n, )
=|ny:—Kkinya K} [ngimp)ny imp) e ign, ) €200

(it must be kept in mind that states like | e, : ¢, > are not invariant under the action of P,).
2.3.1 Density operator after collision. — Before the collision occurs, the two atom density operator is (*°) :

201 = Pl = P a5 1 = P {1 = 2]

(°) Hence the notation — pu.S6H for H,) in equation (VI.8) of Ref. [2].

(*°) We assume here that the nuclei are fermions. When they are bosons, it is sufficient, in all the following calculations, to change the
sign of all terms linear in P, [terms in C; and D).
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where a;,;;. is still given by (1). Except for the fact that two exchange operators P now appear, the calculation
is very similar to the one of section 2.2. Equation (19) has to be replaced by :

{my, Ms | pe(n, €) |my, Ms ) =

5 jdi‘ki u(k;) j &K (k) J &Y Y
mi M§

[{ny:keny i —Kke [ Knyoimy [{np imy | ey i @ny Ms | < €20 @y Mg ]

[1 = PJ0I = P.] Sop, S*[1 — P,][1 - PJ

[Iny:kesnyt = Ke) Ing imp > | ng imi)len i @n, Ms) |€2:¢n, MsD].  (36)

To obtain this equality, we have made use of the fact that S commutes with both operators P, and P,
and of the relationship P2 = P2 = 1. The factor 1/2 which stands in front of the right hand side of (36) is neces-
sary if the integral over k; is taken over all k; directions (4 = steradians). This is because the action of the operator

(1= P - P

on the two kets
|n; = ikf;ng= $kf> Iel 3(Pm>|32:‘Pnz>

(we omit all spin variables which play no role here) gives the same ket. Therefore, in order to avoid counting
twice the same physical final states, either the k; integral in (36) must be restricted to a half space, or a factor 1/2
must be introduced as we have done.

When the two products [l — P,] [1 — P.] are expanded in (36), the number of terms which appears is 16.
Since we now discuss nuclear exchange effects, it is convenient to classify these terms according to the number
of operators P, involved. The first four terms contain no such operator at all and are actually nothing but the
four terms already discussed in the preceding section (multiplied by a factor 1/2). Their contribution is therefore
simply given by (26a). There are now four terms which include one P, operator on both sides of Sp;;, S™*.
Calculating these terms amounts to doing the same calculations as before but after permutation of n, and n,
in the final state. In other words, these four terms merely correspond to the calculation given in section 2.2
for the density operator of atom n, after collision. Equation (26b) therefore gives their contribution directly.

The remaining 8 terms have not been considered before and represent the effect of nuclear indistinguisha-
bility. Each of these terms contains one operator P, in the right or in the left of So;,;, S*. We shall classify the
terms according to the number of operators P, included. The first two terms have no operator P, at all (pure
nuclear exchange) and include — P, Spi,i. St or — Sppie. ST P,.

The contribution of the latter for example to (36) is :

~ 5 &k ulk) jdw (k) jdakf )

mi M§
Saks, ky) S*(— ki, ki)
{my Ms | py |my Ms ) {my Ms | p; | mp Mg

If we set :

¢ = jd"' k; u(k;) jd:‘ ki u*(ks) J d%k; Salky, k) S*(— ki, ki) (37
(we shall see below that C}, like Cg, is pure imaginary), we can write this contribution :

1 /
—§C1<m1Ms|Pl X (Trs{p2} ® 1) | my Mg > .

In the same way, the term in — P, Sa;,;, S* takes the form :

1
=5 CF Cmy Ms |(Trs {p2} @) X py | mp Ms ).
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Let us now consider the two terms in P, P, So;;, S* P, and P, Soy,;, S* P, P, (two operators P, included).
The calculation is of the same type as previously, and one obtains for the first term :

- %Id3ki u(ki)fd3ki' u*(k,f)fdskf% 1% Sa(— ke, k;) S*(kq, ki)

Cmy M) py | mi M3 > Cmy My | pa | Mg >

= 2 Cm My lps x (Trs {1} @19 Imi Mgy, ()
and for the second : |

1 ’ !’
‘5C1*<m1Ms|(Trs{P1}®’ﬂs) X py |mp Mg ).

There are now only four terms left to evaluate. Two of them are in P, P, S S* and Soy, St P, P,
respectively. The latter for example gives a contribution :

mi{ Mg

% Jd3ki u(k;) f d3k; u(k;) Jd3kr > Y Sake, ki) S(— ki, k)

" n 1 n ! !’ 1 !’ 1
{my Mg | py | my Mgy {my Mg | py | mp Mg > =§D1s<m1Ms|P1 X py |mp Mg ). (39)

The coefficient D is defined by :

Dys = j d*k; u(k;) jd3k{ u* (k;) I dke Sa(ke, ki) S¥(— ke, ki) . (40a)

The term in P, P, So;n, S* is the hermitian conjugate of this result and is therefore equal to :

1 ' oag
§D1’§<m1Ms|P2 X py | mp Mg ).

As for the last two terms, in P, Soi,; S* P, and P, Sy, S* P, they can also be calculated in the same way.
The former, for example, is found equal to :

1 YT
§E1s<m1Ms|Tr2{PeP1®P2Pn}|m1M5>~

In this expression, Tr, = Try, Trg, is the partial trace over all internal variables of atom 2, and Es is the coef-
ficient :

Es = jd:’ ki u(k;) j 43k u*(k{)j a3k, Sk, k) S*(— ke, ki) . (40b)

Before we discuss the physical interpretation of all the different terms which have been found, it is conve-
nient to remark that :

C,+CF=0 (1)

(C is pure imaginary) and :
Dis+ Es=0. (42)

The proof of these two equalities is similar to the proof of (22). Using the same argument (and interchanging
particles n and e when necessary ; see (4b, ¢)) :

C,+ CF = jd3ki u(k;) f A3k u* (k)

[Knyckisn, : — K [<eytn, <€ 0n, []STS[Iny: —kisny iK€y ign, > l€2:0n, 0] (43)
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Since St S =1, C; + C¥ is the scalar product of two kets for which each of the nuclei moves in opposite
directions and each electron is bound to different nuclei. The integration over nuclear position variables then
gives zero and (41) is established. In the same way, one obtains :

Dis + Eis = jdski u(k;) jd3k{ u*(kj)
[Cny i kiing ik <oy g 1<t @ny [1S* SImy i—kisng 4k > ler g > le2i0n, 0] =0.  (44)

This expression vanishes because the nuclear wave packets of the bra and the ket do not overlap.
It is also easy to see on definitions (40a) and (40b) that D5 and E|s are real coefficients.
To summarize, the expansion :

(I = PJ[l = P,

X

[I_Pe][l _Pn]

1 — P X -2

+ Pl —P] x Pl —=P]

- P, X |
-1 X P,

— P, P, X P,
- Pe X Pe n

+ P, P, X 1
+ 1 X P, P,
+ P, X P,

-+ P, x P,

corresponds for the internal variable density operator after collision to :

pe(e, n) =

] At .Aesxch.
5(1 — A)p, + TTrS{pl @ Trp{p,} — 1_2_[P1,'"1®TTI{P2}]

1 A
+§(l - An)P2+:;‘-Trs{P2}®Tr1{P1} —iTh'[Pz,'ﬂl(gTrl{Pl 3]

i i
- EAc’xch.[pla Trs { P2 } ® 'ns] - § Aelxch.[pZ’ TrS { P1 } ® ’nS]

1
- §E13<Pl X pa+ p2 x pr = Try { Popi(1) ® py(2) P + P, pi(1) ® py(2) P, }) (45)

Here we have defined the real coefficient AL, by :

lA éXCh. = CI . (46)

2.3.2 Physical interpretation. — 1t can be first noted that, in equation (45), the two density operators p;
and p, play a perfectly symmetric role, as can be expected when n, and n, are identical particles. One can also
see that the only terms which contribute to the trace of p¢(e, n) are the terms in 4, or (1 — A)), that is the terms
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which were discussed in section 1.1 (distinguishable particles). All commutators have a zero trace, so the only
terms which do not obviously have a zero trace are the terms in E ;5. Nevertheless, since :

Tr{Pepl®p2Pn}
Z Z <1:mbMS;Z:mI’sMS,IPepl®p2Pn|1 :m13MS;2:m}’MS’>

MsMs mpmi

Z Z <mbMSllp1Im;’MS><m;’MS|p2|mlaMS,>

MsMs mymjy

= Y {my, Mg|py X py|my, Mg )

mlM_é

Tr{ps x p2}, “7)

it can easily be shown that none of the indistinguishability terms changes the trace of p¢(e, n).

Nevertheless, they do in general ¢hange the partial traces of this operator over either I or S variables. The
effect of the terms proportional to 45, , already discussed, is a rotation of the electronic spin variables around
{S>; or {S ), (electronic spin orientations associated to p, and p,). The terms proportional to AL, are
similar, but the effective hamiltonian now acts only on the nuclear variables. This is not surprising since these
terms arise from the nucleus identity (no P, operator involved). If either matrix p; or matrix p, (or both) are
such that the nuclei are polarized (non-zero nuclear orientation), there is an apparent magnetic field associated
with the collision, and this field only acts on the nuclear variables (*!). The nuclear identity effects are therefore

strongly reminiscent of the electron identity effects. Nevertheless, it should be noted that 43, involves inter-

ference effects between direct and transfer processes in the same direction of the vector k; (see (20)) but AL,
for opposite directions (see (37)). This is related to the fact that P, changes the velocity of both nuclei in the centre
of mass reference frame (interference effects associated with scattering processes towards opposite final directions
are typical of nuclear identity effects, and analogous results are obtained in the study of metastability exchange
collision). This direction change explains why the nucleus identity effects are often less pronounced than the
effects of electronic identity [20] : for example, if both Sy(k;, k;) and S,(kq, k;) are strongly forward peaked func-
tions (they are supposed to have negligible values if the angle between k; and k; is not small), AL, is practically
zero, but not necessarily A5 .

The terms proportional to E;g in (45) involve both the identity effects of electrons and of nuclei together.
The terms in p; x p, and p, X p; have been obtained from the action of the product operator P, P,. This
operator exchanges both constituent particles of the atoms, that is exchanges atoms considered as complete
entities (atoms in the etymological meaning). These two terms can therefore be called the atom-exchange terms,
and the plus sign arises from the fact that atoms made up of two fermions are bosons (*2). The two last terms
in (45) are more complex and arise from interference effects between electron and nucleus exchange. As dis-
cussed above, their presence exactly cancels the variation of the trace of the density operator due to atom-
exchange.

Figure 1 shows a schematical representation of the 4 physical processes which influence the density operator
evolution. They transform the same initial state with numbered particles into 4 different mathematical kets,
all corresponding to the same final physical state for identical electrons and protons. Therefore, interference
effects between any pair of these processes are possible. For simplicity, we shall denote them a, b, c, d respec-
tively. The various terms in equation (45) then correspond to the following combination (after an integration

over 6) : aa* bb* ab* + b*a
dd* cc* cd* + ¢c*d

ac* + c*a bd* + b*d

ad*+d*a  bc* + b*c.

We conclude this section by remarking that, if either p, or p, is proportional to 1, all particle identity terms
in (45) vanish. This is obvious for the terms in 45, and 4) ., which have the form of commutators. Since :

Cmy, Ms | Try { Py py(1) ® p2(2) Pe + P ps(1) ® p2(2) Py } | myp, M3 )
= Z <m’I,3MS|p1 Im;’Mg><mlaM§|p2lmlll’MS,>

miM§

+ {my, Ms | py | my", Ms ) {miy, Ms | py | my, Mg > (48)

(*") If the nuclear spins are greater than 1/2, there is also an apparent electric field gradient acting on the nuclei which depends on
the nuclear alignment, etc...

(*2?) Of course, if the nuclei were particles with integer spin (deuterium for example), a minus sign would be necessary.
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Fig. 1. — Four different scattering processes are schematically
represented in diagrams (a), (b), (c) and (d). The particles are
labelled : n, and n, are the two nuclei, e; and e, the electrons.
p1 and p, are the density operators describing the internal variables
of the two atoms before collision. When the particles are distin-
guishable, these diagrams connect the same initial state to four
orthogonal, physically different, final states. For identical nuclei and
electrons, the final states become physically indistinguishable,
so that interference effects between the diagrams occur. As discussed
in the text, these effects introduce additional terms in the equations
giving the evolution of the atom internal variables, and produce
various apparent magnetic fields acting on the nuclear and electronic
spins.

is simply equal to :

2{my, Ms | py | mp, Mg )
if p, oc 1, it is easily seen that the terms in Eg also vanish in this case (the same is obviously true if p; oc1).
Therefore, if :
p1oc 1+ Apy
p2oc T+ Ap,

the exchange terms in 4, are first order in Ap, and Ap,, but all the other terms are second order (crossed terms
in Ap; and Ap,).

3. Applications to a few special cases. — Let us now apply the equations obtained to a few special cases.

3.1 COLLISIONS BETWEEN ATOMS WITH THE SAME DENSITY MATRIX. — Equation (45) is general and no assump-
tion has to be made concerning the initial density operators p, and p,. This equation can be used for example to
describe the effect of spin exchange collision between a polarized hydrogen beam and a hydrogen gas of atoms
having any internal variable state. Nevertheless, in many practical situations (optical pumping experiments
with an alkali vapour for example), no correlation exists between the internal state of an atom and its velocity,
so that the two initial density operators are simply equal. In (45), if we replace p, and p, by p;, we obtain :

pe,n) = (1 — 4)pi + A Trs {p,} @ Tr; { p; }
- iAesxch.[ph 14 ® Tr { p; }] - iAeIxch.[pia Trs {p; } ® '"s]

— Eis(pf — Ty { Papi(1)® p(2) P.}) . (49
To write this equation, we have used the equality [only valid if p, = p, = p;] :
Try { Py p(1) ® p(2) P } = Try { P pi(1) ® pil2) Pa } (50)

which can easily be shown from (48).
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We have already checked in the general case (p, # p,) that the trace of p; is equal to the trace of p;. Other
quantities which are conserved are the angular momenta { I ) and { S ) (and therefore { F »). It is practically
obvious on (49) that the sum of the terms in (1 — A4,) and A4, has this property. In addition, this is also true for
the exchange terms in (49), since :

Tr{SPi'“1®Tr1{Pi}}=Trs{STrl{/}.'ﬂ1®Tr1{Pi}}}=TrS{STr’{pi} x Trr{pi})
=Tr{S1®Tr; {p;}pi}
s

which shows that { S ) is not affected by the commutator in A4.,. On the other hand, I commutes with an
electronic operator and < I ) is not affected either. The same reasoning being clearly possible when I and S are
interchanged, so that neither of the terms in A5, or AL, affect { I) and ¢ S ). Finally, the term in E also
has this property : ’

Tr (SO T (P p) @ p@ P} = T AMs 3 Cmi Ms| oy g Mi> Cmy M3 | oy | mi M >
= Tr, {S(1) p2(1) } .

Physically, since we have assumed that the collision does not act on the spin variables, it is satisfying that { I )
and { S ) are conserved.
Equation (49) can be compared to equation (B.2) in Appendix B of reference [9], with the correspondence :

p(H, H) = p(1) ® p(2)
o(H).o(H) =2P, — 1
Osp o€ A,

KOsp o€ A gen,

osp oC Eps

K' 5p o€ Agyen,

(for a more precise comparison of these four numerical coefficients, see the Appendix of the present article).’
One has to take the trace of equation (B.2) over the H variables. This calculation gives a first contribution equal
to :

Tr, { =3 pi()®pi(Q) +(1+2 ix) [2 P.— 1] [(D® p(D]+ (1 -2 ix) [p(1)®pi(2)] [2 P.—1]
+ 2P, — 1][p(1) ® pi2)][2 P, — 1]}
=—-3p—-U+2ik)p — 1A —-2i)p; + p;
+ 4icTry ([P, () ® p@)]} + 4T { P, p(1) ® p) P, }
= —4p+4Tr {p} @Trs{ p}+ 2ixTry {[6(1).6(2), pi(1) ® pi(2)] } - (5D

Since :
Tr, { [6(1).6(2), p;(1)® p(2)] } = < 6 >2.[a(1), p;()], (52)

we obtain results identical to three first terms of the right hand side of (49) (see also (315)). The terms written
in (51) therefore contain the transfer effect and the electron indistinguishability effect. A similar agreement can be
found for the nucleus indistinguishability terms [terms proportional to o] :

Tr{ — 3 p(1) ® pi2) P P, + (1 + 2ix’) R P, — 1] P, Py[p(1) ® pi(2)]
+ (1= 2i) [p(1) @ pi(2] P P2 P, — 1] + [2 P, — 1] P, P[pi(1) ® pQI[2 P, — 1]}
= =3 —(1+2iK)p} — (A =2 p} + p}
+ 4 T [P, D ® A1) + 4T {Pap(D® AV P ). (53)

We have made use of the fact that [see (39)] :

Tr2{p1(1)®p2(2)PePn}= P1 X P3

(54)
Tl'z{PePnl’l(l)@Pz(z)} = p2 X p1 .
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The term in — 4 p? corresponds to the first term proportional to Ejg in (49), the term in Tr, { P, pi(1) ® p;(2) P.}
to the second term proportional to E;s. As for the term in k', a reasoning similar to the one which gave (52)
shows that it is the nuclear identity term [proportional to Adxn. in (49)].

Remark. — If p, # p,, the development of equation (B.2) of reference [9] gives a result in which neither
the terms in oy nor the terms in o4 are invariant when p, and p, are interchanged. For example, (53) becomes :

—3p1 X p2— (A +2iK)py x py — (1 —2iK)py X p2 + p2 X py
L + 4K Try { [Pa, p1(1) @ px(2)]} + 4 Try { P, p1(1) ® py(2) P. }
+ 2Try { p1(1) ® p2(2) Py — P, P, ps(1) ® p2(2) P }

which does not coincide with our result (45). We therefore think that the validity of equation (B.2) of reference [9]
is restricted to the case when the internal state of the colliding atoms is the same. Otherwise, equation (45) should
be used.

3.2 SPIN EXCHANGE SHIFT OF THE 0-0 HYPERFINE COHERENCE. — As an illustration of the simplification
obtained when using equation (48) instead of relationships involving 16 x 16 matrices, we shall calculate the
effect of spin exchange collisions between hydrogen atoms on their ground state 0-0 hyperfine coherence. We
assume here that :

F=1 F=0
P W '
a 0 0 : 0
0 b 0 ;' x + iy
p=10 0 | 0 (55a)
0 x—-iy 0 | d
[the order of the states being |[F = I, M =1 |F=1,M=0)|F=1,M=—-1),|F=0,M=0);
we use the same notation as reference [11], with j = x — iy] with :
a+b+c+d=1. (55b)
In the decoupled basis | m; Mg >, this matrix becomes :
I+ +> I+ => e ==
2a 0 0 0
1 0 b+d+2x b—d—-2iy 0
pi = - 55
2{ o b—d+2iy b+d-2x 0 (55¢)
0 0 0 2¢
It is then easy to see that :
<I,>=%[a—c+2x] (56a)
(S,>=%[a—-c—2x] (56b)
CF,) =[a—(] (56¢)
(I, S and F are respectively the nuclear spin, electron spin, and total spin divided by #).
Taking the two partial traces of (55¢) leads to :
% + <L) 0
pr=Tis{p}= i (57a)
and
LR 0
ps=Tr {p}= (57b)
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(no coherence is left in p; and pg in this particular case). A straightforward calculation then gives p; ® ps and,
coming back to the | F, My ) basis, we obtain :

[14+(F,>]?—4x? 0 0 | 0
1k 0 [1-CF, >*]+4 x? 0 ;
Pr®ps =7 0 0 [1-(F, > —4x* | 0
0 x 0 { [1=<F, >*]+4 x?

(58a)

This matrix gives the density operator just after collision when all particle identity effects are ignored (i.e. only
the terms proportional to a5y oc A,). It gives a generalization of the results of Appendix II of reference [8] to
the case when ( F, ) # 0. Similar calculations give :

0o 0 0o o
0 —2iy 0 d—b
[pi 11 ® ps] =<S.> 0 0 ol o (58b)
0 B—d o T2y
0 0 0i 0
0 2ip 0} b-d
[pis pr ®1s] = <L) ¢ 0 0 o (58¢)
0 d—b 0| —2i
a* 0 0 ! 0
0 b + x* + y? 0 | b+d(x+iy
pi X pi=| 0 0 c? i . (584d)
0 G+dx—ip) 0 | d>+x2+y
and finally :
Tr, { P, pi(1) ® pi(2) P } = Try { P, pi(1) ® pi(2) P, }
_ 2
a2+<b—2—d> +y? 0 0 0
2 —
0 (b“;d) +("+")2(b D |y 0 x(b+d)+iy@+c)
= _J\2
0 0 c2+<de> +y? 0
2 —
0 x(b+d)—iy(a+c) 0 (b—;—d> +x2—£‘i€)—2@——fi—)
(58¢)

As expected, the electron and nucleus identity terms are proportional to { S, ) and { I, ) respectively (apparent
magnetic fields proportional to the orientation). The crossed exchange terms have a more complex structure as
shown by (58d) and (58¢). From these equations, it is possible to obtain the 0-0 hyperfine coherence (x+ iy);
just after collision

e+i)y = (1=4) c+ip)+ A4, X +idSen < S, > b—d)—idien <L > 0—d)+iE;sya+c—b—d).  (59)

The first two terms in the right hand side of this equation show that, when a spin transfer occurs (term in 4,),
the hyperfine coherence x + iy is simply replaced by its real part x, the imaginary part iy being completely
destroyed. This can be understood physically from the equations :

x=C1L) =<8
yOCIm<I_S+>=<IxSy—1ny>=<(I><S)z>
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which show that y, but not x, depends on the correlations between I and S variables. We have seen earlier that
{I)and { S ) arenot affected by the collision which explains the complete conservation of x. On the other hand,
after a process where I and S are decorrelated, { I, S, — I, S, ) is replaced by { I, > { S, > — (I, > { S; ).
Since the density <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>