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Résumé. 2014 Quelques structures possibles des cristaux liquides chiraux, lorsque la phase isotrope est thermody-
namiquement instable, sont analysées à l’aide de la théorie de Landau. On montre que, quand le terme cubique de
l’énergie libre est suffisamment faible, comparé au terme chiral, la transition peut avoir lieu vers un cristal liquide
à structure cubique centrée plutôt que vers la phase cholestérique (hélicoïdale) habituelle. Nous avançons une
conjecture suivant laquelle cette structure cubique centrée (1432) serait caractéristique de la phase cholestérique
bleue. Nous présentons certains arguments en faveur de cette suggestion, ainsi que les difficultés qu’elle soulève.

Abstract. 2014 Using Landau theory, possible structures that can occur in chiral liquid crystals when the isotropic
phase becomes thermodynamically unstable are analyzed. It is shown that the transition may be to a liquid crystal
phase having a body-centered cubic (1432) structure rather than to the usual cholesteric (helicoidal) phase when the
coefficient of the cubic term in the free energy is sufficiently small with respect to that of the chiral term. It is
conjectured that this bcc structure characterizes the cholesteric blue phase. Arguments supporting this suggestion
as well as the difficulties it presents are discussed.
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1. Introduction. - Certain liquid crystals derived
from cholesterol (e.g., cholesteryl oleyl carbonate

(COC) and cholesteryl oleate (CO)) exhibit a so-called
blue phase in a narrow temperature range between the
isotropic and normal cholesteric (helicoidal) phases.
Although this intermediate phase was first reported [1] ]
in 1906 and, as its name indicates, it is visually quite
distinct from the helicoidal phase, its structure is still
unknown. However, the following experimental facts
have been established : (a) the blue phase, like the
isotropic one, is optically isotropic [2], (b) the isotropic
to blue phase transition is thermodynamically similar
to the isotropic-helicoidal one [3, 4] (e.g., the ano-
malies in the specific heat are of approximately the
same magnitude [3]), (c) the cholesteric to blue transi-
tion (i.e., with increasing temperature) is accompanied
by a small thermal anomaly [3, 4], (d) the NMR
spectrum of the blue phase indicates that this phase
is a stable one with long-range orientational order ;
also, the blue and isotropic phases have similar spectra,
which are distinct from that of the normal cholesteric

phase [5], (e) there is a significant difference in the
critical dynamics (in the isotropic phase) between
cholesterics undergoing an isotropic to blue transition
and those exhibiting an isotropic to helicoidal tran-
sition [6, 7].
A possible structure for the blue phase has been

suggested by Saupe [2]. His structure is essentially
a bcc lattice of point defects and, except in their imme-
diate vicinity, the local director configuration is

similar to that of the normal cholesteric phase.
However, as pointed out by Saupe himself, he had
no theoretical basis for his structural ansatz. Such a
basis is provided by this work.
We shall here analyse some possible structures for

chiral liquid crystals by studying the transition from
the isotropic phase within the framework of Landau
theory [8]. In addition to the classical cholesteric

(helicoidal) phase (phase I) two other simple phases are ’ 
possible, characterized by body-centered cubic (bcc-
phase II) and hexagonal (phase III) symmetry,
respectively. In the next section, we shall show that
phase II is expected to occur when the coefficient
of the cubic invariant in the Landau free energy is

sufficiently small compared with that of the chiral
term [9]. In the concluding section, we discuss the pos-
sibility that the phase II bcc structure characterizes
the blue phase [10] and compare calculated pro-
perties of the isotropic to bcc phase transition with
those observed experimentally for the isotropic to
blue transition. Arguments supporting this identifi-
cation as well as the difficulties it presents are dis-
cussed.

2. Landau theory of cholesterics. - We begin by
considering the isotropic to nematic phase transition.
Let us expand the order-parameter characterizing
this transition in spherical harmonics Yi"’, where

1, m ( m  1) are integers. Since Y8 belongs to the
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unit representation, it does not appear. Neither do 
the functions Ym1 , due to the requirement that the
system be invariant under a rotation by n about the
nematic axis. Thus, to lowest order, the isotropic
to nematic transition can be described using as an
order-parameter any real linear combination of the
five functions Y2 , all of which are degenerate at

k = 0 (see Fig. 1 a).
As shown schematically in figure 1 b this five-fold

degeneracy, which is characteristic of the isotropic
to nematic transition, is lifted when the isotropic
liquid phase no longer possesses inversion symmetry.
In this case the transition from the isotropic phase
is expected to be to one of the three phases defined
in Sec. 1, each of which is characterized by a set of
equilibrium wave vectors { ki }, with  ki 1 = ko # 0,
and a structure which is invariant under a 7T rotation
about the axes î =_ ki/ko. Since the functions

Y2Il(Oi’ çi) are not invariant under such a n rotation
while the function Y2 cannot, by itself, describe

ko =1= 0 ordering, it follows that the (real) order-

parameter appropriate to a description of the possible
phase transitions of the chiral system will be basically
a linear combination of basis functions

and their complex conjugates (cc)

with amplitudes ju, and Ili, respectively. Theses

function-pairs each form a real irreducible repre-
sentation of the group of the wave vector ki. (Note
that each function-pair Oi, 03A6i* has been defined with
respect to a distinct polar coordinate system, having î
as its polar axes. The zeros of the azimuthal angles coi
are defined in an identical manner for all i).

Since, for isotropic to cholesteric phase transitions,
the order-parameter 0 can also include a term pro-
portional to Y20, we have finally

for the Landau order-parameter. The coefficients J1.o,
J1.i are position independent. To describe the isotropic

Fig. 1. - Schematic representation of the free energy associated
with the order-parameter basis functions Yi (1 m 1  2), for the
case of (a) an isotropic to nematic phase transition and (b) an
isotropic to cholesteric phase transition.

to phase 1 (usual helicoidal) transition, we set n = 1

and 00 = 01, (fJo = Q1. For isotropic to phase II (bcc),
we take n = 6, with the six vectors ki forming a regular
tetrahedron and aIl Il = 1 Ili equal. For this structure,
we shall set po = 0 as no mixed third-order invariant
can exist. We thus neglect contributions of O(UÓ4)
in our treatment of this phase transition. Finally,
for the isotropic to phase III (hexagonal) transition,
n = 3, the three k-vectors form an equilateral triangle,
and again all p == 1 Ili 1 are equal. The polar angle
00 of Y2 is defined relative to the axis îo lying normal
to the plane of the triangle.
We now expand the Landau free energy per unit

volume F in powers of the order-parameter and its
lowest-order spatial derivatives. Up to fourth-order
in 1À and po we have

where
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Note that we have a simple form for the third- and
fourth-order contributions to the free energy with

only a single coefficient for each term. This is physi-
cally reasonable as the cholesteric phases are, on a
microscope level, basically the same as the nematic
phase. The explicit expressions for the third- and
fourth-order contributions F3, F4 depend upon which
of the three phase transitions is being considered.
For F3 we obtain

with

for transitions to phases I, II, and III, respectively.
Note that F3,, and F 3III are the maximum magnitudes
for the third-order contributions, and were obtained
by taking all the ,ui to have the same phase. (This
is expected to correspond to the configuration with
lowest free energy.)
The fourth-order contributions F4 are as follows

with

We stress that c and y are assumed to be always
positive.

Setting (8F/8k)k=ko = 0 yields ko = - d/2 c and

We now wish to determine, as we lower the tempe-
rature T of an isotropic phase cholesteric liquid
crystal transition in the phase transition region,
which of the above three possible ordered phases
will first appear. In Landau theory, this is equivalent
to varying ao, which can be written as [8]

where To is an idealized isotropic to ordered phase
transition temperature for the case d = 03B2 = 0. The
parameters (d2/4 c), a, fl and y are, as usual, regarded
as temperature-independent in the phase transition
region.
We first consider the isotropic to helicoidal (phase I)

transition. The total free energy density FI is obtained
by summing F2 (with n = 1 ), F3, and F4, as given by
(6), (4a), and (5a), respectively. For fi = 0, it follows
from (6) (with n = 1) that the transition will be a
continuous one, occurring at t = tI = d 2/4 ac. The
primary order-parameter is J1-, with lio being secon-

dary. The crucial point, however, as noted by
Brazovskii and Dmitriev [9], is that this situation
remains unchanged, even when fl # 0, as long as

The reason for this is that, unlike the usual Landau

expansion [8], the free energy term F 31 does not
contain a contribution proportional to ,u3, the cube
of the primary order-parameter. Rather, we have,
to leading order, a J.1o J.12 term, which will result,
since ,uo = ,u2, in a negative (for minimum free energy)
contribution proportional to ,u4. Only when this

negative contribution is greater in magnitude than
the positive one proportional to y will the transition
temperature shift and the transition become of first
order. This is analogous to the well-known Rodbell-
Bean effect in magnetic phase transitions, where po
would correspond to an elastic degree-of-freedom [11].
When &#x3E; fi’, we should, for consistency, also

consider the contributions to F’, of O(J.16). Since this
would require the introduction of yet another pheno-
menological coefficient, we shall restrict ourselves
to the terms introduced previously. As we shall see,
the region of interest will in any case be that is which
03B22  PC 2

For p2 &#x3E; 32c, the (first-order) thermodynamic tran-
sition to phase 1 occurs when

Defining t = ti at this point, we obtain

Thus, the isotropic to usual helicoidal phase
transition would be of second-order at t = t, when

03B22  {32c. and of first-order, at t = ti for 03B22 &#x3E; p2
Let us now consider the isotropic to bcc (phase II)

transition. We obtain the relevant free energy density
FIl by summing F2 (with po = 0 and n = 6), F311,
and F 4II, as given respectively by (6), (4b), and (5b).
Here the transition is always first-order and the

thermodynamic phase boundary is reached when

FII = ÔFIlap = 0. Defining t = tÓ at this point, we
obtain

Setting aside for the moment the possibility of a transi-
tion from the isotropic to the hexagonal phase
(phase III), we find, by setting ti = tg that the transi-
tion from the isotropic phase will be to the bcc rather
than to the helicoidal phase whenever Li ;$ 0,15 or
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In other words, whenever the transition from the

isotropic to the helicoidal phase would be continuous
or nearly so, the cholesteric liquid crystal system can
lower its free energy by ordering instead in phase II
with an 1432 bcc structure. This is, of course, what one
would expect to occur due to the cubic term in the
phase II free energy expression.
We must still consider the possibility of a transition

to hexagonal (phase III) ordering. The appropriate
free energy density Fm is obtained by summing F2
(with n = 3), F 3IIb and F4III, from (6), (4c), and (5c),
respectively. Since only the parameter region
1 fi 1 gg 1 Pc 1 is expected to be relevant, the jump in
go at the phase transition will, to lowest order, just
be proportional to Jl2. It is therefore consistant with
our treatment of FI and FII to consider the approxi-
mation

Setting FIII/auo = 0 yields

and, upon substituting (13) into (12), we obtain

The first-order isotropic to phase III transition would
occur at the thermodynamic phase boundary given
by Fm = FIIIlau = 0. (We assume that the coefficient
of the 114 term in (14) is positive.) Defining t = t â
at the point, we obtain

Clearly, tI/ t ÎII - 1, so (15a) may be simplified to

Setting tfu = ti we find that, in order for an isotropic
to phase III transition to occur, we must have

Li 5 0.117. Thus it is only necessary to examine the
ratio R = (t ÎI - tl)l(tl*ll - tI) for - 1  Li  0.117 in
order to determine, when the transition from iso-

tropic to phase I would become continuous or nearly
so, whether the actual transition will be to phase II
(R &#x3E; 1) or to phase III (R  1). From (10) and ( 15 b)
we obtain for the minimum value of R

Thus the prediction, based on Landau theory, is
that whenever (11) is satisfied, an ordered phase with
bcc structure will occur at the thermodynamic
instability of the isotropic phase. This prediction
differs from that of Brazovskii and co-workers [10],
who suggested that the hexagonal phase would be
the relevant one.

3. Discussion. - In the previous section we have
argued, using Landau theory, that under specified
conditions cholesteric liquid crystal should order
with an 1432 body-centered cubic structure rather than
the usual helicoidal one when the isotropic phase
becomes thermodynamically unstable. It is tempting to
identify this bcc structure as that of the experimentally
observed blue phase which exists in this thermo-

dynamic region [10]. Such an identification imme-

diately satisfies two of the basic experimental require-

ments listed in Sec. 1 ; namely, the optical isotropy
of the blue phase and the requirement that it be

thermodynamically stable with long-range orienta-
tional order. The bcc phase also satisfies another

property associated with the blue phase, namely,
that it should be the thermodynamically stable phase
only within a limited temperature range below TIÎ.
The reason for this is that, in the bcc phase, the magni-
tude of the order parameter is not constant in space.
As the temperature is lowered below TII, the usual
helicoidal phase, in which this magnitude is constant,
will, eventually, have the lower free energy of the
two when the contribution of the quartic term in
FII dominates that of the cubic one. This is shown
qualitatively in figure 2.
A particularly interesting quantity in our model

is the value of 1 d ilc at which the crossover to the bcc
phase is predicted to occur. If we make the strong
assumption that the parameters p and y are the same
in nematic and cholesteric materials, we can estimate,
from the Maier-Saupe theory of nematics, the value of
Àc = 2 ncl 1 d 1, the optical wavelength in the cholesteric
phase (which is one-half the actual pitch) at which
this crossover should occur. Using these molecular
field (Maier-Saupe) results for 03B2, y and c in nema-
tics [12], we obtain

Here T* (- 400 K) is the actual temperature of the
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isotropic to nematic transition, the temperature
différence AT* = T* - To (see (7)), and ’0 (- 2C Á)
is the microscopic length appearing in the expression
for the coherence lengths ’03BEo (T/To) - 1 1- 1/2.
Clearly, Â,, as given by (17), is very sensitive to the
value chosen for AT*. A completely self-consistent
calculation, based on Maier-Saupe theory, gives [12]
AT*/T* = 0.15 or AT* = 46 K, which is more
than an order-of-magnitude larger than the experi-
mental values of approximately 1 K [13]. If, on the
other hand, we substitute experimental values of
OT* in (17), we obtain values for Ac of the order of
103 Á, which is in agreement with the values usually
found in cholesteric esters [12, 14]. It is thus at least
possible that the cholesteric bcc structure can occur
with a lattice constant in the blue region of the
spectrum for reasonable values of the parameters
appearing in the Landau free energy. On the other
hand, it is by no means clear that the characteristic
color of the blue phase is in fact due to Bragg scatter-
ing [15]. Preliminary measurements by us suggest
that incoherent scattering processes may in fact

play a dominant role. This point requires further
study.

Fig. 2. - Possible phase diagram for cholesteric liquid crystals,
showing schematically the region in which the isotropic, body-
centered cubic, and helicoidal phases are each thermodynamically
stable.

In order to further analyze the thermodynamic
properties of the bcc phase, it is possible to compare
the isotropic to bcc phase transition with the isotropic

to nematic one. Remembering that the order-para-
meter for the nematic case can be written as [14]

we obtain for the Landau free energy

We can now compare, using ( 18b) and our previous
results for Fu, the values of the two order-parameters
just below their respective thermodynamic phase-
transitions. We obtain

If the ratio 03B2/y is the same for the two phase transi-
tions, (19) indicates that the jump in the blue phase
order-parameter is much smaller than that of the
nematic one. The same conclusion would follow for
the latent heats of the two transitions although,
experimentally, both seem to be of the same order-of-
magnitude [3, 4,11]. This could be due to, e.g., diffe-
rent values of fl/y in nematics and cholesterics

exhibiting a blue phase, or a need to include higher
order terms in the Landau free energy in order to

quantitatively describe first order transitions in liquid
crystals.
To summarize, we have shown using Landau

theory that, in addition to the usual helicoidal phase,
cholesteric liquid crystals can, under specified condi-
tions, order in an additional phase characterized

by a body-centered cubic structure. We have
considered identifying this structure as that of the
cholesteric blue phase which has been observed

experimentally. Many, but not all of these properties
of the bcc phase are in agreement with those found
experimentally for the blue phase. Clearly, additional
data are needed and several investigations of the
structural properties of the blue phase are now in
progress [7, 15, 16].
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Note added in proof : Meiboom and Sammon have
recently identified a body-centered cubic blue phase
structure [17].
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