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Résumé. — Une théorie semi-classique de I’élargissement et du déplacement des raies infrarouge et Raman en
phase gazeuse est développée dans le cadre de ’approximation d’impact. Un modéle de trajectoire parabolique,
pilotée par la partie isotrope du potentiel intermoléculaire, permet un traitement satisfaisant des collisions & courte
approche tout en conservant une formulation analytique de la section de collision élastique. Nous avons testé
cette théorie en comparant nos résultats, pour le cas HCI-Ar, aux résultats d’autres auteurs qui utilisaient un
traitement & ’ordre infini et des trajectoires classiques numériques. Les calculs ont ensuite été étendus au cas
des collisions diatome-diatome, en exprimant le potentiel d’interaction anisotrope a ’aide d’'un modéle atome-
atome, lequel tient compte a la fois des contributions a longue et & courte distance. Des applications numériques
ont été réalisées pour les raies Raman des gaz purs N,, CO, et CO et pour les raies infrarouges de CO autoperturbé
et perturbé par N, et CO,. Dans tous les cas, nous avons obtenu un bon accord quantitatif avec I’expérience, et en
particulier les variations de la largeur de raie avec le nombre quantique rotationnel ont été correctement reproduites,
méme a basse température, ce qui n’était pas le cas dans les travaux antérieurs.

Abstract. — A semiclassical theory of the width and shift of isolated infrared and Raman lines in the gas phase
is developed within the impact approximation. A parabolic trajectory model determined by the isotropic part of
the interaction potential allows a satisfactory treatment to be made of the close collisions leading to an analytical
expression for the elastic collision cross section. A numerical test of this theory has been made for HCI-Ar by
comparing the present results to those of previous infinite order treatments using numerical curved classical
trajectories. Extension to the diatom-diatom collisions is then made by expressing the anisotropic potential
using an atom-atom interaction model which takes both the long and short range contributions into account.
Numerical applications have been performed for the Raman line widths of pure N,, CO, and CO and for the
infrared line widths of pure CO and of CO perturbed by N, and CO,. A good quantitative agreement with expe-
riments is obtained for all the considered cases and a correct variation of the broadening coefficient with the
rotational quantum number is achieved in opposition to the previous results. A consistent variation of the line
broadening with temperature is also obtained even for high rotational levels.

1. Introduction. — The most broadly applied theory
of pressure broadening of isolated spectral lines is
that developed by Anderson [1], which has been
systematized by Tsao and Curnutte [2] and extended
to the Raman lines by Fiutak and van Kranen-
donk [3]. In fact this perturbative treatment leads
to reasonable agreement with experiments only if
molecular gases for which a strong dipolar inter-
action exists [4-6] are considered. Indeed, in this
case, the optical collision diameter is always higher
than the kinetic collision diameter and the descrip-
tion of the close collisions with a straight line tra-
jectory is of no crucial importance. For all the other

(*) Equipe de recherche associée au C.N.R.S.

cases, the application of the Anderson theory is very
questionable due to the major role played by the impact
parameters cutoff in the electronic clouds overlap
region for the two colliding partners. This is, of
course, the case of the diatom-atom collisions [7]
but also the same as most of the diatom-diatom
collisions for high rotational quantum numbers [8].

Many refinements to the Anderson theory have
been introduced by Herman and Jarecki [9-11]
concerning the widths and the shifts of vibration-
rotation absorption lines induced by the pressure
of rare gases. These refinements consist in modifying
the trajectory model in favour of more realistic
representation of the close collisions and by including
the vibrational and rotational phase shift terms
contributions up to infinite order. Murphy and
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Boggs [12] have also improved the Anderson second
order limited treatment by including some of the
higher order terms through an exponential form of
the collision cross section. This avoids the use of a
cutoff procedure but this theory maintains an unrealis-
tic trajectory model for the shortest approach and
neglects elastic broadening effects.

Finally, an infinite order semiclassical theory for
spectral line broadening in molecules was recently
proposed by Smith, Giraud and Cooper [13]. This
theory uses curved classical trajectories determined
by the isotropic part of the intermolecular potential
and leads to a good agreement with close coupling
calculations and with experiments [13, 14]. The
extension of this theory to the rare gas pressure
shifting of the diatomic molecules vibration-rotation
lines was made by Boulet and Robert [15]. Neverthe-
less this semi-numerical treatment is hardly applicable
to the diatom-diatom collisions and, of course, to
molecular systems with a larger number of atoms due
to the formidable computational task required. A
fortiori, the same remark holds for all the fully
quantum methods of calculation (i.e. close coupling)
for the molecular collision cross sections, even when
dimensionality reducing schemes are used such as in

1
Iw)= —n! —
() ALY py
vf, jr, Jf
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the coupled states approximation [16] or in the effec-
tive potential approximation [17]. This explains the
persistent success of the various improved Anderson
theories mentioned above [10, 12] specially for large
molecules of astrophysical interest [18-23].

The aim of this paper is to introduce further
improvements mainly concerning the close colli-
sions contributions while still keeping an analytical
treatment in order to extend the formalism pro-
posed for isolated lines to more involved situations
such as, for instance, the overlapped lines. Indeed,
in the case of the isotropic Raman Q branches and
of microwave bands of almost all the molecules,
the lines begin to overlap each other even at moderate
densities (several amagat units). Consequently signi-
ficant deviations appear between the experimental
data and the calculations issued from the isolated
lines theories [24-28], so further theoretical investi-
gations are required.

2. General formulation. — According to the general
impact theory developed by Fano [29] and extended
by Ben Reuven [30], the contour of the spectrum is
determined by the following equation expressed in
terms of reduced matrix elements

Z Cvijil palviji > Codi I X vg ji > x

XL ve Je v Ji J , (- L, — A)_l | veje vi i I D oge |l X9 v i > (1)

In this equation L, is the Liouville operator characterizing the unperturbed optically active molecule
(L, = [H,]), p, is the corresponding density operator, n, is the numerical density of the active molecules and
X the coupling tensor of J order between the molecules and the external field (J = 0 for the isotropic Raman
diffusion, J = 1 for the electric dipolar absorption and J = 2 for the anisotropic Raman diffusion). The matrix
element of the relaxation operator in the vibration-rotation states of the free optically active molecule may be
expressed in terms of the § matrix in the Liouville space [30, 31].

Koggfvi i Il A vgjevs i I D = Agirg =
x {{ 6l)f'f)f 5jéjf 5v;m 5jiji = Koo J| N [vejevi i I D } >b,v,2 2

where
(8%, =3 Kvyjs05j5018|02j202520% 0zl pylvaja

v2j2
v2j2

and

[vejevi i I D = Z (= )™ C(eji I 5 m, — my, M) | vg e mg > | v, jy my >t

mi,mg

In eq. (2) p, and n, are the density operator and the numerical density of the perturbers, C(j;j; J ;
my, — m;, M) is the Clebsh-Gordan coefficient [32] and the symbol < ... ), , , means an ensemble average over
the impact parameter, the relative velocity and over the quantum states of the perturbers.

Moreover the S operator is defined through

+
S =0exp {— ih“j 40 }, P(t) = et 'HatHo)t [ g=ih™(HatHo) (3)
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where the symbol § means the time ordering operator, H, and H, are the Hamiltonians of the optically active
molecule and of the perturber and V the coupling operator between these two molecules. The non-diagonal
terms of the relaxation matrix with respect to the vibrational and rotational quantum numbers of the optically
active molecule are called the cross correlations terms [30], they describe the non-additivity effects resulting
from the lines overlap [30, 33, 34]. The influence of such terms on the resulting spectrum will be examined in a
further paper but, for the presently studied isolated lines, these cross correlations contributions must be dis-
regarded. In this case, the half-width at half-intensity y; and the shift d; of the Lorentzian line i — f is given
by :

Afisi = 0 — g - )

From eqgs. (2) to (4) it is seen that the analytical calcylation of the y; and J¢; line parameters requires know-
ledge of the following matrix elements of the Liouville § matrix

K vejevidi I 5 033 0373 01 S |0 e 034i J 5 02J2 0270 ) =
=L veJe v3J3 Vi J; 0203 | 81 v Je 375 01 )i 0242 I D = L 21127 | S|f2i2) (5)
with (cf. eq. (2))
[ Vg Jr 2 )2 Vi i V22 D =
= Y (= D"ClejiJsm, — my, M) (— 1)%

1 . . , ,
— | jem vy o m v; i My Uy, M
. \/:27_,_—1 | vg Jg mg v3 J2 My D | v,y My vy j, My

The approximation made in the above equation (i.e. the decoupling of the angular momenta tied to the
active molecule and to the perturber) must be connected to the classical path assumption. Indeed in this case
the total angular momentum is much larger than internal angular momenta. So, the orbital angular momentum
may be considered sufficient to describe the rotational part of the relative motion (the impact parameter approach
developed in section 3) and the decoupling mentioned just above may be stated.

The ( £2'i2" | § | £2i2 ) matrix elements will be now expanded through the linked cluster theorem [35, 36].
These matrix elements are then expressed as a product of an exponential of the connected V matrix elements
(noted by the (C) index) and of the linked elements (noted by the (L) index). For the isolated lines, these linked
terms result only from the non-diagonality of S with respect to the states of the perturber. When limiting the
expansion to the second order diagrams, we obtain

>+

«R72') 8|22y = [52,2 - ih“f de L 22" | V() | 22 Y, —

—

- h“zj dtj dr' L 212" | V() V(') | £2i2 >>(L)] (6)
exp [— ih‘lf dr « 222 | V(o) | R2i2 >>(C,] = [0y, — S| ei87 -5 |
ot (L)

The first order contribution (S{© ; note that S{' = 0) and the second order contributions (S{< and S4") are
defined through the following equations

C
S(1 ) = Sl,fz - Sl,iZ

S = Sap2 + Sai2 + S8ia + ilS302 — S10l = S, + S 7
with Sfr)zn = Z S2,f2’i2’ 5v’zvz 5}"21’2

v2,j%2
L _ o) — _
S = S8his = Y Syeiz(l — 0y, 055,)
vaj2

+ o0
where S =Hh" IJ dr (v v, | Visolr(0] | v; v, > (8

2 h—z
(1= 00w Oues) + 35Ty @7, + 1) ¥

52
S2,i2 = T z

vi,v3

v;vi

+ oo
J de i@ it v vy | Vigolr(] | 07 0 )

x Y

vi.Jf,mi
v2,J2,m2
mi,mz

+ oo 2
j dt eiovidwadavilieadit (o fomg v, iy my I V anisolr(9)] I v Ji m{ vy jymy ) )]

- 00
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B2 e d
Szl,iz = =T Z P.P. j‘ —_—C'D‘_ +

2n WOpipo,vjy — @

+ o0 2
j dr e (v v, I Visolr()] | v v5 >

— o0

vi,v2 - o

A2 1 e do
+ = - = P.P.
QCi+DQ2p+D2n g;,%m;, j_w Opjivajoviiivsis ~ @
02,]2,m2

mj,m3

+ o ) 2
J de e (v Jimy v, j, my | V anisolr(9)] | v mi vy, my ) (10

X
+ 00 +oo
Saeziz = — h? j dt et (o o) ’ Visolr()] | v vy > J de’ it (v vy | Vigolr(t)] | vy v ) x
n? . -
X (1 - 50'202) - (211 ¥ 1) (2]2 + 1) mr’mg:,m,'ni C(]f J.]i > Mg, M, mi) C(]f J]i > Mg, M, mi,)

+ o0
X [ de et iimvit (o o my vy j, my | V anisolr(9)] | Vg Je Mg U3 o My
o

+ o0
X J. dt’ ez it (p; i my; vy Jo My | V anisolr(2)] I v Jimi vy jymy ). (11

— o0

In these equations V,ys0 means the anisotropic part of the intermolecular potential, P.P. the Cauchy princi-
pal part, and the expressions for S, ;,, S, ¢, and S;;, will be respectively deduced from egs. (8), (9) and (10),
by only changing the subscript i to f.

Some additional remarks must be stated as far as the above relations are concerned. First, the inelastic
vibrational contributions (v’ # v) are always negligible for the cases considered here. Secondly, the pure vibra-
tional dephasing contribution corresponding to the diagonal terms in the vibrational states of the isotropic
part of the potential V (called V) is rigorously taken into account up to the infinite order through the S,
contribution if the vibration-rotation coupling is disregarded (cf. egs. (6), (7) and (8)). Also, the imaginary
part of the second order contribution (cf. egs. (7) and (10)) results from the noncommutative character of V
in the interaction representation (cf. eq. (3)) at two different instants [37, 6, 15].

Starting from egs. (2) to (11) the resulting expressions for the half-width at half-intensity y;; and for the
line shift J; (or for the corresponding collision cross sections a;; and o¢,) are thus given by

n
b b Z
—— Uo L, T e— p . X
fi v2,J2
2 me 2me =,

n
P (em™') =

* J v dvf 27bdb {1 -[1 - Sg,‘f)zn] e—(sz,fz+sz_u+s‘£’m2) €08 [(Sy ez + S362) — (S1,i2 + 55,2)] }
0 0
X . (12)

n, , b
Vo = Z pvz,iz
2 ne 2me o,

O (em™') =

XJ vﬂv)dvf 27bdb {[1 - S{y ) e CretSantSEuwsin (S, L, + S;) - (Syp + S50} (13)

0 0

When neglecting some of the contributions coming
from the orientational terms of order higher than
two as done in eqgs. (12) and (13), the main problem
arising in an effective calculation of the y; and dy
parameters is connected with the trajectory descrip-
tion, especially for the close collisions.

The eqgs. (12) and (13) are similar to those recently
derived by Mehrotra and Boggs [38] but they include
the additional contribution coming from the rota-
tional dephasing effects through the S§Q,;, and S§7,,,
terms (cf. egs. (7) and (11)). These elastic broadening
effects are of importance for all the cases studied
here (cf. sect. 5 and Figs. 9). We mention that such
an approach avoids the use of any questionable

cutoff procedure due to the partial resummation of
the V-infinite series through the connected terms.

3. Kinematical model for the binary collisions. —
Almost all line width calculations neglect the influence
of the isotropic interactions Vi, on classical tra-
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jectories [12, 38], the usual model being a straight
line trajectory described with constant velocity [1-3].
A first analytical model was proposed by Tipping
and Herman [9] including the influence of Vi in
the energy conservation equation. Nevertheless this
model neglects the influence of the force Figo (derived
from the isotropic potential Vi5o) in the equation
of motion around the distance of closest approach r..
Consequently, this trajectory description is not valid
for hard collisions such as b < r, where r, is the r,
value for a head-on collision.

Recently L. Bonamy and the present authors [39]
included the above-mentioned influence of Fiq in
the r(¢) equation

F,
r(t)=rc+vct+—’;l-5 (14)

where v, is the relative velocity at the closest approach
and F_ is defined through

‘aVlSO I,

Fo= ‘( ar ) "
_ 24¢ NE 13 a\"r.
o [\r) \r) |7

¢ and o being the usual Lennard-Jones constants.
The r(f) modulus is then given by

(19)

() = [r¢ + v 17

(16)

where the apparent relative velocity v, is defined
through

<. a7

Taking into account the conservation of the angular
momentum (v, r, = vb) and of the energy

(172 mv* = 12mv? + 4 ¢(o/r)*? — (o/r.)°]),

v, 1s given by

v, = v {1 + 8—82 [5(1)” - 2<Z>6] }m. (18)
mv re re

The variation of r./o issued from these conservation
equations as a function of b/g (eq. (18)) is presented
on figure 1 for various values of the reduced physical
parameter E* = mv?/2 e. Figure 1 exhibits the exis-
tence of orbiting collisions which appear at sufficiently
low values of v. In fact for the current physical situa-
tions the considered mean kinetic energy is higher
than the ¢ values and the orbiting collisions are not
efficient. Nevertheless it should be mentioned that
for sufficiently low temperatures (7 X ¢/k) the
Maxwellian distribution of velocities provides a
noticeable fraction of weak relative velocities which
gives rise to orbiting collisions. The duration of these

SHORT RANGE FORCES IN LINE BROADENING CALCULATIONS 927
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Fig. 1. — The influence of curved trajectories on the reduced
distance of closest approach r /g for various values of the reduced
kinetic energy E* = mv*/2 e. la. — this case (E* = 0.5) corres-
ponds to a type of collisions in which orbiting takes places. 1. — The
two curves (.—.—. E* =1; — — — E* = 4) correspond to

open trajectories for the whole range of b/g values.

collisions increases the correlation time considerably
and a strong increase of the line widths has to be
expected in this case. Such a temperature behaviour
was recently observed [40] in the anisotropic Raman
spectrum of pure H,, D, and HD for T < 50K
and might be explained by the above considerations.

The variation of v./v versus b/o plotted on figure 2
shows a marked deviation from unity for low b
values (b £ o) especially for low reduced kinetic
energies.

Ve
v
-~
N
4 N\
\.
- \\ \.
3 S \
\\ \‘
\ \
24 v
N
v
14 o e ——
|./'
b
T

0 T 2 3
Fig. 2. — The apparent reduced velocity% at the distance of closest

approach in our parabolic trajectory model (.—.—. E* = 1;
—— —E*=4).
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In the approximation of eq. (16), the real curved
trajectory was replaced by an equivalent straight path.
Another curved trajectory model is now proposed
which includes the F, influence in the y(#) collision
angle (cf. Fig. 3) at the second order in ¢, as was done
for r(y) in eq. (14), ie

~ Uc t .
VO = e
|F, | ¢ (19)
o F m 2
cos Y(f) = —;

r2 + o2 iz’
(Note that for the homogeneity of the present deve-
lopment the condition cos® y(f) = 1 — sin? y(7) has
to be respected.)

josculating parabola
\ 1
!
'

reol trajec-
tory

Fig. 3. — Geometry of the collision (in the particular type of colli-
sion represented here, the repulsive forces are most important).

A similar parabolic trajectory was introduced by
Gersten [41] in the collision-induced light scattering
and was very recently discussed by Berard et Lalle-
mand [42] in a systematic analysis of the potential
correlation function calculation. These authors
showed that it is compulsory to use trajectories with
the true relative velocity at the closest distance of
approach as is the case in our model.

It may be noticed that for very distant collisions
(b > o) this model tends to be the usual straight
path trajectory, the influence of the isotropic poten-
tial being negligible. In the opposite situation (b < o)
such an influence is crucial. In particular, for the
head-on collisions the apparent relative velocity is
not zero (cf. Fig. 2) as in the Tipping and Herman
model [9] avoiding any unphysically behaviour for

V(r,0) =

Volr) + V (r. 0) + Vy(r.0) = 4¢ [{(%)
o
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all the hard collisions. In this case (b = 0) the r,
and v, parameters are given by
[ 2 ]1/6
ro =0 — ;
° 1+ /1 +m?2e 0)
2 1/2
vl = v {6[1 + S+ T mUZ/zg)]} .
my

Due to the role played by the r, parameter in the
above trajectory model it is more convenient to
replace the average over the impact parameter b
by the corresponding average over this parameter
as follows

[e'e} @ U, 2
j 2nbdb — J 2 mr, drc<—°) .
0 ro v

The various S; and S, terms appearing in egs. (12)
and (13) are now functions of r, and v, the depen-
dence of v, on r, and v being given by eq. (18).

@n

4. Test of the present semiclassical model. — The
semiclassical theory of the width and the shift of
the lines developed in sections 2 and 3 can be now
applied to the pressure broadening by Argon of
HCl pure rotational lines. This is a particularly
valuable test for our present model of calculation
for several reasons. First, Neilsen and Gordon [43]
have performed a very accurate numerical solution
of the Schrédinger equation using classical curved
trajectories for the translational motion and second,
Smith, Giraud and Cooper [13] have also tested
their approximate infinite order theory for the same
physical situation as in ref. [43]. Moreover this theory
was successfully compared to close coupling cal-
culations for CO-He cross sections. Therefore, in
order to have a physically meaningful comparison,
it is particularly interesting to calculate also the rota-
tional line width for HCI-A using the theoretical
framework developed above and using this potential
labelled N.G.52 [43]. Also it should be mentioned
that as far as diatom-atom collisions are concerned
the role played by the close collisions is drastic
making this test very severe.

In fact our calculations were performed by using
the same potential as that of Smith et al. [13]. It
differs from the potential of Neilsen and Gordon
due to the substitution by a r~!? analytical depen-
dence of the repulsive terms to the exponential form

VN

S O RRcl e MO RTC P
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The values of the various parameters appearing
in this equation are (cf. refs. [13] and [43]) ¢ = 202 K,
oc=337A, R, =037, R,=065 A4, =033,
A, = 0.14. As for the Lennard-Jones parameters ¢
and ¢ which are not explicitely reported in ref. [13],
their numerical values were obtained by numerically
fitting the Neilsen and Gordon isotropic potential
by a least-squares procedure.

Following eq. (12), the calculation of the half-
width y; for the pure rotational lines requires the
specification (cf. eq. (7)) of the S© and SV terms
(the S{© terms obviously cancel out in the far infrared
region since v; = vy and the S, contribution must
be disregarded in the present text since they result
from the non-commutative character of the inter-
molecular potential which was neglected in ref. [13]
and [43]). As an example, we present now the detailed
calculation of the S, term

(S = Sz62 + Szi2 + S5ain)
cf. (egs. (7) (9) and (11)) for the particular case of

SHORT RANGE FORCES IN LINE BROADENING CALCULATIONS

929

the P,(cos 0) contribution appearing in eq. (22).
The kinematical model used for the binary collisions
is the same as in section 3.

The expression of this potential contribution in
the collision frame [44] is

Vi(r, ) = 4¢ {R,(%)u - A1<%)7} x

x [Fcosy — F'siny] (23)
with

L LRI e

J3

F = ’742 [YI() Y3@ + Y1,(1) Y9)].

F=

(24

The matrix element between the eigenstates i and

’

i’ of the unperturbed Hamiltonian, appearing in
eq. (9),is

P, =h! j dr et (il | V[re), o] | i)

=4 '[(R,G,, -A4,G)F + (R, G, — 4, G})) F'] (25)
where
+ o O'l
G, (or G)) = j dt &'t = x cos Y(?) (or sin Y(2)) . (26)
— r
By putting
S 't
k=w",° and z=vc ,
vC ’ rc
and by using the expressions of sin /() and cos y(¢) of eq. (19), one obtains
R AN e'kz 1 w2\ (7 ek 22
G = U_é <r_c) j_ dz 1+ 22)(1+1)/2 + E (1 - E) j: dz(l + 22)(1+ 1)/2 (27)
N WAV A e e z
G/ = v_; (v_;> <;:) j_ dz(l + Zz)(t+ /2" (28)

The general expression for the integrals appearing in egs. (27) and (28) is given in ref. [2]. So, we obtain the

following differential cross section

4e0\ (257
l,OS b)) = [ ==
2(rd(b) (h-u;) {1536

160 n o
“zom Rl(?)

131 072

+ 1440 747R (;) (Z C“’ 1, ofl 2(k) + Z C“’ 1,0 12(k))}

42 o (1)10 () 1,047
<r> (T oRm + O rw) -

C}il) 1’Of712(k) + Z C},rl) 1'0f712(k)>
Jt

29
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with
C = | CGinj/ 50000,  CP = |C(nj; ; 000) |*.

The left superscripts appearing in the resonance f-functions (i.e. 1, 0) are directly related to the orders of the
spherical harmonics for the active molecule and the perturber respectively. The right symbols relate to the radial
exponent of the potential term connected to the considered resonance function. Note that “°S{),., = 0 and
LOg, = 108, + 108, since 1°S{%, = 0 (cf. eq. (7).

A similar calculation for the P,(cos 6) contribution in eq. (22) leads to

4e)? (21 n2

208(r.(b)) = | — 222 o422 CP 2968k + Y, CP 268(k) + D

(re(6)) [hv;] {2560 (r) (Z S0 + T CP Y

63 2
5120

48 951 n* 4
T 10485760 2( ) (Z CRR 2T + L CP M + D)} (30)

=4, R <r> <Z CP Y0 + Y CP A + D)

with
D = (= 1Y 2[2), + D) Qjg + 1) CP CPT2 W, e i e 5 12)

where W is the Racah coefficient [2]. Note that >°S{%,., = 0.

The expressions of the resonance functions £7 (k)
appearing in egs. (29) and (30) are given in Appendix A. 7
Note that these f-functions differ from the resonance
functions appearing in the previous theories (see for
instance refs. [2, 3, 9 and 12]). Indeed their argument
is now defined by the closest approach distance r,
and the apparent relative velocity v, (cf. eq. (18))

w; T .
through k = ——, instead of the impact para-
v

meter b and the relative velocity v respectively.
Moreover the parabolic trajectory model leads to
an additional dependence of these functions on v,/v,
as evidenced in eq. (27) and in the expressions given
in Appendix A

ve { 1 — (8 ¢/mv?) [(o/r)'? — (a/r.)°] }1/2
v, 1+ ®e/mv?)[5(a/r)'? - 2(o/r.)°]

()

ve
(31

Of course for distant collisions (r, ~ b > ¢) (cf.
Fig. 1) one has v, ~ v, ~ v (see egs. (17) and (18)
and Fig. 2) and all the f-functions tend to be the
corresponding Anderson resonance functions [2]. In
order to illustrate the behaviour of these f-functions,
we give on figures 4a and 4b the variation of :°f; (k)
and 2°f8(k) as a function of k. These figures exhibit

Fig. 4. — The resonance functions for two particular interactions (b)
obtained from the parabolic trajectory model are compared to the
corresponding Anderson resonance functions ( Anderson

function, .—.—. E* =1, — — — E* = 4) 4a. — Interaction in
P,(cos 6) P,(cos )
Mgt T D ef. eq. @2))

(cf. eq. (22)). 4b. — interaction in
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strong deviations from the Anderson functions mainly
at low kinetic energy. The major effect of our kine-
matical model is to extend the k-region of resonance
and thus to increase the number of efficient colli-
sions for given b and v parameters.

The numerical calculations were performed using
eq. (12) explicited through eqs. (29) and (30) for
HCI-Ar with the conditions just outlined but by
not averaging the cross section oy over the relative
velocity as was done in refs. [43] and [13]. We compare
in table I the present results for various reduced
kinetic energies E* = mv?/2 k with the corresponding
values obtained from the Neilsen and Gordon [43]
and Smith et al. [13] calculations. As it appears in
table I our results agree within 10 9, with the Smith
et al. theory [13] reproducing moreover in a very
consistent way the j and E* dependences. The agree-
ment with Neilsen and Gordon calculations [43]
is less convincing, the j dependence being not so well
reproduced. It must be recalled here that the numeri-
cal potential surfaces are not rigorously the same in
the two cases (cf. supra) in opposition with the
previous comparison and that the role of the aniso-
tropic repulsive part of the potential is of crucial
importance.

Table 1. — Unaveraged HCI-Ar cross sections for
pure rotation transitions in A% for various reduced
kinetic energies E* = mv?/2 k.

E* = 808 K E* =404 K E* = 398 K

This This This
Ji S-G-C(®) work S-G-C(*) work N-G(*) work
0 — — — — 79.9 80.3
1 57.2 58.7 63.7 66.8 57.4 68.2
2 43.1 47.4 48.3 53.1 45.2 55.1
3 36.5 40.2 38.0 42.7 37.4 45.1
4 31.2 34.8 31.0 34.0 30.6 36.6
5 26.9 30.2 25.6 26.8 23.7 29.4

(“) Calculated values from ref. [13].
(®) Calculated values from ref. [43].

This test provides a useful confirmation of our
theoretical approach and numerical calculations. We
recall that the main advantage of such an approach
lies in its analytical character (cf. egs. (12), (13), (29)
and 30)) and in the possibility to easily extend the
domain of its applications to more involved situa-
tions (cf. following sections). In particular the diatom-
diatom collisions cross sections calculations per-
formed in the framework of the theories of refs. [43]
and [13] will necessitate prohibitive computing times
due to the thermal average over the rotational degrees
of freedom of the perturber. This difficulty is removed
in our theory and the remaining problem consists
in deriving short ranged anisotropic potential sur-
faces, the long ranged part of the potential being
correctly described by the electrostatic interactions.
The first multipolar moments characterizing these
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interactions are generally well known for most of
the studied molecules. Until now the anisotropic
short ranged part of the diatom-diatom potential
was calculated by ab initio methods only for very
simple systems such as H,-H, [45, 46]. Even the
semi-empirical method proposed by Gordon and
Kim [47] was applied only to the diatom-atom
case [48-50]. Consequently strong interest lies in
realistic model studies for describing these inter-
actions. The next section is devoted to this parti-
cular aspect.

5. Potential model for interactions between linear
molecules. — Several models have been proposed in
order to get a realistic representation of the angle-
dependent intermolecular potential. Among them,
the most extensively studied are the so-called
atomic [51-53], Kihara core [54] and overlap [55]
models. A recent study of MacRury, Steele and
Berne [52] showed that these three models were
approximately equivalent for slightly non spherical
molecules such as N, or CO,. However, the atomic
representation was the most widely used and gave
a good fit to many experimental data. Concerning
the molecules N, and CO,, we will mention some
experiments such as the second virial coefficients
over a wide range of temperature [53, 56], the heat of
sublimation [57], the crystal structure and the lattice
frequencies of solids [58], the dimers configuration [59]
and several equilibrium and dynamical properties
of liquids [60]. The atomic model added to the electro-
static part of the potential constitutes a sufficiently
realistic representation [52] of the interaction to
warrant its use in the following (see, for instance,
sect. 6).

Thus, the intermolecular potential ¥ will be repre-
sented by the superposition of atom-atom interactions
between the two colliding molecules (cf. Fig. 5) i.e.
Vs, added to the electrostatic contribution Vg (here
the quadrupolar interaction)

V=Vt W =z<fl—;— 2y > + Voor- (32
ij \i,2j  T1i,2j )

In eq. (32) the indices i and j refer, respectively, to

the ith atom of molecule 1 and the jth of molecule 2,

r1i,2; is the distance between these two atoms, d;;

and e;; are the atomic pair energy parameters and Q,

Fig. 5. — Orientational and radial coordinates for two interacting
linear molecules.
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and @, are quadrupolar moments of each molecule.
In the fixed frame of figure 5 it is possible to specify
analytically the angular dependence of ¥V, (cf.
eq. (32)) by expanding all the ry; ,; interatomic dis-
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tances in terms of the intermolecular distance r,
of the intramolecular distances ry; and r,; and of the
spherical harmonics Y}" tied to each molecule [61, 52].
Thus for the intermolecular potential ¥ we obtain :

n n +inf(ly,l2) (g pmim2 q fFmim2
V=YY ¥ DL - GELL" e

r12+q r6+q

i,j =0 11=0 my,my= —inf(ly,l2)
=0
2 0,0
7 ’ 1 2 * .
mim5 mi mh —_
+ Y F3 P Y740, 9,) Y3%0, ¢0,) =47 ) Z
mimi= =2

Note that for the symmetric linear molecules
considered here, only D and E coefficients with
even { /;, /, } are non-zero. The explicit calculations
of these coefficients were performed up to and
including fourth order (¢ = 0, 2 and 4). The corres-
ponding expressions are given in Appendix B;.
Such a limited expansion, both in radial and angular
coordinates (eq. (33)), may be tested for given quantum
numbers {/,, /,, m} through the radial dependence
of u,;,,(r) by a comparison with the rigorous nume-
rical calculations performed by MacRury et al. [52]
including all r-orders. We chose the same values as
those from the detailed study of ref. [52] for the phy-
sical parameters ry;, r,;, d;;, ¢; and Q (cf. table II).
The figures 6a to 6¢ justify the analytical expansion
in the spherical harmonics limited to fourth order
in a remarkable way. It is to be noted that the main
contributions to the angle dependent part of the poten-
tial energy come from the u,qq, #;5, and in a less
extent from the u,,, components. The u,,, term is
very weak. Moreover the u, , coefficient has not been

J} Y10, 00 Y20, ;) +

+inf(ly,l2)

u,l,zm(r) Y[’,n(op ?,) Y[Zm(gz, (Pz) .
(33)

Iyl m= —inf(ly,l2)

reported on figure 6 due to its negligible contribution
(its values is 9K for r = ¢ and 1 K for the minimum
of ugee) and this contribution will be disregarded
in the following. These conclusions may be applied
to CO, as it appears on figure 7.

In connection with the interest lying in the infrared
and Raman spectral properties of CO, it is useful
to get a realistic potential surface for this molecule.
Although CO is not a symmetrical molecule, its
dipole moment is very weak (u = 0.11 D) and its
quadrupole moment is of the same order of magni-
tude as N, or CO, (Qco = — 2.23 DA ; cf. table II).
So, it is interesting to extend the atomic model to
CO-CO, CO-N, and CO-CO, interactions since in
a recent study of the second virial coefficients within
a wide range of temperature, Oobatake and Ooi [53]
determined the needed energy parameters in this
model (cf. eq. (32)). Due to the non-symmetrical
character of the CO molecule it is necessary to add
the odd contributions to the tabulated terms of
Appendix B;. The D1 and FE[I™ coefficients

111>

Table II. — Physical parameters characterizing the intermolecular potential for N,, CO, and CO molecules.

d,; (10710 erg A1?)[ ¢;; (1070 erg A®)| - By (cm™Y)
(k) () LXNIG) ® @) | ryl(or]ry 1) (A) |Q(1072¢ es.u. cm?) )
N, ) 139 3.34 0.37 x 10° 0.27 x 108 0.55 - 1.5 2.000 6
CO, (® 519 2.98 0.35 x 10° 0.50 x 10° 1.19 -39 0.389 5
boc =183 |0ec=3.56 |de_c=0.82 x 10°|ec_c =040 x 105| | ryc| = 0.64 a3 Lome
COC) leoo=198 |oo-0 =314 [dg_o=025x 10%eg_o=0.26 x 105| | ryo | = 0.48 : :
foo = 168 () [00_o = 3.35 () |do_o = 0.46 x 10°ec_o = 0.33 x 10°

(“) All values are taken from ref. [52]. Note that for the CO, molecule the exhaustive study of MacRury et al. [52] shows that only a
very little change appears when a diatomic model rather than a triatomic model is used. Consequently we have retained here their recom-

manded diatomic (12,6) model.

(*) The here considered values for d;; and ¢;; (or ¢ and o) have been obtained by Obatake and Ooi [53] from second virial coefficients
measurements. Among the various possible choices for these parameters proposed by these authors we have selected those leading to the
best fit with the isotropic intermolecular potential given in ref. [61] (¢ = 100.2K, ¢ = 3.763 A for the molecular Lennard-Jones parameters).

(©) Atomic Lennard-Jones parameters characterizing the atom-atom interactions in the present considered model.

(%) Calculated values deduced from the two first columns.

(°) These values are obtained from the usual combination rules.
() Rotational constants taken from G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, Princeton, New Jersey)

1961.
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Fig. 6. — Coefficients u,,,,,(r) in the spherical harmonic expansion
of the interaction energy between two N, molecules. (... calculated
from eq. (33), analytical expressions of Appendix B, and the
numerical values given in table II ; numerical computation
of Mac Rury et al. [52] including all r-orders.) 6a. — Isotropic part
coefficient uqoo(r); 6b. — Anisotropic part coefficient u,q0(r);
6¢c. — Anisotropic part coefficient u,,,(r) taking into account the
quadrupolar contribution.

for ¢ = 1, 2 and 3 with odd /; or /, indices derived
in a previous work of the present authors [63] were
reported in Appendix B, A study of the u,,,(r)
corresponding coefficients (cf. Appendix B,) defined
above (cf. eq. (33)) shows (Fig. 8a) that the very
predominant contributions come from the u; o9, %500,
Ui10, Uiz, Uzre and mainly from u,,, if moreover
we take into account its resonance properties in the
collisional mechanisms (cf. sect. 6). In the following
applications the u,,, component will be neglected
due to its very small contributions (only several K
units for r 2 ¢). Moreover curves of interaction
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K

r(A)
,,,,, 0
-1004
,»f"ﬁooo
~200+
Fig. 7. — Coefficients u;,;,,(r) for the interaction between two

CO, molecules calculated from eq. (33), Appendix B; and numeri-
cal values given in table II.

energy for pairs of CO molecules with fixed orienta-
tions are shown on figure 8b. The comparison of
figure 8b with the corresponding figures of ref. [52]
for N, and CO, pairs also shows a similar behaviour.

u
)

3(]]-'-E

r(/&)

-1004

Fig. 8a. — Coefficients u;,;,,(r) for the interaction between two
CO molecules calculated from eq. (33), Appendix B and numerical
values given in table II. The u, 4, #5314, #;5; and u,qo contributions
have not been reported because of their small magnitude. Note
moreover that here u;,, = — .
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Fig. 8. — The interaction energy between two CO molecules with
three fixed orientations as a function of the intermolecular distance.

6. Application to the line widths calculations. —
In this section we successively examine the self-
broadening of the rotational Raman lines of N,,
CO, and CO and the broadening of the infrared
vibration-rotation lines of pure CO and of CO-N,
and CO-CO, gas mixtures. All the following numerical
applications start from eq. (12) and its specification
through egs. (6) to (11) and Appendix C and A. The
potential surfaces considered are the same as examined
in section 5 for pure N,, CO, and CO. For the gas
mixtures the potential surfaces were derived in the
same way using moreover the usual combination
rules to determine the molecular parameters from the
tabulated values of table II. In all the cases studied
above the contribution of the vibrational effects in
the fundamental band is noticeably small [64-66]
(or zero for the rotational Raman lines since v, = v;)
and will be disregarded. This is equivalent to taking
S1¢2 = S142 ineq. (12). In an analogous way we also
use Sy, = §;;, in this equation because of the very
weak observed shifts [67] (even for the 0-2 harmonic
band these shifts are hardly detectable). This experi-
mental fact indicates at the same time that the vibra-
tional effects are weak as just stated above and that
the rotational contribution resulting from the non-
commutation of the interaction at two different
instants is also negligible [6]. We also mention that
all the numerical line width calculations were per-
formed by replacing the average over the relative
velocities (cf. eq. (12)) by the average velocity approxi-
mation. The corresponding mean velocity was deter-

JOURNAL DE PHYSIQUE

Ne 10

mined in each case for the temperature of the experi-
ment considered.

Finally we point out that all the molecular constants
used in these calculations (cf. table II) were obtained
from sources independent of the pressure-broadening
experiments (cf. sect. 5).

6.1 ROTATIONAL RAMAN LINES OF N,, CO, AND
CO. — A detailed experimental study of the rotational
Raman lines was realized by Jammu, St. John and
Welsh [68] for pure N,, CO, and CO. The impact
theory of Fiutak and Van Kranendonk [3] was then
applied [69, 70] to the broadening calculation of
these observed lines by considering the quadrupolar
and anisotropic dispersion interactions. Recall that
this theory [3] is limited to second-order and requires,
through a linear trajectory model with a constant
velocity, a questionable cutoff procedure [7] for small
impact parameters. Although the order of magnitude
of these theoretical results was consistent with the
experimental data, important discrepancies did appear
mainly concerning the dependence of the broadening
on the rotational quantum number j; as evidenced
on figures 9a, 95 and 9c¢. The results of our calculations
were also reported on these figures (in the case of the
rotational Raman lines j; = j; + 2 is found and the
rank of the tensor characterizing the coupling between
matter and radiation is two, ie. J =2 in eq. (11))..
It is to be noted that our results are very consistent
with experiments in the three cases.

6.2 INFRARED VIBRATION-ROTATION LINES OF PURE
CO anD oF CO-N, anp CO-CO, MIXTURES. — The
line widths of carbon monoxide pressure-broadened
by itself and by many foreign gases (rare gases, N,
CO,, 0,, HCI, NO, etc...) were measured in various
vibrational bands for several temperatures [65, 66,
67,71, 72]. The measurements at low temperatures [71]
(200K < T < 250K) are of planetary interest
concerning the atmospheres of Mars and Venus.
The previous attempts [65, 73] to calculate these line
widths employed the Anderson theory and led Vara-
nasi [8] to conclude that a thorough revision of this

Fig. 9. — The half-width at half-intensity y of rotational Raman
lines as a function of the rotational quantum number j; (O : experi-
mental values from ref. [68] ; @ : theoretical values from ref. [70] ;
A : calculated values from the present study ; A : calculated
values but without the S{@ and S{ rotational dephasing contri-
butions (cf. eq. (12)) disregarded in ref. [38]). 9a. — For N, gas;
9b. — For CO, gas ; 9c. — For CO gas.

Fig. 10. — The half-width at half-intensity y of fundamental
vibration-rotation lines as a function of the rotational quantum
number j; for various temperatures (O : experimental values ;
A : calculated values from the present study). 10a. — For pure
CO gas; experimental values from ref. [71]; 10b. — For CO-N,
gas mixture ; experimental values from refs. [65] and [72]; 10c. —
For CO-CO, gas mixture; experimental values from ref. [71].
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theory is required for all but simple dipole-dipole
interactions. The present approach constitutes an
attempt to answer this question and thus it is inte-
resting to calculate the CO line widths within the
theoretical frame developed above for various phy-
sical conditions. We have retained here only the three
cases (CO-CO, CO-N, and CO-CO,) for which the
potential surfaces were determined with a sufficient
credibility (cf. sect. 5). All the calculations were per-
formed following the approach of the previous
section (6.1) but with j; = j, + 1 (R branch) and

J =1 in eq. (11) (tensor rank of the dipolar coupling

between matter and radiation). The available data
for low temperatures [71] permit in that case an inte-
resting application of our model, the previous cal-
culations [8, 71] leading to increasing discrepancies
for decreasing temperatures specially for high rota-
tional quantum numbers j.. Figures 9a to 9c¢ show
a comparison between the experimental data and
our calculated values. A good agreement is obtained
for each considered case and both the j-dependence
and the variation of y with temperature are well
reproduced.

7. Discussion and conclusion. — The consistency
obtained in all the physical situations studied between
calculated and experimental values (cf. Figs. 9 and 10)
must be connected to several physically meaningful
aspects contained in the present approach :

i) the use of an exponential form (cf. egs. (5)
and (12)) which to some extent takes into account
contributions of orders higher than two (this model
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being exact at infinite order for the pure vibrational
dephasing contribution (cf. sect. 3)) ;

ii) the introduction of a parabolic trajectory model
which is particularly convenient for describing the
close collisions (cf. sect. 4) ;

iii) in connection with the above point, the conside-
ration of realistic anisotropic short range forces
through the atom-atom model (cf. sect. 5).

Of course, the use of the Anderson theory may
lead to calculated numerical values relatively consis-
tent with the experimental values. But it is pointed
out that such a calculation has no physical meaning
as soon as the dominant collisions correspond to
impact parameters of the same order of magnitude
or a fortiori lower than the kinetic diameter. We
recall that this last situation arises for all diatom-
atom collisions and also for diatom-diatom colli-
sions for high rotational levels, except when a large
dipole-dipole interaction takes place. The present
theoretical approach constitutes a realistic model
of calculation for molecular line broadening and
shifting since it avoids the drastic drawbacks concern-
ing close collisions.
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Appendik A

Resonance functions appearing in the differential cross sections ™"S,[r(b)] in the parabolic trajectory

description.
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For the other resonance f-functions appearing in the differential collision cross sections expressions
(Cf. App. C) (1e 1’1f33, 1’2f44, 2'lf44, 2,2fss, l’0f713, 1,0f1133, 1’0f99, 1,0f915, l,Ofllss’ 2,0f88, 2,0f814, 2'0f1144, 1,1 88’ 1,1f814,
1,1 1144, 1,2&9, 1,2f915, 1,2 1155’ 2,1f99, 2,1/‘915, 2,lf1155’ 2,2f11(;)’ 2,2f1106, 2,2ﬁ166’ 1,0f79’ 1,0f1135’ l,0f715, 1,0f913, 1,1f38, 1,1 314’
1209 1,2¢15 2,1¢0 2,1¢15 2,2£10 2.2£16 gee J. Bonamy and D. Robert, Internal Report (1979), Laboratoire
de Physique Moléculaire, Faculté des Sciences, 25030 Besangon Cedex, France.

Appendix B

Expressions of the 2D;"\™ and ZE["" coefficients in terms of the molecular parameters r; and r,; and of
the u, , . (r) functions.

B, EvEN/, AND /,

ADJS =4n QE) =4mn
iDQY = 88 n(r}; + 13)) ZESS =20 n(r%; + r3)
224 & 64
D3 = ——=ri LE = —=rh
\/5 \/3
4004 7 10 10
#Dgo = z (r‘{,- + 15 + 5 ri r%l-) LEQe = 56 n(r‘{i + 5 + T r3, r%,-)
2816~ 7 1 600 = 7
1ogg = 2887 (11,4 1) 15 = L% (11, + 1)
V5 3 7./5 3
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spgp = XIBT 2 5B = 255,
ot = o =208, SEit = B = B0,
3D222—2 = ?jDz_zzz = 22;11t ri; réj 3‘E222_2 = ?,‘Ez—zzz = g‘}S—n"%i r%j
5pgs = 5 SR =220,
=22 Fipt =yt = 182
P2 = =42

The approximate expressions for uo(r), U200(r), U220(r), Uz,1(r) and u,,,(r) are given by (cf. eq. (33))

d; e, 2d, Se, 10 1001d;, lde,

ij

Rl
1 56d; 16e¢; 7 704 d; " 400 ¢;
Uz00(r) = —:Z {"fi[ 141 - _s—l:l + ("Ti + ;r%i ’%j) [ o . — 7r1°{|}
12]

NE r r .
azo(r) = lisz { r;,.[lz n2d, 13% ]} L0,
s =33 i S5 - S 20
i = 17 {a [ - ]} + &2

768d; 128e¢,;
- (o[ 23]

ij

B, Opp/; OR [,

48 24
LD = 24 1p00 _ 2%
ij~'10 \/— 1i ij~10 1i
3 \/3
3,D?? = — 208 ﬂrli rzj 3E?10 = - 56 nrli r2j
iszlll—l = i2jD1_111 = — 167ry; ry; iszlll_l = i2jE1_111 = —8umry T
1232 (3 160 7 (3 :
ot =225 (2 ) e - (Grien %)
V3 \5 J3\5
3136 512 =
3P0 — Foor2. 3F00 — rre.
ij~12 1i72j ije12 18 72j
J15 15
3136w 512w
D = — ——=rliry MEN = — —=rhln,
Jj=21 \/E J J /'—‘15 J
- _ 224 _ _ 1
i3jD112 l= i3jD1211 = = Ty; r%j 3E112 = i3jE1211 = Trli ’%j
V5 5
_ _ 224 _ _ 64 7
i3jD211 = %DZIII = = 3 i3jE211 = ?jEllll = = —"fi r2j
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8 _ 4n

G = — = Gi'=Go!t = - =
Hf3=47t\[§ Hijt—pgon =47
5 \/3

150 = —an |2 Brt=pp= - 40

5 \/5

(N.B. The G, H and I coefficients are defined in analogy with F coefficients of eq. (33) but refer to o' “2
ﬂlr?Z and #2r4Ql respectively instead of 2 Qz)

The corresponding u,,;,,,(r) functions are defined through

_ 12dy; 6ey] (3, ) [3084, 40e;
“100(')—7§izj {"u[ﬁ' ‘7] + <gru+rn"2j 15 —r—Q

52d; l4e; 2 u p
“110(")=Z {"’u"z; 141 r—sl]} ‘3 1',32

4d; ey By b
ooy el 2] %

ij r

1 2 784 dlj 128 e” ”2 Ql
Uzgolr) = —7= — Fira; -
() 5% rts rt
J

784 du 128, 3 Q2
rlur21 -

56d; 16e; l Q
R

J

1 56 d 16 1
u121(r) = — > {"1."2,[ ij €; ]} + — 5 3 Q2
ij

NG

(N.B. : We recall that r; and r,; are algebraic quantities, cf. figure 5.)

Uy0(r) =

Uz1(r) =

e
M

Appendix C
Expressions of the S,[r.(5)] and S{”[r.(b)] functions (we recall (cf. eq. (7)) that
S,[re®)] = Sap2 + 832 + 85202

where each term is defined by egs. (9) and (11)).

ELECTROSTATIC CONTRIBUTIONS

4 1
o = 5 (4 "’) ! {z P C I + 3 CP e "‘fs“(k)}

Fivg Jisi2 Jt.J2

1,2 16 ﬂlezl (1) ((2) 1,214 (1) C2) 1,274
Sy[rd] = = Z Ci) CiP “fi k) + Z Cip) Ci? M fa (k)

hvg Jiviz Jtodt

2
48, {1 (B] = 2 ("—2) 1 {z CP CP 21fHH) + ¥ CP c;:>“f4<k>}

’
hv, Jirds Jtdt
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1
ISP = o

Wi N

2
(ﬂz Ql) 'leD Y CP 2ifkk)

!’
fiv, e p#i

16 2 ]
228,[r(b)] = —(Q 1 9 ) 5 { Y CPCR¥fU + ¥ O CR > f5(k) + DCY 2’Zfss(k)}

5\ hv, re Ujtis Jtds

2’2S§L)[I’c(b)] — 2_5 (Ql Q2>

—2) 5D ¥ PP,

° Jj2#j2

ATOM- ATOM CONTRIBUTIONS

2 2
1, Osz[r (b)] 17258 (}i ) {(Z ry; eij> % (Z C}il) 1’°f77(k) + Z C},rl) 1’°f77(k)>
Jt
-2 (z e ) Srud ) - (z CP MO + X P "°f7‘3(k)>

c Ji Jt
53 361

+ — 25 600 (Z ll U) 24 (Z C}il) l’ofll33(k) + Z C(l) . 0f113(k))}

1,09 [r (b)] — 30 625 _l 2 r e + 7 2 ZC(’I) 1,of9(k) + ZC@,” l,0f9(k)
2k 1536 \7i, ACIER 56 e A

4719 3
e (e ne)
ij 5

1 22 268 961 3 2
x i <§ C(l) LOLIS (k) 4 %: C};’ 1,0f915(k)> + 640 000 (,Z,:(g ri; d; +ry r%i dij)>

<o (T romsw + T |
¢ Jjt

9 675 2
208,[r (b)]—5760<7iv) {(%"fu‘%’) ﬁ(ZC}iz)zos(k)+ZC(2)208(/€)+D)

re Jt

9471 (- , 2 2.0p14 @) 20714 )
1720(2 2.e J)( 3 >r20(zc /s (k)+zc (k) + D

c

8377677 1

HS 0] = g (n ) {(Z ) (z P i) + Y, O c;;“»*fs"(k’)

U Jisj2 JJ2

16863
2 6 <Zr1:r21 u) <Zrll r2) U)

1 547 469 2
<J” C(l) C}{,ll) 1,1f814(k) + Z C};) C}él) 1,1f814(k)> + W (Z ryi T2 dij)

Jtsi2 ij

°NI»—- ONlr—l

( R Cl M + X, C“’C“’“fl‘f(k)>}
JisJ2

JJ2

5635
s =22 (E)  (Srurtes) (T e ep i + 3 ap cpragw)
ij Te JisJ2

Jt.J2

7293
P2 (S rurbe) (i) i (3 e cpramsw + T e o)
ij ° Jisj2 Jf 2
184 041 2 1
(z et ) —2—8( S o e I + % P CP *’Zfs;(k))}
7360 \75 re \jiis it
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5635
Pslo] = 22 (E) {(Srtime) 2T o o me + 3 opapsze)

ij Jisj2 JtsJ2

7293 (Z 21y eij) (Z iy U) ( Y CRCP YLk + Y CP b2 1f15(k))
736 ij ij rc Jis 12 JtsJ2
B (S i) (T apap e + T opoprio)
ij c Jisj2 Jt,Jj2
5635 7293
st =53 () 2 L o {(Bre) e <52 (g )

184 041 2
X (eri"zjdn) 53 6 3(k) + 7360 (Z’fi"zjd.-,) = 1f15(k)}
ij re

ij r;

192913 / = \? 2 1
2.2S »l = (2) (2) 2,2,10
2[rc( )] 1152 <hvé) {(zj‘, rii r21 u) r (Z C C f (k) +

.c Jisj2

+ JZ CP CiP (k) + DCD 7, 1lo°(k)) 643399333 (Z iy eu')
£,J2 ij

< (Srirsa) e (3 0 cpsw + 3 ap ap i + pep s

ij Jii2 JJ2

6 538 424 607 2’ 2
C(2) C(2) 2,2 6 k
+ 00 787 200 (%r“”’ ) r (; fiel)

+ 3 CP RSk + DCP L’fl‘:(k))}
J.J2
n ) 2 6 969 963
hvé) P {(Z e > O sa

1 6 538 424 607 2
(Z rrije .,) (Z 3 ri .,) r“ 227 15(k) + 00787 200 (Z 3 ri; dij) ?' 221 6(")}

ij ij

228 [rb)] =

192913
1152

CROSS CONTRIBUTIONS

LoS,[r(D)] = ( v,> {f;g (Z r;e U) (Z (% rie; + ryry ,,)) - (Z CiH 1Of2(k) + Z cp - °f79(k)>

ij

7 630 623
() G )

ij ij

(z CIP 1) + 3 O 1‘35(k)> Be (Z, r e,.,.) <z (z Pidy + r di,.»
(Z CIP 1L (k) + Z o Ofls(k)> 40 425 ( " u)

4096

( "1. eu + i r21 e )) %(Z CJ(il) 1,0f913(k) + Z C(l) 1,0 13(k))}
c Ji

2
re
1
To
re
(X
ij

L
S.0r] = e L (2 - ) s(Z cpaprm 3 cpop )
JiJ2 JtsJ3
_ 1001 1) (1) 11514 (1) (1) 1,1514
128 Z Itz dij Y G CiP Vi) + Z Ci) C) f34(k)
ij JiJa Jt,j2

nu, Q 21
1,2S2[rc(b)] _ (hl )22 {_: 7 (Z Fu "z, l]) T(Z C(l) C(Z) 1,2 9(k) + z Cj(‘_l) C}&Z) 1,2ﬁ9(k))
re Jisj2 JtJa

+ 2 (Srurias) 3 (5 b ap v + T cgp ap e

re JisJ2 Jsj2
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2,19 _ T ¥y 0, CP CP 212k CP CO 21£9)
’ Z[rc(b)] - (hv )2 Z rll r21 ij r Z f ( ) + Z Jf J2 f4( )
ij ° JisJ3 Jtsi2
_ 3003 CP CY 217150 C® W 2.1£15()
T8 Z’n 2i4) =\ X CPCY f4()+z i Ci) 2 a7 (k)
ij ° JJa2 Jt. 2
T, Q 21 1 3003 1
z’lséL)[rc(b)] = (I;iz ,)21 D z C,('al) {T (z "%i raj eij) " 2 1f49(k) - _158— (Z "%i r3j dij) ;‘ﬁ 2’1f415(k)}
J2#J2 ij 0 ij c
nQ, 0, 17 073 ) (
2,29 Y] = : : C® C@ 22710
2[rc( )] (hvé)z { 160 = rl rZJ Jj c 1%2 Ji J2 f5 ( )
+ ¥ CP CP22(10%k) + DCP 2’2f51°(k)> 1?32;(5)3 (Z Pird, d, )
Jtsj2 ij
1
(% apapraew + § o prew + oo )|
c Jisi2 Jtsi2
nQ, Q 17 073
2’2S(L)[rc(b)] (hl )22 D Z (2) {__ 1_60_(2 ri 721 U) 2, 2f10(k)
Jj2#j2 ij
+ 13133 (312,10, ) 2o

In all the above equations we recall that D = (— )" 2[(2; + 1) 2 j +

1) CP CPIY2 x Wi jedides J2)

where W is the Racah coefficient and J the order of the coupling tensor between the molecules and the external

field.
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