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Short range force effects in semiclassical molecular line

broadening calculations

D. Robert and J. Bonamy

Laboratoire de Physique Moléculaire (*), Faculté des Sciences et des Techniques, 25030 Besançon Cedex, France

(Reçu le 26 mars 1979, accepté le 12 juin 1979)

Résumé. 2014 Une théorie semi-classique de l’elargissement et du déplacement des raies infrarouge et Raman en
phase gazeuse est développée dans le cadre de l’approximation d’impact. Un modèle de trajectoire parabolique,
pilotée par la partie isotrope du potentiel intermoléculaire, permet un traitement satisfaisant des collisions à courte
approche tout en conservant une formulation analytique de la section de collision élastique. Nous avons testé
cette théorie en comparant nos résultats, pour le cas HCl-Ar, aux résultats d’autres auteurs qui utilisaient un
traitement à l’ordre infini et des trajectoires classiques numériques. Les calculs ont ensuite été étendus au cas
des collisions diatome-diatome, en exprimant le potentiel d’interaction anisotrope à l’aide d’un modèle atome-
atome, lequel tient compte à la fois des contributions à longue et à courte distance. Des applications numériques
ont été réalisées pour les raies Raman des gaz purs N2, CO2 et CO et pour les raies infrarouges de CO autoperturbé
et perturbé par N2 et CO2. Dans tous les cas, nous avons obtenu un bon accord quantitatif avec l’expérience, et en
particulier les variations de la largeur de raie avec le nombre quantique rotationnel ont été correctement reproduites,
même à basse température, ce qui n’était pas le cas dans les travaux antérieurs. 

Abstract. 2014 A semiclassical theory of the width and shift of isolated infrared and Raman lines in the gas phase
is developed within the impact approximation. A parabolic trajectory model determined by the isotropic part of
the interaction potential allows a satisfactory treatment to be made of the close collisions leading to an analytical
expression for the elastic collision cross section. A numerical test of this theory has been made for HCl-Ar by
comparing the present results to those of previous infinite order treatments using numerical curved classical
trajectories. Extension to the diatom-diatom collisions is then made by expressing the anisotropic potential
using an atom-atom interaction model which takes both the long and short range contributions into account.
Numerical applications have been performed for the Raman line widths of pure N2, CO2 and CO and for the
infrared line widths of pure CO and of CO perturbed by N2 and CO2. A good quantitative agreement with expe-
riments is obtained for all the considered cases and a correct variation of the broadening coefficient with the
rotational quantum number is achieved in opposition to the previous results. A consistent variation of the line
broadening with temperature is also obtained even for high rotational levels.
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1. Introduction. - The most broadly applied theory
of pressure broadening of isolated spectral lines is

that developed by Anderson [1], which has been
systematized by Tsao and Curnutte [2] and extended
to the Raman lines by Fiutak and van Kranen-
donk [3]. In fact this perturbative treatment leads
to reasonable agreement with experiments only if

molecular gases for which a strong dipolar inter-
action exists [4-6] are considered. Indeed, in this

case, the optical collision diameter is always higher
than the kinetic collision diameter and the descrip-
tion of the close collisions with a straight line tra-
jectory is of no crucial importance. For all the other

(*) Equipe de recherche associée au C.N.R.S.

cases, the application of the Anderson theory is very
questionable due to the major role played by the impact
parameters cutoff in the electronic clouds overlap
region for the two colliding partners. This is, of

course, the case of the diatom-atom collisions [7]
but also the same as most of the diatom-diatom
collisions for high rotational quantum numbers [8].
Many refinements to the Anderson theory have

been introduced by Herman and Jarecki [9-11]
concerning the widths and the shifts of vibration-
rotation absorption lines induced by the pressure
of rare gases. These refinements consist in modifying
the trajectory model in favour of more realistic

representation of the close collisions and by including
the vibrational and rotational phase shift terms

contributions up to infinite order. Murphy and
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Boggs [12] have also improved the Anderson second
order limited treatment by including some of the
higher order terms through an exponential form of
the collision cross section. This avoids the use of a

cutoff procedure but this theory maintains an unrealis-
tic trajectory model for the shortest approach and
neglects elastic broadening effects.

Finally, an infinite order semiclassical theory for
spectral line broadening in molecules was recently
proposed by Smith, Giraud and Cooper [13]. This
theory uses curved classical trajectories determined
by the isotropic part of the intermolecular potential
and leads to a good agreement with close coupling
calculations and with experiments [13, 14]. The
extension of this theory to the rare gas pressure

shifting of the diatomic molecules vibration-rotation
lines was made by Boulet and Robert [15]. Neverthe-
less this semi-numerical treatment is hardly applicable
to the diatom-diatom collisions and, of course, to

molecular systems with a larger number of atoms due
to the formidable computational task required. A
fortiori, the same remark holds for all the fully
quantum methods of calculation (i.e. close coupling)
for the molecular collision cross sections, even when
dimensionality reducing schemes are used such as in

the coupled states approximation [16] or in the effec-
tive potential approximation [17]. This explains the
persistent success of the various improved Anderson
theories mentioned above [10, 12] specially for large
molecules of astrophysical interest [18-23].
The aim of this paper is to introduce further

improvements mainly conceming the close colli-
sions contributions while still keeping an analytical
treatment in order to extend the formalism pro-
posed for isolated lines to more involved situations
such as, for instance, the overlapped lines. Indeed,
in the case of the isotropic Raman Q branches and
of microwave bands of almost all the molecules,
the lines begin to overlap each other even at moderate
densities (several amagat units). Consequently signi-
ficant deviations appear between the experimental
data and the calculations issued from the isolated
lines theories [24-28], so further theoretical investi-

gations are required.

2. General formulation. - According to the general
impact theory developed by Fano [29] and extended
by Ben Reuven [30], the contour of the spectrum is
determined by the following equation expressed in
terms of reduced matrix elements

In this equation La is the Liouville operator characterizing the unperturbed optically active molecule

(La = [Ha, ]), p. is the corresponding density operator, na is the numerical density of the active molecules and
X(J) the coupling tensor oui 7 order between the molecules and the external field (J = 0 for the isotropic Raman
diffusion, J = 1 for the electric dipolar absorption and J = 2 for the anisotropic Raman diffusion). The matrix
element of the relaxation operator in the vibration-rotation states of the free optically active molecule may be
expressed in terms of the S matrix in the Liouville space [30, 31].

where

and

In eq. (2) pb and nb are the density operator and the numerical density of the perturbers, C(if ji J ;
mf, - mi, M) is the Clebsh-Gordan coefficient [32] and the symbol ( ... &#x3E;b,v,2 means an ensemble average over
the impact parameter, the relative velocity and over the quantum states of the perturbers.

Moreover the S operator is defined through
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where the symbol 0 means the time ordering operator, Ha and Hb are the Hamiltonians of the optically active
molecule and of the perturber and V the coupling operator between these two molécules. The non-diagonal
tenus of the relaxation matrix with respect to the vibrational and rotational quantum numbers of the optically
active molecule are called the cross correlations terms [30], they describe the non-additivity effects resulting
from the lines overlap [30, 33, 34]. The influence of such terms on the resulting spectrum will be examined in a
further paper but, for the presently studied isolated lines, these cross correlations contributions must be dis-
regarded. In this case, the half-width at half-intensity yfi and the shift c5fi of the Lorentzian line i ---&#x3E; f is given
by :

From eqs. (2) to (4) it is seen that the analytical calculation of the yfi and c5fi line parameters requires know-
ledge of the following matrix elements of the Liouville S matrix

The approximation made in the above equation (i.e. the decoupling of the angular momenta tied to the
active molecule and to the perturber) must be connected to the classical path assumption. Indeed in this case
the total angular momentum is much larger than internai angular momenta. So, the orbital angular momentum
may be considered sufficient to describe the rotational part of the relative motion (the impact parameter approach
developed in section 3) and the decoupling mentioned just above may be stated.

The « f2’i2’ 1 S [ f212 )) matrix elements will be now expanded through the linked cluster theorem [35, 36].
These matrix elements are then expressed as a product of an exponential of the connected V matrix elements
(noted by the (C) index) and of the linked elements (noted by the (L) index). For the isolated lines, these linked
terms result only from the non-diagonality of S with respect to the states of the perturber. When limiting the
expansion to the second order diagrams, we obtain

The first order contribution (SIC) ; note that SIL) = 0) and the second order contributions (S(c) and S2(L » are
defined through the following équations

with

where
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In these equations VANISO means the anisotropic part of the intermolecular potential, P.P. the Cauchy princi-
pal part, and the expressions for S 1,f2’ S2,f2 and S2’,f2 will be respectively deduced from eqs. (8), (9) and (10),
by only changing the subscript i to f. 

’ ’

Some additional remarks must be stated as far as the above relations are concemed. First, the inelastic
vibrational contributions (v’ ~ v ) are always negligible for the cases considered here. Secondly, the pure vibra-
tional dephasing contribution corresponding to the diagonal terms in the vibrational states of the isotropic
part of the potential V (called Vlso) is rigorously taken into account up to the infinite order through the S,
contribution if the vibration-rotation coupling is disregarded (cf. eqs. (6), (7) and (8)). Also, the imaginary
part of the second order contribution (cf. eqs. (7) and (10)) results from the noncommutative character of V
in the interaction representation (cf. eq. (3)) at two different instants [37, 6, 15].

Starting from eqs. (2) to ( 11 ) the resulting expressions for the half-width at half-intensity y f; and for the
line shift c5fi (or for the corresponding collision cross sections afi and u’i) are thus given by

The eqs. (12) and (13) are similar to those recently
derived by Mehrotra and Boggs [38] but they include
the additional contribution coming from the rota-
tional dephasing effects through the S(c),i, and S2Lf2i2
terms (cf. eqs. (7) and (11)). These elastic broadening
effects are of importance for all the cases studied
here (cf. sect. 5 and Figs. 9). We mention that such
an approach avoids the use of any questionable
cutoff procedure due to the partial resummation of
the V-infinite series through the connected terms.

When neglecting some of the contributions coming
from the orientational terms of order higher than
two as done in eqs. (12) and (13), the main problem
arising in an effective calculation of the yfi and c5fi
parameters is connected with the trajectory descrip-
tion, especially for the close collisions.

3. Kinematical model for the binary collisions. -
Almost all line width calculations neglect the influence
of the isotropic interactions Vjso on classical tra-
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jectories [12, 38], the usual model being a straight
line trajectory described with constant velocity [1-3].
A first analytical model was proposed by Tipping
and Herman [9] including the influence of Ylso in
the energy conservation equation. Nevertheless this
model neglects the influence of the force Flso (derived
from the isotropic potential Vlso) in the equation
of motion around the distance of closest approach rc.
Consequently, this trajectory description is not valid
for hard collisions such as b  ro where ro is the rc
value for a head-on collision.

Recently L. Bonamy and the present authors [39]
included the above-mentioned influence of Flso in
the r(t) equation

where Vc is the relative velocity at the closest approach
and Fc is defined through

e and J being the usual Lennard-Jones constants.
The r(t) modulus is then given by

where the apparent relative velocity v§ is defined

through

Taking into account the conservation of the angular
momentum (vc rc = vb) and of the energy

The variation of rc/a issued from these conservation
equations as a function of bl03C3 (eq. (18)) is presented
on figure 1 for various values of the reduced physical
parameter E* = mv2/2 s. Figure 1 exhibits the exis-
tence of orbiting collisions which appear at sufficiently
low values of v. In fact for the current physical situa-
tions the considered mean kinetic energy is higher
than the e values and the orbiting collisions are not
efficient. Nevertheless it should be mentioned that
for sufficiently low temperatures (T 5 ~lk) the
Maxwellian distribution of velocities provides a

noticeable fraction of weak relative velocities which

gives rise to orbiting collisions. The duration of these

Fig. 1. - The influence of curved trajectories on the reduced
distance of closest approach r ci (J for various values of the reduced
kinetic energy E* = mv’12 8. la. - this case (E* = 0.5) corres-
ponds to a type of collisions in which orbiting takes places. b. - The
two curves (.-.. E* = 1 ; - - - E* = 4) correspond to
open trajectories for the whole range of b/J values.

collisions increases the correlation time considerably
and a strong increase of the line widths has to be

expected in this case. Such a temperature behaviour
was recently observed [40] in the anisotropic Raman
spectrum of pure H2, D2 and HD for T  50 K
and might be explained by the above considerations.
The variation of v’Iv versus b/a plotted on figure 2

shows a marked deviation from unity for low b
values (b  0’) especially for low reduced kinetic

energies.

Fig. 2. - The apparent reduced velocity "-° at the distance of closest
v

approach in our parabolic trajectory model (.2013.2013. E* = 1 ;
- - - E* = 4).
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In the approximation of eq. (16), the real curved
trajectory was replaced by an equivalent straight path.
Another curved trajectory model is now proposed
which includes the F, influence in the 03C8(t) collision
angle (cf. Fig. 3) at the second order in t, as was done
for r(t) in eq. (14), i.e.

(Note that for the homogeneity of the present deve-
lopment the condition cos’ 03C8(t) = 1 - sin’ 03C8(t) has
to be respected.)

Fig. 3. - Geometry of the collision (in the particular type of colli-
sion represented here, the repulsive forces are most important).

A similar parabolic trajectory was introduced by
Gersten [41] in the collision-induced light scattering
and was very recently discussed by Berard et Lalle-
mand [42] in a systematic analysis of the potential
correlation function calculation. These authors
showed that it is compulsory to use trajectories with
the true relative velocity at the closest distance of
approach as is the case in our model.

It may be noticed that for very distant collisions
(b &#x3E; 0’) this model tends to be the usual straight
path trajectory, the influence of the isotropic poten-
tial being negligible. In the opposite situation (b  0’)
such an influence is crucial. In particular, for the
head-on collisions the apparent relative velocity is
not zero (cf. Fig. 2) as in the Tipping and Herman
model [9] avoiding any unphysically behaviour for

all the hard collisions. In this case (b = 0) the rc
and v§ parameters are given by

Due to the role played by the rc parameter in the
above trajectory model it is more convenient to

replace the average over the impact parameter b
by the corresponding average over this parameter
as follows

The various Si and S2 terms appearing in eqs. (12)
and (13) are now functions of r,,, and v’, the depen-
dence of v’c on rc and v being given by eq. (18).

4. Test of the présent semiclassical model. - The
semiclassical theory of the width and the shift of
the lines developed in sections 2 and 3 can be now
applied to the pressure broadening by Argon of
HCI pure rotational lines. This is a particularly
valuable test for our present model of calculation
for several reasons. First, Neilsen and Gordon [43]
have performed a very accurate numerical solution
of the Schrôdinger equation using classical curved
trajectories for the translational motion and second,
Smith, Giraud and Cooper [13] have also tested
their approximate infinite order theory for the same
physical situation as in ref. [43]. Moreover this theory
was successfully compared to close coupling cal-
culations for CO-He cross sections. Therefore, in
order to have a physically meaningful comparison,
it is particularly interesting to calculate also the rota-
tional line width for HCI-A using the theoretical

framework developed above and using this potential
labelled N.G.52 [43]. Also it should be mentioned
that as far as diatom-atom collisions are concerned
the role played by the close collisions is drastic

making this test very severe.
In fact our calculations were performed by using

the same potential as that of Smith et al. [13]. It

differs from the potential of Neilsen and Gordon
due to the substitution by a r-12 analytical depen-
dence of the repulsive terms to the exponential form
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The values of the various parameters appearing
in this equation are (cf. refs. [13] and [43]) e = 202 K,
6 = 3.37 À, R1 = 0.37, R2 = 0.65, A, = 0.33,
A2 = 0.14. As for the Lennard-Jones parameters e
and which are not explicitely reported in ref. [13],
their numerical values were obtained by numerically
fitting the Neilsen and Gordon isotropic potential
by a least-squares procedure.

Following eq. (12), the calculation of the half-
width yf; for the pure rotational lines requires the
specification (cf. eq. (7)) of the S(c) and S(L) terms
(the SIC) terms obviously cancel out in the far infrared
region since v; == Vf and the S2 contribution must
be disregarded in the present text since they result
from the non-commutative character of the inter-
molecular potential which was neglected in ref. [13]
and [43]). As an example, we present now the detailed
calculation of the S2 term

cf. (eqs. (7) (9) and (11)) for the particular case of

the Pi(cos 0) contribution appearing in eq. (22).
The kinematical model used for the binary collisions
is the same as in section 3.
The expression of this potential contribution in

the collision frame [44] is

with

The matrix element between the eigenstates i and
i’ of the unperturbed Hamiltonian, appearing in

eq. (9), is

where

By putting

and by using the expressions of sin 03C8(t) and cos 03C8(t) of eq. (19), one obtains

The general expression for the integrals appearing in eqs. (27) and (28) is given in ref. [2]. So, we obtain the
following differential cross section
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The left superscripts appearing in the resonance f functions (i.e. 1, 0) are directly related to the orders of the
spherical harmonics for the active molecule and the perturber respectively. The right symbols relate to the radial
exponent of the potential term connected to the considered resonance function. Note that 1,OS(L) = 0 and
1,OS2 = 1,082,f + 1,OS2,i since l’OS(2C,f)2i2 = 0 (cf. eq. (7)). 

2,f2i2 
= 0 and

A similar calculation for the P2(cos 0) contribution in eq. (22) leads to

with

where W is the Racah coefficient [2]. Note that

The expressions of the resonance functions

appearing in eqs. (29) and (30) are given in Appendix A.
Note that these f-functions differ from the resonance
functions appearing in the previous theories (see for
instance refs. [2, 3, 9 and 12]). Indeed their argument
is now defined by the closest approach distance rc
and the apparent relative velocity v’c (cf. eq. (18))

through k = , , instead of the impact para-
vc

meter b and the relative velocity v respectively.
Moreover the parabolic trajectory model leads to

an additional dependence of these functions on v,,Iv’ c
as evidenced in eq. (27) and in the expressions given
in Appendix A

Of course for distant collisions (rc, - b » 0’) (cf.
Fig. 1) one has v§ - Vc ’" v (see eqs. (17) and (18)
and Fig. 2) and all the f-functions tend to be the
corresponding Anderson resonance functions [2]. In
order to illustrate the behaviour of these f functions,
we give on figures 4a and 4b the variation of 1,Of77(k)
and 2,Of66(k) as a function of k. These figures exhibit

Fig. 4. - The resonance functions for two particular interactions
obtained from the parabolic trajectory model are compared to the
corresponding Anderson resonance functions ( Anderson
function, .2013.2013. E* = 1, --- E* = 4). 4a. - Interaction in

P1(cos 03B8) (cf. eq. (22)). 4b. - interaction in P,(cos 0) (cf. eq. (22)).
r r
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strong deviations from the Anderson functions mainly
at low kinetic energy. The major effect of our kine-
matical model is to extend the k-region of resonance
and thus to increase the number of efficient colli-
sions for given b and v parameters.
The numerical calculations were performed using

eq. (12) explicited through eqs. (29) and (30) for
HCI-Ar with the conditions just outlined but by
not averaging the cross section afi over the relative

velocity as was done in refs. [43] and [13]. We compare
in table 1 the present results for various reduced
kinetic energies E* = mv2/2 k with the corresponding
values obtained from the Neilsen and Gordon [43]
and Smith et al. [13] calculations. As it appears in
table 1 our results agree within 10 % with the Smith
et al. theory [13] reproducing moreover in a very
consistent way the j and E* dependences. The agree-
ment with Neilsen and Gordon calculations [43]
is less convincing, the j dependence being not so well
reproduced. It must be recalled here that the numeri-
cal potential surfaces are not rigorously the same in
the two cases (cf. supra) in opposition with the

previous comparison and that the role of the aniso-
tropic repulsive part of the potential is of crucial

importance.

Table I. - Unaveraged HCI-Ar cross sections for
pure rotation transitions in Â2 for various reduced
kinetic energies E* = mv2/2 k.

This test provides a useful confirmation of our
theoretical approach and numerical calculations. We
recall that the main advantage of such an approach
lies in its analytical character (cf. eqs. (12), (13), (29)
and 30)) and in the possibility to easily extend the
domain of its applications to more involved situa-
tions (cf. following sections). In particular the diatom-
diatom collisions cross sections calculations per-
formed in the framework of the theories of refs. [43]
and [13] will necessitate prohibitive computing times
due to the thermal average over the rotational degrees
of freedom of the perturber. This difficulty is removed
in our theory and the remaining problem consists
in deriving short ranged anisotropic potential sur-

faces, the long ranged part of the potential being
correctly described by the electrostatic interactions.
The first multipolar moments characterizing these

interactions are generally well known for most of
the studied molecules. Until now the anisotropic
short ranged part of the diatom-diatom potential
was calculated by ab initio methods only for very
simple systems such as H2-H2 [45, 46]. Even the
semi-empirical method proposed by Gordon and
Kim [47] was applied only to the diatom-atom
case [48-50]. Consequently strong interest lies in

realistic model studies for describing these inter-
actions. The next section is devoted to this parti-
cular aspect.

5. Potential model for interactions between linear
molécules. - Several models have been proposed in
order to get a realistic representation of the àngle-
dependent intermolecular potential. Among them,
the most extensively studied are the so-called
atomic [51-53], Kihara core [54] and overlap [55]
models. A recent study of MacRury, Steele and
Berne [52] showed that these three models were

approximately equivalent for slightly non spherical
molecules such as N2 or CO2. However, the atomic
representation was the most widely used and gave
a good fit to many experimental data. Concerning
the molecules N2 and C02, we will mention some
experiments such as the second virial coefficients
over a wide range of temperature [53, 56], the heat of
sublimation [57], the crystal structure and the lattice
frequencies of solids [58], the dimers configuration [59]
and several equilibrium and dynamical properties
of liquids [60]. The atomic model added to the electro-
static part of the potential constitutes a sufficiently
realistic representation [52] of the interaction to

warrant its use in the following (see, for instance,
sect. 6).

Thus, the intermolecular potential V will be repre-
sented by the superposition of atom-atom interactions
between the two colliding molecules (cf. Fig. 5) i.e.

VA, added to the electrostatic contribution VE (here
the quadrupolar interaction)

In eq. (32) the indices i and j refer, respectively, to
the ith atom of molecule 1 and the jth of molecule 2,
r li,2j is the distance between these two atoms, did
and eij are the atomic pair energy parameters and Q,

Fig. 5. - Orientational and radial coordinates for two interacting
linear molecules.
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and Q2 are quadrupolar moments of each molecule.
In the fixed frame of figure 5 it is possible to specify
analytically the angular dependence of VA (cf.
eq. (32)) by expanding all the rli,2j interatomic dis-

tances in terms of the intermolecular distance r,
of the intramolecular distances rü and r2j and of the
spherical harmonics YÎ tied to each molecule [61, 52].
Thus for the intermolecular potential V we obtain :

Note that for the symmetric linear molecules
considered here, only D and E coefficients with
even { 11, 12 } are non-zero. The explicit calculations
of these coefficients were performed up to and

including fourth order (q = 0, 2 and 4). The corres-
ponding expressions are given in Appendix B 1.
Such a limited expansion, both in radial and angular
coordinates (eq. (33)), may be tested for given quantum
numbers { 11, 12, m } through the radial dependence
of u1112m(r) by a comparison with the rigorous nume-
rical calculations performed by MacRury et al. [52]
including all r-orders. We chose the same values as
those from the detailed study of ref. [52] for the phy-
sical parameters rli, r2j, dij, eij and Q (cf. table II).
The figures 6a to 6c justify the analytical expansion
in the spherical harmonics limited to fourth order
in a remarkable way. It is to be noted that the main
contributions to the angle dependent part of the poten-
tial energy come from the U200, U220 and in a less
extent from the U221 components. The u222 term is

very weak. Moreover the U400 coefficient has not been

reported on figure 6 due to its negligible contribution
(its values is 9 K for r = 0’ and 1 K for the minimum
of uooo) and this contribution will be disregarded
in the following. These conclusions may be applied
to CO2 as it appears on figure 7.

In connection with the interest lying in the infrared
and Raman spectral properties of CO, it is useful
to get a realistic potential surface for this molecule.
Although CO is not a symmetrical molecule, its

dipole moment is very weak (/1 = 0.11 D) and its

quadrupole moment is of the same order of magni-
tude as N2 or C02 (Qco = - 2.23 DÂ ; cf. table II).
So, it is interesting to extend the atomic model to
CO-CO, CO-N2 and CO-C02 interactions since in
a recent study of the second virial coefficients within
a wide range of temperature, Oobatake and Ooi [53]
determined the needed energy parameters in this
model (cf. eq. (32)). Due to the non-symmetrical
character of the CO molecule it is necessary to add
the odd contributions to the tabulated terms of

Appendix B1. The qjD 1112 and 1jEl7l2m2 coefficients

Table II. - Physical parameters characterizing the intermolecular potential for N2, CO2 and CO molecules.

1 1 1 1 1 1 1 1 1

(’) All values are taken from ref. [52]. Note that for the C02 molecule the exhaustive study of MacRury et al. [52] shows that only a
very little change appears when a diatomic model rather than a triatomic model is used. Consequently we have retained here their recom-
manded diatomic (12,6) model.

(b) The here considered values for dij and eij (or e and (J) have been obtained by Obatake and Ooi [53] from second virial coefficients
measurements. Among the various possible choices for these parameters proposed by these authors we have selected those leading to the
best fit with the isotropic intermolecular potential given in ref. [61] (e = 100.2 K, Q = 3.763 A for the molecular Lennard-Jones parameters).

(c) Atomic Lennard-Jones parameters characterizing the atom-atom interactions in the present considered model.
(d) Calculated values deduced from the two first columns.
(e) These values are obtained from the usual combination rules.
(f ) Rotational constants taken from G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, Princeton, New Jersey)

1961.
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Fig. 6. - Coefficients ultlzm(r) in the spherical harmonic expansion
of the interaction energy between two N2 molecules. (... calculated
from eq. (33), analytical expressions of Appendix B, and the
numerical values given in table II ; numerical computation
of Mac Rury et al. [52] including all r-orders.) 6a. - Isotropic part
coefficient uooo(r) ; 6b. - Anisotropic part coefficient u200(r);
6c. - Anisotropic part coefficient u22m(r) taking into account the
quadrupolar contribution.

for q = 1, 2 and 3 with odd h or 12 indices derived
in a previous work of the present authors [63] were
reported in Appendix B2. A study of the uZ¡12(r)
corresponding coefficients (cf. Appendix B2) defined
above (cf. eq. (33)) shows (Fig. 8a) that the very
predominant contributions come from the uloo, U200,
U110, U120, U210 and mainly from u22o if moreover
we take into account its resonance properties in the
collisional mechanisms (cf. sect. 6). In the following
applications the U400 component will be neglected
due to its very small contributions (only several K
units for r &#x3E; 03C3). Moreover curves of interaction

Fig. 7. - Coefficients u’1hm(r) for the interaction between two

CO2 molecules calculated from eq. (33), Appendix B1 and numeri-
cal values given in table II.

energy for pairs of CO molecules with fixed orienta-
tions are shown on figure 8b. The comparison of
figure 8b with the corresponding figures of ref. [52]
for N2 and CO2 pairs also shows a similar behaviour.

Fig. 8a. - Coefficients u’l’2m(r) for the interaction between two
CO molecules calculated from eq. (33), Appendix B and numerical
values given in table II. The Ul11’ U211’ U121 and u4oo contributions
have not been reported because of their small magnitude. Note
moreover that here U12. = - u2lm·
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Fig. 8b. - The interaction energy between two CO molecules with
three fixed orientations as a function of the intermolecular distance.

6. Application to the line widths calculations. -

In this section we successively examine the self-

broadening of the rotational Raman lines of N2,
CO2 and CO and the broadening of the infrared
vibration-rotation lines of pure CO and of CO-N2
and CO-CO2 gas mixtures. All the following numerical
applications start from eq. (12) and its specification
through eqs. (6) to (11) and Appendix C and A. The
potential surfaces considered are the same as examined
in section 5 for pure N2, CO2 and CO. For the gas
mixtures the potential surfaces were derived in the
same way using moreover the usual combination
rules to determine the molecular parameters from the
tabulated values of table II. In all the cases studied
above the contribution of the vibrational effects in
the fundamental band is noticeably small [64-66]
(or zero for the rotational Raman lines since v; _-- vf)
and will be disregarded. This is equivalent to taking
’Sl,f2 = Sl,i2 in eq. (12). In an analogous way we also
use S’ 2,f2 = S2,i2 in this equation because of the very
weak observed shifts [67] (even for the 0-2 harmonic
band these shifts are hardly detectable). This experi-
mental fact indicates at the same time that the vibra-
tional effects are weak as just stated above and that
the rotational contribution resulting from the non-
commutation of the interaction at two different
instants is also negligible [6]. We also mention that
all the numerical line width calculations were per-
formed by replacing the average over the relative
velocities (cf. eq. (12)) by the average velocity approxi-
mation. The corresponding mean velocity was deter-

mined in each case for the temperature of the experi-
ment considered.

Finally we point out that all the molecular constants
used in these calculations (cf. table II) were obtained
from sources independent of the pressure-broadening
experiments (cf. sect. 5).

6.1 ROTATIONAL RAMAN LINES OF N2, CO2 AND
CO. - A detailed experimental study of the rotational
Raman lines was realized by Jammu, St. John and
Welsh [68] for pure N2, CO2 and CO. The impact
theory of Fiutak and Van Kranendonk [3] was then
applied [69, 70] to the broadening calculation of
these observed lines by considering the quadrupolar
and anisotropic dispersion interactions. Recall that
this theory [3] is limited to second-order and requires,
through a linear trajectory model with a constant
velocity, a questionable cutoff procedure [7] for small
impact parameters. Although the order of magnitude
of these theoretical results was consistent with the

experimental data, important discrepancies did appear
mainly conceming the dependence of the broadening
on the rotational quantum number j; as evidenced
on figures 9a, 9b and 9c. The results of our calculations
were also reported on these figures (in the case of the
rotational Raman lines jf = j; + 2 is found and the
rank of the tensor characterizing the coupling between
matter and radiation is two, i.e. J = 2 in eq. (11))..
It is to be noted that our results are very consistent
with experiments in the three cases.

6.2 INFRARED VIBRATION-ROTATION LINES OF PURE
CO AND OF CO-N2 AND CO-CO2 MIXTURES. - The
line widths of carbon monoxide pressure-broadened
by itself and by many foreign gases (rare gases, N2,
CO2, 02, HCI, NO, etc...) were measured in various
vibrational bands for several temperatures [65, 66,
67, 71, 72]. The measurements at low temperatures [71] ]
(200 K  T  250 K) are of planetary interest

conceming the atmospheres of Mars and Venus.
The previous attempts [65, 73] to calculate these line
widths employed the Anderson theory and led Vara-
nasi [8] to conclude that a thorough revision of this

Fig. 9. - The half-width at half-intensity y of rotational Raman
lines as a function of the rotational quantum number j; (0 : experi-
mental values from ref. [68] ; 0 : theoretical values from ref. [70] ;
1 : calculated values from the present study ; A : calculated
values but without the S2(c) and S2(L) rotational dephasing contri-
butions (cf. eq. (12)) disregarded in ref. [38]). 9a. - For N2 gas ;
9b. - For CO2 gas ; 9c. - For CO gas.

Fig. 10. - The half-width at half-intensity y of fundamental
vibration-rotation lines as a function of the rotational quantum
number ji for various temperatures (0 : experimental values ;
Â : calculated values from the present study). 10a. - For pure
CO gas ; experimental values from ref. [71] ; 10b. - For CO-N2
gas mixture ; experimental values from refs. [65] and [72] ; 10c. -
For CO-CO2 gas mixture; experimental values from ref. [71].
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FIG. 9. FIG. 10.
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theory is required j’or all but simple dipole-dipole
interactions. The present approach constitutes an

attempt to answer this question and thus it is inte-

resting to calculate the CO line widths within the
theoretical frame developed above for various phy-
sical conditions. We have retained here only the three
cases (CO-CO, CO-N2 and CO-CO2) for which the
potential surfaces were determined with a sufficient
credibility (cf. sect. 5). All the calculations were per-
formed following the approach of the previous
section (6.1) but with jf = j; + 1 (R branch) and
J = 1 in eq. (11) (tensor rank of the dipolar coupling ’
between matter and radiation). The available data
for low temperatures [71] permit in that case an inte-
resting application of our model, the previous cal-
culations [8, 71] leading to increasing discrepancies
for decreasing temperatures specially for high rota-
tional quantum numbers j;. Figures 9a to 9c show
a comparison between the experimental data and
our calculated values. A good agreement is obtained
for each considered case and both the j-dependence
and the variation of y with temperature are well

reproduced.

7. Discussion and conclusion. - The consistency
obtained in all the physical situations studied between
calculated and experimental values (cf. Figs. 9 and 10)
must be connected to several physically meaningful
aspects contained in the present approach :

i) the use of an exponential form (cf. eqs. (5)
and (12)) which to some extent takes into account
contributions of orders higher than two (this model

being exact at infinite order for the pure vibrational
dephasing contribution (cf. sect. 3)) ;

ii) the introduction of a parabolic trajectory model
which is particularly convenient for describing the
close collisions (cf. sect. 4) ;

iii) in connection with the above point, the conside-
ration of realistic anisotropic short range forces

through the atom-atom model (cf. sect. 5).
Of course, the use of the Anderson theory may

lead to calculated numerical values relatively consis-
tent with the experimental values. But it is pointed
out that such a calculation has no physical meaning
as soon as the dominant collisions correspond to

impact parameters of the same order of magnitude
or a fortiori lower than the kinetic diameter. We
recall that this last situation arises for all diatom-
atom collisions and also for diatom-diatom colli-
sions for high rotational levels, except when a large
dipole-dipole interaction takes place. The present
theoretical approach constitutes a realistic model
of calculation for molecular line broadening and
shifting since it avoids the drastic drawbacks concem-
ing close collisions.
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Appendix A

Resonance functions appearing in the differential cross sections nln2S2[rc(b)] in the parabolic trajectory
description.
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For the other resonance f functions appearing in the differential collision cross sections expressions
- "" . ..". _" III" .. l’’t.. 1. - n..-.. A "1"B. n1 A ....,.0 1 1 ,. 1 A

Appendix B

Expressions of the qDji im2 and g J711 12 coefficients in terms of the molecular parameters rli and ’2j and of
the ul l j2m(r) functions.
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The approximate expressions for uooo(r), u200(r), U220(r), u22Or) and u22z(r) are given by (cf. eq. (33))
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. - v -

N.B. The G, H and I coefficients are defined in analogy with F coefficients of eq. (33) but refer to /Àl r3 JÀ2 ’

/Àl r4 Q2 and 112 r4 Ql respectively instead o fQ =2 r .r4 r4 s z
The corresponding U,,,2.(r) functions are defined through

(N.B. : We recall that ri; and r2j are algebraic quantities, cf. figure 5.)

Appendix C

Expressions of the S2[rc(b)] and S2(L)[rc(b)] functions (we recall (cf. eq. (7)) that

S2[rc(b)] = S2, f 2 + S2,i2 + S2(Cf) 2i2
where each term is defined by eqs. (9) and (11)).

ELECTROSTATIC CONTRIBUTIONS



940

ATOM- ATOM CONTRIBUTIONS
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CROSS CONTRIBUTIONS
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In all the above equations we recall that D = (- l)ji+jf 2[(2ji + 1) (2 /f + 1) Cji2) Cj(2)]112 X W(jj.jf.jj.jf ; J2)
where W is the Racah coefficient and J the order of the coupling tensor between the molecules and the extemal
field.
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