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(Reçu le 8 décembre 1978, accepté le 25 février 1979)

Résumé. 2014 Les méthodes du groupe de renormalisation sont appliquées à l’étude du comportement critique
du modèle d’Ising compressible à n composantes avec interaction à courte distance à d = 4 et du modèle d’Ising à
une composante avec interactions dipolaires à d = 3.
Les équations de récurrence sont résolues exactement dans le cas d’un système élastique de symétrie sphérique
(d = 4) ou de symétrie cylindrique (d = 3); de nouveaux types de corrections logarithmiques sont obtenus,
correspondant à une renormalisation de Fisher pour la dimension marginale. On montre que le système présente
une transition du premier ordre dans des conditions de pression extérieure constante ou quand l’anisotropie
est prise en compte. On discute l’intérêt des présents calculs pour l’étude du comportement critique des ferro-
électriques uniaxiaux. 

Abstract. 2014 Renormalization group methods are applied to study the critical behaviour of a compressible
n-component Ising model with short range interactions at d = 4 and a one component Ising model with dipolar
interactions at d = 3.
The recursion equations are exactly solved in the case of an elastic system of spherical symmetry (d = 4) or cylin-
drical symmetry (d = 3); new types of logarithmic corrections, corresponding to a Fisher renormalization at
marginal dimensions, are found. It is shown that the system exhibits a first-order transition for constant pressure
external conditions or when anisotropy is taken into account. The relevance of the calculations to the critical
behaviour of uniaxial ferroelectrics is discussed.
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1. Introduction. - The role of the elastic degrees
of freedom in the critical behaviour of the Ising
model has been investigated by many authors during
the last few years. Most of them agree with the fact
that whenever the specific heat of the ideal incom-
pressible system diverges (a &#x3E; 0), the second order
phase transition becomes first order when the magneto-
elastic coupling is taken into account. This result

was found in particular by Rice [1], Domb [2], Mattis
and Schultz [3] using different kinds of approximations
and by Larkin and Pikin [4] for a Ginzburg-Landau
like free energy including the elastic and magneto-
elastic energies. More recently, Sak [5] has used
renormalization group theory to study the n-compo-
nents Ising model coupled to an isotropic elastic
continuum at d = 4 - 8 dimension ; he found also
that none of the 4 possible fixed points can be reached
when « &#x3E; 0 and concluded that the transition is
1 st order. This study was later extended to the case
of anisotropic elastic models by de Moura et al. [6],

Khmel’nitskii and Shneerson [7] and Bergman and
Halperin [8]. These last authors carefully analysed
the critical behaviour of the elastic constants and the
onset of the 1 st order transition and they have shown
that a 2nd order transition in a cubic system can be
found only for some pathological models where the
system is unstable under shear deformations (as in
the Baker-Essam model [9]). They have shown also
that their results remain unchanged whatever the
external conditions : constant volume or constant

pressure. Although they have thoroughly discussed
the instability at d = 4 - e dimension, they did not
investigate the case of marginal dimensionalities,
either d = 4 for short range forces or d = 3 for

dipolar long range interactions. Khmel’nitskü et
al. [7] considered the anisotropic d = 4 case but
without discussing the role of external conditions.
As has been shown by Fisher [lo], the role of magneto-
elastic coupling is a special case of the more general
problem of coupling of hidden degrees of.freedom
with the spin variables. This problem has been

recently studied by Aharony for the case of dipolar
Ising ferromagnets [11].(*) Associé au C.N.R.S.
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The interest of the marginal case study lies in the
fact that the recursion equations can be integrated
exactly and that the d = 3 dipolar case corresponds
to real physical systems namely uniaxial ferroelectric
and ferromagnetic systems, for which the critical
and tricritical behaviours have been studied experi-
mentally.

In this paper we investigate the critical behaviour
of the compressible Ising model at marginal dimen-
sionalities by solving the recursion equations derived
by de Moura et al. [6] from a Hamiltonian of the
Sak-Larkin type. In part 2 we give an exact solution
of these equations for d = 4, short range interactions
and isotropic elastic symmetry. We discuss the
influence of the external conditions imposed on the
system.

In part 3 we investigate the n = 1, compressible
dipolar Ising system with cylindrical elastic symmetry.
In the final part, we conclude by comparing our
results with the experimental critical behaviour of
uniaxial ferroelectrics.

2. Compressible Ising system at d = 4. - Let us
consider a n-component Ising system coupled to an
elastic continuum. The Hamiltonian may be written
in the form

The e(%fJ(x) are the local strains, c(%fJl’lJ the elastic
constants and hfJ the magnetostrictive coefficients.

Following de Moura et al. [6] one can eliminate the
elastic degrees of freedom by integrating Jeel + Jeint
and this leads to an effective Hamiltonian :

The values of the constants u and v(q) depend on the external conditions imposed on the system. If one
takes all the macroscopic strains e,0 = 0 i.e. if the sample keeps a constant volume and shape, then :

with

If the system is free to deform itself (zero external
pressure), then the integration upon the el leads
to [12] :

with

One may note that A(q) depends only on the
orientation of the vector q and that L1’ and L1 ( q)
are non negative.

Let us consider first the isotropic case discussed
by Sak [5] for d  4. There are only two independent
elastic constants c11 and C44 related to the bulk
modulus K = c11 - 3/4 C44 and to the shear rigidity

modulus Il = C44. The tensor hfJ is reduced to its
scalar part fô,,,p. Then v(q) is an angle independent
constant v and the renormalization equations can be
written in their differential form : :

with

At d = 4 - e, Sak [5] found 4 fixed points noted
[13] G, I, R and S which are represented on the
figure 1 in the (v, u) plane. When B goes to zero the
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Fig. 1. - Schematic representation of the Hamiltonian flow for
the compressible Ising model at d = 4, n = 1 with isotropic elastic
properties. (A similar diagram is obtained for the U and V para-
meters in the case of dipolar interactions at d = 3.) I, R, S and G
denote the four fixed points found for d = 4 - E ; they merge
together at the G point for d = 4, but the I, R and S lines charac-
terize different critical behaviours. The line u = - i 6 v corresponds
to dv/du = 0 (vertical tangents on the trajectories). The half plane
u  0 corresponds to instability in the Landau mean field theory.
The shaded areas are the regions for which a 1 st order transition
is due to the coupling between the fluctuations and the elastic
degrees of freedom. The regions v  0 and v &#x3E; 0 correspond to
a system at constant volume (pinned boundary conditions) and
under constant pressure respectively. In the latter case a pseudo-
tricritical behaviour is expected if the initial values uo and vo lie
near the parabola uo = v 0 2 (see § 3 in the text).

3 non trivial fixed points merge into the Gaussian
fixed point G but as we shall see later a memory
persists of these 3 fixed points in the form of 3 diffe-
rent types of logarithmic corrections. The two last
equations in (2) can be exactly integrated by consider-
ing the equation for the ratio k = u/v :

one can derive easily the relation :

n+8

where A is a constant which depends only on initial
conditions (uo and vo). From (3) and (4) one obtains :
, . 1 , . 1

From (3) or (5) one sees immediately that if vo = 0,
n - 4 

k i 
. 

d t the traj 
.n - 4 u 0 or - uo, k is constant and the trajectory y

in the (u, v) plane is a straight line. These 3 particular
cases correspond to the I, R and S points in the s
expansion. The dependence of u and v on the recursion
parameter 1 take a simple form in thèse cases :

For other initial values of vo and uo, the explicit
form of p is

, 

with :

The Hamiltonian flow which results from (5) and (7)
is depicted schematically in figure 1.
For (uo + vo)  0 or for vo &#x3E; 0 there is a runaway

of the trajectories which corresponds to an instability
of the system and to a first order transition.
For (uo + vo) &#x3E; 0 and vo  0 the trajectories

converge towards the R line if n  4. One may consi-
der that there is a Fisher renormalization of the critical
behaviour [10] due to the coupling with elastic degrees
of freedom. The 1 and S lines separate zones corres-
ponding to 1 st order and second order transitions and
may thus be considered as characterizing some tri-
critical behaviour.
One may note that the R line was also found by

Aharony for the random Ising model [14] at d = 4
although the recursion equations were quite different.
The common feature between the two problems is a
modification of the quartic term in the Hamiltonian
by some non-critical variables.
The integration of the eq. (2) for r(l ) is easily made

and one can deduce the logarithmic corrections for
the critical behaviour of various thermodynamic
quantities [15J. The results are summarized in table I.
One can remark that the specific heat does not diverge
in the cases R and S but has only a cusp at the tran-
sition point. These results are in agreement with the
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Table I. - Critical behaviour of thermodynamics quantities near the Gaussian fixed point for different initial
values of the parameters uo and vo. 1 (vo = 0, uo &#x3E; 0, « incompressible Ising model »), R (0 &#x3E; v. &#x3E; - uo, Uo &#x3E; 0,
« Fisher renormalized behaviour ») and S (vo = - uo, uo &#x3E; 0, « spherical like behaviour »). y is the sus cep tibility.,
ç the coherence length, Csing the singular part of the specific heat, M the magnetization, f the magnetostrictive
coefficient, c11 1 an elastic constant. The first 6 lines apply either to d = 4 (short range interactions) or to d = 3
(n = 1 and dipolar interaction). The last 2 lines give relations between critical amplitudes respectively for the
d = 4 (n  4) and the d = 3 (n = 1) cases (t &#x3E; 0).

general results for constrained systems at marginal
dimensionality [11].
The behaviour of the coupling constant f and of

the elastic constant c11, are derived from recursion

equations similar to those written by Bergman and
Halperin [8, 16]. Relations between critical ampli-
tudes [17] of the correlation length and of the singular
part of the specific heat are also given.
As has been noted above the initial value of uo and

vo depend on the external conditions applied to the
system. For pinned boundary conditions uo = ùo &#x3E; 0
and vo = - f2/2 cl l  0 so that a 2nd order tran-
sition arises for uo + vo &#x3E;, 0 in this case. However,
as cii goes to zero at the transition, anharmonic
terms would have to be taken into account. For
constant pressure conditions one can show [12] that

and

and, for P  11, vo is positive. (For P &#x3E; p the system
is unstable [8].) In this case one expects a lst order
transition. These results are the same as for d  4 [5],
but the reduced temperature t * at which the instability

occurs is, in the present case, crucially dependent on
the initial values uo and vo. Roughly speaking, the
Ist order transition may be expected for 1 = l* such
that u(1*) ~ 0, that is for 1 t* such that (see eq. (5)) :

and (t*) is vanishingly small as soon as the right hand
side of (8) exceeds a few units, for example when
vo  uo and vo  1 (to is a non universal parameter
= 1 [17]).

In the anisotropic case v(q) depends on the direc-
tion of q relative to the crystallographic axes, but one
can show that the fixed point v must be independent
of q [6, 8]. Khmel’nitskü et al. [7] discussed the sta-
bility of this fixed point at d = 4 and they found
that it is never stable since w(q) = v(q) - v )
decreases more slowly than  v ) for n  4 (in their
notations r(q) corresponds to our u + v(f)). As a
criterion for the onset of the instability they give
1 LBvmax(f) 1 u, +  v, ). When all v(q) are negative
(constant volume) this condition is always fulfilled for
a finite 1 = 1*. However when all vo(q) are positive
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(this is probably the case for constant pressure) the
recursion equation for v( q) :

indicates that all vl(q) decrease towards zero as long
as ul &#x3E; 0 so that an instability occurs first for u, - 0.
If this condition arises for

the criterion for the instability is the same as in the

isotropic case (eq. (8)) (with ( vo &#x3E; in the place of vo).
This may happen for large  vo )/uo and small ani-
sotropy.

In the other cases, anisotropy is important for

determining the temperature of the first-order tran-
sition.

3. Compressible Ising model with dipolar interac-
tions at d = 3. - We investigate only the case

n = 1. The effective Hamiltonian is essentially the
same as in the d = 4 case except that (r + q2) is

changed into

In order to be consistent with the uniaxial character
of the dipolar coupling, we consider a system with
cylindrical anisotropy for v(q), that is v depends only
on the variable cos 0 = qz/q. In practice, crystals of
hexagonal symmetry are of this type. The renorma-
lization equations are in this case :

where

and

As g - e2l becomes very large when 1 grows, one

may easily see that 0 = n/2 gives the largest contri-
bution in Inm(r, g) and one gets

As usual [18], we define new parameters U = ul,19
and V = vl,19-1 and the recursion equations for U
and V(n/2) are exactly the same as for u and v in the

d = 4 case except for the change K4 -+ K3 4 }4 g

Thus, the conclusions are identical to those derived
in paragraph 2. Nevertheless one must check that an
instability does not occur because of a divergence of
V( (J) tor a e -# n/2. The differential equation for V(O)
is for large l :

This equation can be integrated exactly knowing the
asymptotic form of Uj and VI(n/2) and one arrives
at the conclusion that 1 VI(O) 1 goes to zero only if :

As in the isotropic case, one can show that the sign
of V,(O) depends on external conditions (see appen-
dix I). For constant volume conditions,

The condition (12) can be fulfilled if A 0(0) is maxi-
mum for 0 = n/2 and a second order transition is
then possible.

This result seems to contradict the general state-
ment relative to the anisotropy [6, 7]. It is a conse-

quence of the large anisotropy in the Green function
for large 1 (gi cos’ 0 » 1, when 0 :0 n/2).

For constant pressure conditions, vo(O) =,d ’ -,d o(O)
is positive. An analysis similar to that of paragraph 2
(eq. (8)) shows that a first order transition occurs for :

The discussion about the role of the anisotropy in
the (x, y) plane is similar to that developed in the
case d = 4 (§ 2).

4. Discussion. - The principal motivation of the
above calculations was to compare the predictions of
renormalization group theory with the observed cri-
tical and tricritical behaviour of uniaxial ferroelectric

(or ferromagnetic) crystals. It is well known that 2nd
order phase transitions are found in some of these
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compounds either at room pressure (TGS [19],
RbDP [20], LiTbF4 [21]) or under high pressure

(KDP [22], SbSI [23]). The experiments being gene-
rally performed at constant extemal pressure, this
seems to contradict the above theoretical results. One

might argue that the 1 st order discontinuity is unob-
servable because the compressibility of these materials
is weak. This point has to be examined more care-
fully : actually, if one attempts to evaluate the impor-
tance of the electrostrictive coupling through the

ratio  vo(nl2) &#x3E;luo (where the brackets mean an

average in the plane perpendicular to the ferroelec-
tric axis), one gets [24, 25]

for TGS, - - 2 for KDP and - - 10 for SbSI (at
ambiant pressure). In the two last cases the ratio is

negative since the transition is first order and uo,
which is taken proportional to the quartic term of
the Landau free energy, is négative ; under pressure
this coefficient becomes positive, so that a point
exists where  vo(nl2) &#x3E;lu, diverges. Considering these
orders of magnitude one can conclude that the
influence of compressibility is not negligible, espe-
cially in the vicinity of a tricritical point, since it

greatly affects the S4 terms in the Hamiltonian.
Nevertheless eq. (13) indicates that even if aniso-

tropy is small  vo(n/2) &#x3E;luo is not the only relevant
parameters in determining the first order transition
temperature, but that (uo +  vo(nl2) »/, ,Igo must
also be taken into account. The coefficient go can be
estimated from the following expression of the sus-
ceptibility :

where C is the Curie constant, J the interaction

energy and EL the non-divergent « lattice » contribu-
tion to the dielectric constant. Jlk can be obtained
from X-ray or neutron critical scattering data and
is found to be £r 120 K in TGS [26] and - 10 K in
KD2PO4 [27]. Hence one gets

for TGS and 34 for KH2P04 (taking the value of
J relative to KD2P04). uo is given approximately
by [18] (bP.4 vl4 kTc) (kTcIJ)2 where bp 4/4 is the
usual quartic term in the Landau expansion of the
free energy, and v is the volume of the unit cell. Using
published values [24], one gets uo 0.2 for TGS so
that, using eq. (13)

1 1. 

This would explain why the observed critical
behaviour [28] in this crystal looks like that of an
incompressible dipolar Ising system and would justify
the hypothesis recently made by Nattermann [29].
However the anisotropy in vo(n/2, (p) is not small in
this material since

and it is possible that it leads to a t*/to significantly
larger than the preceding value. More accurate data
would be necessary for a detailed numerical compa-
rison. In the case of KDP, uo becomes very small
under pressure and eq. (13) leads then to :

One expects that the 1 st order character begins to
become unobservable when 1* &#x3E;- 1 that is for values of

Uo and  VO(n/2) &#x3E; near the parabola Uo= VO(n/2) &#x3E;1
(see Fig. 1).
For KDP one thus expects that a pseudo-tricritical

transition will arise for uo = 0.3 and not for uo = 0
as in mean field theory.

Nevertheless, the pseudo-tricritical behaviour will
be well described by mean field theory since the tran-
sition takes place for small 1 values. For higher uo
(i.e. higher pressure), a 2nd order-like transition
characteristic of the incompressible model is again
expected [20]. Recent experiments [31] indeed seem
to confirm that the tricritical-like behaviour is well
described by a classical Landau expansion with the
coefficient of the quartic term varying linearly with
temperature and pressure.

It would be interesting to compare these constant
pressure experiments with the behaviour of a sample
with pinned boundary conditions ; unfortunately, such
a situation can be achieved only with a crystal embo-
died in a perfectly rigid matrix, and in this case it is
probably difficult to perform accurate experiments.
To conclude we have solved exactly the renormali-

zation group equations for the Sak-Larkin-Pikin
model Hamiltonian in the case of an isotropic elastic
system at d = 4 and of the dipolar Ising model with
cylindrical anisotropy at d = 3. The results are essen-
tially the same as those obtained in the d = 4 - e
case. A Fisher renormalized behaviour with logarith-
mic corrections different from those of the incompres-
sible system is found for certain initial values of the
parameter vo (0 &#x3E; vo &#x3E; - uo) which can be physi-
cally attained only for pinned boundary conditions.
In the case of constant external pressure (vo &#x3E; 0) or
when anisotropy is present a 1 st order transition is

always expected.
However a criterion for the observability of the 1 st

order discontinuity shows that the transition looks
like a continuous one even for strong electrostrictive
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coupling in ferroelectrics ; in this case the apparent
behaviour must be very similar to that of the incom-

pressible system (without Fisher renormalization).

The « pseudo »-tricritical behaviour experimentally
encountered may be identified with the limit of

observability of the 1 st order transition.

Appendix I. - In the particular case of cylindrical symmetry one has

and

where

Elastic stability conditions require the denominator of L1 ’ and of A (0) to be positive ; one may easily check
that this implies that both these quantities must be non-negative. One may also note that A (0) reduces to A ’
when C44 = 0, as in the isotropic case, and one obtains :

where D’ and D(0) are the denominators ouf 4 ’ and A (0) respectively.
One can thus conclude that v(O) &#x3E;, 0 as in the isotropic case.
One may conjecture that v(q) is positive in the general anisotropic problem, although a direct proof of

this does not seem to be an easy task !
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