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Résumé. 2014 On présente un certain nombre de résultats exacts concernant des modèles d’Ising frustrés à deux
dimensions avec interactions périodiques. Aucun d’entre eux ne donne lieu à ce qui pourrait être considéré comme
un ordre verre de spin. Les seuls ordres à longue distance rencontrés sont de type ferro- ou antiferromagnétique;
toutefois l’effet de la frustration se manifeste à basse température (entropie, susceptibilités). L’analyse de ces
résultats fournit quelques indications sur une condition nécessaire pour que de tels systèmes s’ordonnent, ainsi
que la nature possible de l’ordre verre de spin.

Abstract. 2014 We present exact results for various frustrated Ising models in two dimensions with periodic interac-
tions. None of them gives rise to what could be regarded as spin glass order. The only long range orders encoun-
tered are of ferro- or antiferromagnetic type but the effect of frustration manifests itself at low temperature (entro-
py, susceptibilities). The analysis of these results provides some indications concerning a necessary condition
for ordering in such systems and the possible nature of the spin glass order.
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Introduction. - The recent interest in the theory
of spin glasses has drawn attention to so-called

frustration effects, which are regarded as the relevant
concept in these problems (at least for Ising systems)
as pointed out by Toulouse [1]. In particular the ques-
tion arises whether some spin glass state may exist in
regular, periodic, frustrated lattices, since the spin
glass properties are expected to be due to frustration
only.
Owing to the uncertainty that prevails in this field,

exactly soluble models are of the highest interest.

Unfortunately the only models of this type solved so
far (to our knowledge) are Villain’s odd model [2]
(i.e. the 2-dimensional totally frustrated Ising model)
and the antiferromagnetic triangular Ising model
solved by Wannier [4] : neither of them shows a phase
transition (1).

This led us to consider two generalized versions of
the odd model, allowing different strengths of inter-
action. Phase diagrams are obtained for both. We
also consider some cases of periodically distributed
frustrated plaquettes. Our results suggest that regular
models may lead to ferromagnetic ordering, or anti-
ferromagnetic ordering or no ordering at all but never
show spin glass order in two dimensions.

(1) Actually some of the models studied by Villain do have a
transition in the XY version for which however the concept of
frustration has very different implications from the Ising case.

1. Définition of the dominoes models. - We
consider Ising models on a square lattice with nearest
neighbours interactions as shown in figure 1. Because
the elementary cell looks like a domino, the first
model will be called piled up dominoes model (PUD),
and the second zig-zag dominoes model (ZZD).
Throughout the paper J will be taken positive.

Fig. 1. - a) Interactions in the PUD model ; b) Interactions in
the ZZD model.
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When J’ = - Jboth models are equivalent through
a gauge or Mattis transform : this is the odd model
introduced by Villain.

In the case of the PUD model, for clarity, the
vertical strings along which the interactions are J
(resp. J’) will be called even strings (resp. odd strings).

2. Solution of the piled up dominoes model. -
2. 1 LOW-TEMPERATURE PROPERTIES. - i) J’ &#x3E; - ,I :
it is clear that the ground state is the ferromagnetic .
state.

ii) J’= - J : Villain [2] has shown that the ground
state is degenerate and yields a finite entropy, equal
to the entropy of the dimer model on the dual lattice.
We will later return to this case (§ 3.2 and § 4).

iii) J’  - J : in the ground state the J’ bonds
are necessarily satisfied and the J bonds only may be
frustrated. We still have a finite 0 K entropy clearly
related to a dual dimer problem on a ladder (Fig. 2).

Fig. 2. - Frustration of the PUD model (J’  - J) : the dashed
lines show the dual lattice available for dimers associated to unsa-
tisfied bonds. The infinitely probable spin configuration for odd
strings has been represented.

Now consider a vertical even string sandwiched
between two antiferromagnetically ordered odd

strings. If we assume the antiferromagnetic strings
are in phase opposition, only two overall configura-
tions are allowed for the intermediate even string.
On the contrary when the odd strings are in phase
there exists a large number of configurations, of the
form aM, M being the length of the string. This implies
that in almost all (2) ground states, the antiferroma-
gnetic strings are in phase and thus for these states
there are only 2 configurations in so far as the spins
in odd strings are considered (the degeneracy comes
from the spins in even strings). Consequently almost
all ground states fall into two classes, each class
corresponding to one of the above defined configu-
rations ; there is a one to one correspondence between
the states in one class and the states in the other one

(’) Almost all means ail ground states except for a number which
is an infinitely small fraction of the total number when the size of the
system goes to infinity.

by total spin reversal. Thus one can define an order
parameter field

This order parameter is saturated on the odd strings :
1 17i 1 = 1. One can calculate 17 on the even strings :
fixing the spins on the neighbouring odd strings in
phase (Fig. 2), one is left with a reduced Hamiltonian
for each even string : 

(ferromagnetic chain under staggered field). The
calculation of the magnetization is straightforward
by transfer matrix techniques :

From this point of view the order parameter on the
vertical even strings is not saturated, but the whole
system is found to be antiferromagnetically ordered
at 0 K.
The same calculation yields the entropy per spin of

the complete square lattice

Because of the degeneracy of the ground state the
question of the symmetry breaking and of the field
conjugate to the order parameter requires some
comments. As a matter of fact, at T = 0 strictly
speaking, the system chooses one of the allowed
states, so that 1  Si&#x3E; 1 = 1. But when T = 0+, a
mixing occurs between the states in each class. The
quantities calculated from Jered are actually the limit-
ing values when T --+ 0. To get some idea about
the very low temperature behaviour of the system
we have calculated some properties of Hamiltonian
Hred when T * 0. In so doing, we expect qualitatively
correct results which, when J’-» J, become quanti-
tatively exact (in the latter case, spins in odd strings
are frozen when T is small enough). In particular we
switched on a staggered field h~, looked upon the
staggered magnetization m ~ and the corresponding
susceptibility X-. Results are plotted in figure 3.
We see that the meaning of formula (1) is precisely

We also see that the differential staggered susceptibi-
lity is infinite as T - 0. This is clear from

Since the string is not saturated the term between
brackets is finite and X- --&#x3E; oo when T - 0. This argu-
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Fig. 3. - a) Staggered and uniform susceptibilities versus tempe-
rature for Hamiltonian Hred (arbitrary units) ; b) Staggered magne-
tization versus staggered field for Hamiltonian Jered for different
values of the temperature.

ment remains valid for almost any distribution of
field : in particular we can show, using Jered’ that the
uniform susceptibility x diverges at T = 0 (Fig. 3a).

2.2 FINITE TEMPERATURE SOLUTION. - We first use

the transfer matrix technique along the horizontal
direction. We follow the method and notations of

Lieb, Schultz, Mattis [3] ; detailed calculations are

given in Appendix 1.

The transfer operator can be put into the form

where the ç’s are fermion destruction operators and

For q =1= { 0, n }, e’q is positive and given by

cosh e. = cosh 4 K* cosh 2(K + K’) - sinh 4 K* x

One verifies that Eq can vanish only for q = 0 and
q = n. This occurs when

Fig. 4. - Phase diagram of the PUD model.

Thus we find 2 transition lines meeting at T = 0,
j’ = - J (Fig. 4). Exactly as in the ordinary Ising
model, below the transition the largest eigenvalue of
the transfer operator is degenerate and separated by
a gap from the other eigenvalues : this is interpreted
as the onset of long range order according’to the
expressions of the horizontal correlation function in
terms of eigenvalues Aa and eigenvectors t/1a :

where we have defined

Spins on strings of the same parity are positively
correlated along the horizontal direction, and the

corresponding correlation length

diverges at the transition point.
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As to the correlation between points belonging to
strings of different parity, its sign is not clear from
formula (2) but in view of the zero temperature
results (Sec. 1) we shall regard it as positive at any
temperature.
Now, to determine what type of L.R.O. is involved,

we use the transfer matrix method along the vertical
direction. The case of interest is indeed J’  0, the
system being obviously ferromagnetic for J’ &#x3E; 0.
Here again the transfer operator appears as a product
of vq (see Appendix II). The complete diagonalization
of Vv for all q is far from easy (16 x 16 matrix) ; but
we found that Vv is consistent with an expression of
the type

On the other hand we expect the singularity to come
out of the term corresponding to q = 0. The eigen-
values of the operator Vov are calculated in Appendix II
and, identifying with expression (3),

with

For - J  J’  0 (resp. J’  - J), Eô (resp. Eo)
changes sign at the transition point previously
defined ; hence our conclusions :

i) for J’ &#x3E; - J the state vectors 0 &#x3E; and

V6 0 &#x3E; (notations of Ref. [3]) are degenerate below
Tc in the thermodynamic limit : the system is ferro-
magnetic ;

ii) for J’  - J, the states [ gi) ) and U6 [ gig )
are degenerate in the sense that they yield opposite
eigenvalues. The vertical correlation develops a cohe-
rent part of the form ( - 1 )R and finally we have a
4-sublattice antiferromagnet ; hence the phase dia-
gram of figure 4. 

The free energy per spin is

For convenience it can be put into the form of a
double integral :

This form could have been directly derived from a
Pfaffian as well. The specific heat calculated from (4)
has a logarithmic singularity at Tc as in the usual
case, except for J’ = - J.

In summary the PUD model exhibits for J + J’  0

ordinary antiferromagnetic order in so far as we consi-
der its behaviour above and a little below the transi-
tion point. The unusual feature is the high ground
state degeneracy leading to a non vanishing entropy
and infinite susceptibilities at zero temperature. In
particular the susceptibility of the staggered magne-
tization shows the very peculiar behaviour of figure 5.
We may interpret our results by pointing out the

existence of an infinite set 3t of rigid spins which we
define as spins correlated in the same way in almost
all ground states ; in other words

Here the set R is composed of all odd strings. When
the system orders, the distribution of the order para-
meter is unambiguous and unique in the set fll (after
breaking of symmetry). The spins in fll act like an
internal field upon the remaining spins - which
otherwise would be rather free - and induce order
on them. Let us emphasize that the set q does not
order by itself but requires a mediated interaction via

Fig. 5. - Shape of the staggered susceptibility of the PUD model
(J’  - J) versus temperature.

its complementary 3t. In particular 3t need not be a
percolating set. At zero temperature this mediated
interaction can be viewed as an entropy coupling. R
determines the nature of the ordering at the critical
point, whereas fl is responsible for the anomalous
low-temperature behaviour. We believe that this
situation may be of some relevance to the spin glass
problem, at least in the Ising case : a spin glass would
be a magnet with a non periodic set fl.

It is interesting to mention that this model has been
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studied by Derrida et al. [6] using the approach of
interface energy. In particular in this interpretation
the existence of a transition is ascribed to a negative
interface entropy at low T (due to entropy coupling)
rather than to the finite total entropy.

3. Solution of the zig-zag dominoes model. -
The partition function is calculated with the help of
the Pfaffian technique. Some details of the involved
algebra are given in Appendix III. The expression
finally obtained is

When J’ = - J, (K’ - - K), the above expression reduces ton

3.1 J’ &#x3E; - J. - In this case, like in the PUD

model, the ground state is non degenerate, and

ferromagnetic. Inspection of expression (5) shows
that the system exhibits a transition point defined by

The system behaves like the standard ferromagnetic
Ising model : the specific heat displays a logarithmic
singularity, and all the critical exponents are expected
to be standard too. The corresponding phase diagram
in (J’/J, T/J) coordinates is presented in figure 6.

Fig. 6. - Phase diagram of the ZZD model.

The horizontal asymptote observed for J’/J - oo
describes the equivalence of our model, in this limit,
with a ferromagnetic triangular model whose interac-
tions are all equal to J : the spins of each pair connected
with a J’ bond are parallel and may be replaced by a
fictitious spin and the corresponding bond deleted,
giving a triangular lattice with N/2 spins.

3.2 J’ = - J. - Because of the Mattis transform

relating the PUD and ZZD models, both of them have
the same residual entropy that can be calculated
from (6) :

(G is Catalan’s constant ; we recover the entropy of a
dimer assembly), and none of them orders. The spe-
cific heat is a smoothly varying function of T, and

behaves at low temperature like 1 exp - 4 JIT.p 
T3 p /

3.3 J’  - J. - Like in the PUD model, in any
ground state the pairs of spins coupled by J’are anti-
ferromagnetically arranged so that the frustration
effect is left on the J bonds : it amounts to a dimer

problem on an hexagonal lattice (Fig. 7). Here again

Fig. 7. - Frustration of the ZZD model (J’  - J) ; the dashed
lines show the (hexagonal) dual lattice available for dimers asso-
ciated to unsatisfied bonds.

we have a residual entropy at T = 0, which turns out
to be the same as that for the antiferromagnetic trian-
gular lattice with NJ2 sites, for, in so far as we look
only for ground states, the above mentioned pair can
be replaced by a fictitious Ising spin (say + 1 for

(+ - ) and - 1 for (- +)), and it is readily seen
that the effective interaction between fictitious
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spins is - J distributed on a triangular lattice. Indeed
from (5) one finds

which is half the value obtained by Wannier [4].
Unlike the PUD model, the partition function for

J’ , - J has no singularity and we conclude that the
model is disordered at any finite temperature. The
possibility of a L.R.O. at T = 0 is still an open ques-
tion.

Before closing this section concerning the ZZD
model, the topological role of the J’/J = p ratio
should be emphasized. When p takes respectively the
values - oo, - 1, 0, 1, + oo, we recover successively
the triangular antiferromagnetic, purely frustrated,
hexagonal ferromagnetic, square ferromagnetic and
triangular ferromagnetic Ising models, in a some-
what continuous manner as a function of p.

4. The spécial case J’ = - J. Dilute frustrated

plaquettes. - As already mentioned for J’ = - J
the zig-zag dominoes model and the piled up dominoes
model are equivalent. This is precisely the case for
which frustration was originally introduced [1, 5, 7].
We showed there is no transition temperature but the
nature of the correlation is an interesting question.

Consider the horizontal transfer matrix of the PUD
model for K + K’ = 0, T = 0. We have

and thus the spectrum of VH is a continuum just above
the 3-fold degenerate ground state (no gap). This is
. reminiscent of the situation at the finite temperature
transition point of an ordinary, say, Ising model,
in which the correlation length is infinite and the cor-
relation decreases slowly following a power law.
So it is likely that in the PUD model the horizontal
correlation behaves like

Unfortunately the r exponent does not come out
simply of our formalism : this point will be the matter
of a later study together with the interesting question
of the zero température correlation of the ZZD model
in the disordered region.
We now notice that the vertical correlation G. can

be expressed from GH with the help of the gauge
transform e defined on figure 8 and which amounts
to a rc/2 rotation of the lattice :

and, apart from a sign, G. behaves like GH :

Fig. 8. - Gauge transform e changing a vertical PUD into a

horizontal one.

In conclusion, the introduction of a different interac-
tion J’ helps us guess the properties of the odd model :
at T = 0 it is quasi-ordered, and, more precisely,
involves a mixing of ferro- and antiferromagnetic
quasi-order (tricritical point).
The above conclusion about the totally frustrated

model can be partially extended to a model involving
periodically dilute frustrated plaquettes as shown in
figure 9 : the frustrated plaquettes form a square
superstructure of period n embedded in normal

plaquettes. The interactions are assumed to be

Fig. 9. - Square superstructure of dilute frustrated plaquettes.
The frustrated plaquettes are shaded, the superlattice is represented
in full lines, the path used for the correlation between r and r’ in
heavy lines.

Let us define a superlattice dividing the original
lattice into cells so that each cell contains one and

only one frustrated plaquette. The zero degree entropy
per spin of this model is clearly equal to the entropy
of a Villain model defined on the superlattice, namely

1 G Moreover a similar connection holds for the
n n

correlation function. Given a Site r of the lattice we
define t as the nearest site of the superlattice : rigo-
rously it means there is a path Írom r to t which is not
cut by any superdimer connecting the frustrated pla-
quettes in any ground state. Consider a path between
two sites r and r’ passing by t and f’ such that between



485

f and r’ this path is drawn on the superlattice. We have
for the correlation at T = 0

N(r, r’) is the number of times the path is cut by
superdimers. If the intracell end parts of the path,
from r to f and from r’ to r’, are chosen as explained
above (i.e. not cut by superdimers),

The quantity between brackets gives the correlation
between f, r’ in the totally frustrated model defined
on the superlattice (interactions ± 1) namely GO(f, f’) ;
so

For large distances, the relation is a simple change of
scale

We may infer that the model is quasi-ordered at
T = 0 (same exponent yy) and thus exhibits no finite
transition temperature.
We believe this is due to the absence of rigid spins

in this model. This view is supported by another
model we can call the chess-board model and which
is defined in figure 10. We have calculated exactly
the partition function and found no transition, as
expected because of the absence of rigid spins (some

Fig. 10. - The chess-board model.

indications and comments can be found in Appen-
dix IV).

In conclusion let us emphasize that our hypothesis
about the necessity of rigid spins for observing a
phase transition implies the non existence of a spin
glass state in periodic frustrated systems since in this
case the set of rigid spins fl is necessarily periodic,
which in turn induces periodic order at zero tempera-
ture. This conclusion is, a priori, not restricted to
two-dimensional systems.
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Appendix 1

HORIZONTAL TRANSFER MATRIX (PUD MODEL). - The transfer matrix formalism applies in a straight-
forward manner to the PUD model when the transfer direction is chosen to be horizontal (Fig. 1). The reader is
referred to the paper by Lieb, Schultz and Mattis. The transfer operator is then

with

The suscript i runs on the M spins of a vertical chain.
After Jordan-Wigner, then Fourier transforms, we get

where
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We first observe that

We now turn to the case q =1= { 0, n }. As in the usual case 4&#x3E; q and 4J - q are trivial eigenvectors of Vq

Thus we need the matrix of Vq in the subspace spanned by 0. and 0 - qq.
In this subspace we have

All these matrices are of determinant unity. Thus we can write

where Bq is given by

and is always positive. The trace of mat Vq is obtained by elementary algebra :

cosh eq = cosh 4 K* cosh 2(K + K’) - sinh 4 K* sinh 2(K + K’) cos q - 2 sinh 2 K* sinh 2 K’ Sin2 q .

Appendix II

VERTICAL TRANSFER MATRIX (PUD MODEL). - For J’  0 we set K" = - flJ’ &#x3E; 0. The transfer matrix

is written

and

There are two spins per unit cell, so we must introduce 2 kinds of Fermi operators ak and bk, which allows us to
write

We look at the term at q= 0, namely Vô. This operator involves only four state vectors, two of which being trivial
1 

eigenvectors

where 0 ) is the vacuum state of ao and bo. Between the states al, 0 ) and bi&#x3E; 0 ) the matrix of VÕ is

Its determinant is - 1, its eigenvalues eÂ and - e-Â, À being given by
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Appendix III

PARTITION FUNCTION OF THE ZZD MODEL. - The conventional Pfaffian method is used [8]. The lattice
(n rows and m columns, mn = N) is helically wound on a torus. The set of the interactions may be described
via a unit cell (represented in figure 1 la) translated N/2 times along the helix. The ZZD configuration is obtained
by imposing m odd, n even (note that m even, n indifferent leads to the PUD configuration). The partition func-
tion ZN for the N spins of the ZZD model is then given by

where D(w) is an 8 x 8 determinant :

where x = tanh K, y = tanh K’, and Q) runs on all the (N/2) th roots of - 1. After a 4 x 4 block triangulariza-
tion, one easily finds

In the limit of large values of m and n, we perform the usual substitution

with

and

but attention must be paid to the fact that wm/2 = ei8 or ei(O+n) according as index j is odd or even (these two
determinations will be equally represented in the continuum limit).

This provides the expansion of D(w) as defined in (A3. 3) in the form D(úJ) = D(8, cp) (resp. D(0 + x, 9»,
with

Insertion of this expression into (A3. 1) yields
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Insertion of ln (cosh 3/2 K cosh 1/2 K’) into the integral, followed by elementary manipulations on the hyperbolic
terms leads to the required expression as given in (5).

Appendix IV 
PARTITION FUNCTION OF THE « CI-IESS-BOARD » MODEL. - Lines analogous to those described in (A. 3)

are followed. The unit cell of interactions (Fig. 1 lb) is translated N/4 times along the helix ; m and n are chosen
so that n/4 and (m + 1)/4 should be integers.

The resulting determinantal algebra is cumbersôme and will not be reproduced here (the elementary deter-
minants appearing in the antisymmetrical Pfaffian are now 16 x 16 ; the general case J’ :0 J has been dealt with).

Fig. l lb. - The elementary cell of interactions in the chess-board
model, as introduced in the Pfaffian technique.

In the particular case J’ = - J one finds

where x = tanh K.
At 0 K, a residual entropy per spin

is found. Obviously, 1/2 In 2  S(0)  5/8 In 2 : the residual entropy in this case is larger than in the ZZD
problem.

Inspection of (A4 .1 ) shows that the argument of the logarithm in the integral is strictly positive and conti-
nuous with respect to each of the T, 0, cp variables except at T = 0. Therefore no transition at finite temperature
occurs. The situation at T = 0 is ambiguous, like in the ZZD model.
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