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Résumé. 2014 Les éléments de matrice radiaux mettant en jeu des états fortement excités des atomes alcalins sont
calculés à l’aide de l’approximation Coulombienne. Le choix du critère de coupure a fait l’objet d’une
étude détaillée. Ces éléments de matrice (disponibles sur demande adressée à l’auteur) peuvent être utilisés pour le
calcul des forces d’oscillateur, durées de vie, rapports de branchement, polarisabilités des états de Rydberg des
alcalins. Nous présentons le calcul des durées de vie radiative des états S, P, D et F très excités (10 ~ n ~ 28)
des atomes alcalins. Les durées de vie calculées sont en bon accord avec les résultats expérimentaux disponibles.

Abstract. 2014 Radial matrix elements have been computed involving highly excited states of alkali atoms. An
entirely analytical Coulomb method has been used. Particular attention has been paid in the choice of the cut
criterion. The extensive data are available from the author upon request and can be used to compute, for example,
oscillator strengths, radiative lifetimes, branching ratios and polarizabilities of alkali Rydberg states. In order to
test the results, radiative lifetimes have been derived for highly excited (10 ~ n ~ 28), S, P, D and F states of
alkali atoms. The computed lifetimes are reported and are observed to be in good agreement with the available
experimental data.
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1. Introduction. - The interest in studying the

properties of Rydberg atoms has been clearly pointed
out by recent experimental and theoretical work [1-5].
A knowledge of oscillator strengths, radiative life-
times and polarizabilities for highly excited states is
often needed in these studies. All these quantities
require the calculation of radial matrix elements

involving highly excited levels. There exists in the
literature some theoretical results, mainly conceming
the oscillator strengths, but they are, in general,
limited to the lowest states [6, 7] (n - 10) or to some
particular spectroscopic series [8-10]. Only Anderson
and Zilitis [11, 12] have reported extensive oscillator
strength calculations (up to n - 18) made by using
a parametric potential. But it seems difficult to

extrapolate their results to more highly excited states
for which experimental results begin to appear [13-15].
Thus extensive tables of radial matrix elements

involving alkali Rydberg states would clearly be of
some interest for the physicists working in this area
of research. To our knowledge such results are not
presently available for highly excited states.

The use of an elaborate theoretical model taking
into account accurate radial wave functions (i.e.
including core polarization as well as spin-orbit
effects) would require prolonged computation time.

Thus, only approximate methods can be considered
for extensive calculations of radial matrix elements.
The well known Coulomb approximation [16] (here
after referred as C.A.) seems to provide the best
compromise between computation time and accuracy.
We will see that a proper choice of the cut-off criterion
for the asymptotic expansion (see § 2) and the use
of high precision subroutines allow the obtainment
of the radial matrix elements even for high principal
quantum number n values. We have computed all
the radial matrix elements involving S, P, D and F
levels of alkali atoms up to n = 28. For obvious
reasons all these elements are not listed here but are
available upon request from the author [17]. We
report here, as an example of application, the results
of calculations conceming the radiative lifetimes of
highly excited (10  n  28) S, P, D and F levels of
alkali atoms. Only states with n &#x3E; 10 have been
considered (somewhat arbitrarily) as Rydberg states
and are therefore concemed in the present work.
However, the calculations have also been performed
for low-lying states.

2. Method. - We use the very well known method
first proposed by Bates and Damgaard [16]. The basic
idea was that asymptotic forms of bound state Cou-
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lomb wave functions can be used because the contri-
bution to the dipole integral from the region of space
near the origin (i.e. for r - 0), where this form is

invalid, is small. We only summarize now the main
features of the method [18].
We want to compute

Using the asymptotic form of the bound state

Coulomb wave functions Pn’l,(r) and Pnl(r) one finally
obtains

where K and K’ are the normalization factors [19]
corresponding respectively to the (n, l) and (n’, l’)
levels and n* and n*’ their effective quantum numbers
(n* = n - ô, ô being the quantum defect). Ap is

given by

where at (and at,) are coefficients that are calculated
from the following equations :

It is well known that the numerical results are
sensitive to the number of terms included in the
summation (2.2) and that it is very difficult to give
any precise justification for the choice of a given
cut criterion. In their original paper [16] Bates and
Damgaard used the condition (n*’ + n* - p) &#x3E; 1.

However, one can easily see that the first neglected
term is not always small compared to the sum of the
others. The behaviour of the asymptotic expansion
(2.2) has been investigated for all the following series
of Na, K, Rb and Cs : S +-+ P, P +-+ D, D +-+ F and
F H G. When considering the sign, the same behaviour
was observed : first the sign of T(p) alternates, then
for some value of p the terms keep the same sign
until po, the value for which the sign changes. For Na,
Rb and Cs we use the cut-off criterion proposed by
Bebb [18], i.e. one terminates the series forp = po - 1
and adds the average of the two following terms (of
opposite sign). Thus :

In the case of potassium it is observed that T(po + 1)
is always much greater than T(po), indicating that
the expansion can be assumed to terminate exactly.
In this later case we use :

Our choice was confirmed by considering the very
sensitive (no S - n P) oscillator strength series (see
below for the calculation) for which elaborate
calculations [9, 10] as well as precise determina-
tions [8, 20] are available. The procedure chosen
appears to be the most efficient when using an entirely
analytical C.A. method.

For a given alkali atom the basic parameter of
the C.A. method is the effective quantum number n*,
which is determined from the energy levels En,l [19].
For the lower states accurate data are available [21-23]
allowing the obtainment by a numerical fit, of an
extended Ritz formula :

where § is the quantum defect depending only on 1.
We solved (2 . 7) for n* and verified that the correspond-
ing En,l values were in good agreement with those
quoted in the tables of Moore [24] or, when available,
with recent experimental results [25, 26]. This method
provides a consistent set of energy values and elimi-
nates some suspicious values appearing in the avai-
lable tables.

3. Results and accuracy. - The calculations were
performed on a CDC 7600 computer. Double precision
was used, corresponding to about 27 decimal digits.
The r functions were computed using the results of
refs. [27, 28]. Such a high precision is required for
high n values. The use of single precision limited the
calculations to n  17. All the matrix elements were
obtained in a time less than 100 s.

It is obvious that the accuracy of the results depends
upon the En,l values used. Obtaining these from an
extended Ritz formula eliminates local accidents.
The accuracy of the C.A. method has been widely
discussed [7, 29]. The main cause of uncertainty is
due to the choice of the cut criterion, for which no
precise theoretical justification can be given. To try
to avoid such a problem, numerical C.A. methods
have been proposed [7, 29]. But they require computing
times much greater than the present method, the

accuracy of which is observed to be comparable even
for the case of the very sensitive S H P series.

4. Application to the détermination of radiative
lifetimes. - The oscillator strengths and Einstein
coefficients are given by the following equations [30]
(one considers two levels a and b, with Eb &#x3E; Ea) :
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and

where (in À) is the wavelength of the (b --&#x3E; a)
transition, S (in a.u.) the dipole integral given by (2. 2)
and 9 the statistical weight of the level (i.e. 2 1 + 1).
The lifetime of a given level is calculated by :

1

Table 1. - Lifetimesr (in 10-6 s) for rubidium excited
states.

where the summation holds for all levels f (Ef  Eb)
radiatively connected to the level b. Table 1 gives the
computed lifetimes in the case of rubidium and
table II reports thero and a parameters obtained from
a numerical fit of the r values (10  n  28) to the
formula (which is currently used to fit the experimental
data [31])

All the a values are close to 3 which is the value

expected in the limit of n large from the consideration
of the oscillator strength sum rules [8] (1). Comparison
between some recent experimental results and our
data are reported in table III for sodium and rubidium.

Table II. - a and io (in 10-9 s) parameters of the
equation i = LO n*a (see text) for the alkali atoms.

(1) The consideration of the partial sum rule (eq. (3) of ref. [8])
for the (no S-nP) series easily explains (the first term being close
to unity, and the sum being unity) the extreme sensitivity of these
series to cancellation effects in any method of calculation.

Table III. - Comparison between experimental and theoretical lifetimes for various highly excited alkali levels.
All lifetimes are given in 10-6 s. 
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All the computed values agree well with the expe-
rimental ones, except for the P levels of rubidium,
for which better agreement is obtained by the para-
metric potential method. But more results are needed
to draw any firm conclusion. The results conceming
the F levels agree quite well with the measured values.
This is due to the fact that these levels are almost
hydrogenic, even for the heaviest alkalis.

5. Conclusion. - Radial matrix elements have been
computed for highly excited alkali atoms over a wide
range of principal n and orbital 1 quantum number
values. Such data should be of interest for any one

working in the field of Rydberg states. The method
uses an entirely analytical C.A. method. Particular

attention has been paid to the choice of the cut

criterion. We have also derived the radiative lifetimes
of highly excited alkali atoms. The coniputed values
are observed to be, in general, in agreement with the
experimental results. For higher n values (n &#x3E; 30)
the use of the C.A. method is possible but requires
computation procedures different from the brute
force one used in the present article [33-35]. We
should finally like to emphasize that the usefulness
of the present work lies mainly in the completeness
and the self consistency of the results.
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