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Line-shapes in Doppler-free two-photon spectroscopy.

The effect of finite transit time

F. Biraben, M. Bassini and B. Cagnac

Laboratoire de Spectroscopie Hertzienne de I’E.N.S., Université P.-et-M.-Curie, place Jussieu, 75005 Paris Cedex 05, France

(Regu le 8 décembre 1978, accepté le 24 janvier 1979)

Résumé. — On développe un formalisme général permettant de calculer la forme des raies d’absorption a4 deux
photons dans le cas de champs non monochromatiques. Ce formalisme est appliqué au probléme du temps de
transit fini des atomes a travers le faisceau Laser, et permet d’obtenir une expression précise des formes de raies
(convolution d’une Lorentzienne et d’une double exponentielle). La comparaison est faite avec des profils de raies

expérimentaux.

Abstract. — A general formalism is developed with the aim of calculating the line-shapes in two-photon absorption
for the case of non monochromatic fields. This formalism is applied to the problem of the finite transit time of
the atoms through the Laser beam ; and it permits a precise expression to be obtained for the line-shape (convolution
of a Lorentzian curve and a double-exponential curve). The comparison is made using experimental profiles.

Since the first experiments in 1974 [1, 2, 3], Doppler-
free two-photon spectroscopy has found a wide range
of applications, a review of which can be found for
instance in [4]. With the improvement of c.w. lasers

has come increased accuracy, allowing detailed expla- -

nations of experimental line-shapes. The aim in this
paper is to present the detailed calculation of line-
shapes, emphasising in particular the role of the
transit time of the atoms through the laser beam,
and comparing the results with experiment. The
problem of transit time has been thoroughly studied
in the case of saturated absorption spectroscopy [5, 6,
7, 8]. But the problems involved in two-photon
absorption are quite different and more simple,
because the part of the Hamiltonian corresponding
to the Doppler free line in a stationary field is inde-
pendent of the atomic velocity.

In the first section we deal with the interaction of
an atom with a monochromatic light field in the
steady state. The results have already been published
in references [9] and [10], but we introduce our nota-
tions and justify the preliminary formulas which will
be used in the following sections.

In the second section we develop a general for-
malism, suitable for the case of non-monochromatic
fields, with which one can easily include the effects
of finite transit times and of collisions.

In the third section we apply these general formulas
to the transit time problem. The calculated line-shape
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is found to be in agreement with that calculated by
Bordé [11] in the case of a three-level system.

In the fourth and final section we present experi-
mental spectral profiles and demonstrate that these
are well interpreted with our calculations.

1. Case of monochromatic field in the steady state. —
Consider the process in which an atom absorbs two
photons, each of energy Aw, from a laser beam and
thereby undergoes a transition from the ground
state | g ) to an excited state |e ) across an energy
interval E, — E, = hw,, (see Fig. 1). We suppose
that this process is predominant, with a small energy
detuning :

Q,

e 1)

ow=w—

from the resonant, two-step transition frequency.
Other single photon transitions between |g > and
other excited levels | r >, of energy E, = E, + ha,,,
are assumed to be far from resonance, i.e. the energy
defect

Aw, = 0 — w,, 2)

is taken to be large.

The aim in this section is to recall the fundamental
formulas needed as a basis for our calculations,
and in particular to introduce the two-photon operator.

29
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Fig. 1. — Energy diagram of a two-photon transition.

This operator has been introduced in reference [10]
(see also [12, 13, 14]) using the dressed-atom formalism
in the atomic rest-frame. Here it is more convenient
to use time dependent perturbation theory in the
laboratory frame.

Nevertheless we include in the Hamiltonian J€,
of the free atom the relaxation due to spontaneous
emission. It is indeed possible to describe the coupling
of the excited state with the vacuum modes of the
electromagnetic field by addition of an imaginary
part to the Hamiltonian J¢, of the free atom [15].

The atomic Hamiltonian is then

Je, = Je, — ihl/2, 3)

J€, is the Hamiltonian in the absence of spontaneous

Ne 5

emission and I' is an operator acting only on the
excited states | e > and | r ), such that for any state «
of radiative decay rate I,

J€1|a>=h<ww—i%)|oc>. @

Here we assume the conventional value zero for the
energy of the ground state | g >. Such a non Hermitian
Hamiltonian must be used with great caution. But we
have no problems in our case, as we remain in the
frame of perturbation theory and we suppose that
the two-photon transition is far from saturation.
The Hamiltonian of the atom interacting with the
electromagnetic field of the laser is J¢; + V, where V
represents the interaction between the radiation field
E and the atom. In the electric dipole approximation
this term can be written :

V=-D.E, @)

D is the dipole moment operator of the atom.

The atoms are submitted to a stationary field,
obtained by the superposition of two electric fields
with the same frequency, and which can be written
in the laboratory frame :

El(l‘, t) = & E'1 ei(lu.r—wt) + ST Eik e—i(kl.r—wt)

Ez(l', l) — 82 E2 ei(kz.r—wt) + 8% Ef e—i(kz.r—wt) (6)
following the convention of Heitler [16], the first
term (with e~ ') being effective for absorption,
whereas the second complex conjugate term being
effective for emission. g; are the polarization vectors,
E,; the amplitudes, k; the wave vectors (i = 1, 2). We
restrict the calculation to the condition of Doppler
free experiments where k; + k, = 0 (the laser beam
is reflected back on itself by a mirror). Let us set :

D, = D.g,. )

Supposing that the atom first absorbs a photon from wave 1 and then a photon from wave 2, the vector
state at time ¢ of an atom initially in the ground state can be calculated using second order, time-dependent

perturbation theory :

1(° 5 : . " o
I @) = — FJ' dtZJ dt, E, E, e iolztty) o eilkz.r(t2) +Kir(t1)] o —iR1E —12)/R D£2 e " iRiltz—11)/h Dn lg>. (8)
- 0 - 00

Setting u = ¢, — ¢, and using the condition k, =

— k, we obtain

t + o0
I ‘P(t)> - — %J\ dtzj duEl EZ e—2iwt2 e—::JC,(t—tz)/h Dsz ei(w-—k,.v—Je,/h)u l)61 | g> . (9)
—© 0

It is important to notice that the velocity v remains only in the coefficient of u, not in the coefficient of ¢,.

Performing the integration on u we obtain :

. t
l ql(t) > Z%J‘ dtz El E2 C_ziwtz e_l:Jel(t—tz)/‘h D

1

BzJel_h(w_kl.v)Dallg>‘ (10)
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As we have supposed that all levels | r > were far off
resonance for one-photon transition from the ground
state, we can neglect the relaxation rate I', and the
Doppler shift k;.v in comparison with the energy
defect in the intermediate levels :

Ao, | = |o — 0, | > T, and ky.v (11
and we can make the approximation :
1 1
D D ~D —— —
23, —ilw—k,.v) * 236, — ho D, QE,EZ
12)

Q.,., is the two-photon transition operator.

We must then add to (10) the contribution from the
process in which the atom absorbs a photon of wave
2 first, followed by a photon of wave 1. The expression
for the state vector ¥(¢) will contain the symmetrical
two-photon transition operator QS

€182
s _

£182 %(Qalsz + Qszel) . (13)

4 E? E3
hz

I,
45w* + I'2/4

)=

g€

|<elQd, 18>

where k is the common modulus of the wave vectors
k, and k, and v, the component of the atomic velocity
v in the laser beam direction. To obtain the absorption
line shape as a function of the angular frequency w
of the laser light, we have to average (15) over the
velocity distribution f(v,) of the atoms 1

2kT

1 where #? = =—— (16)
M

TL'

e_vgl"z

f(vz) =

u

(k Boltzmann constant, M atomic mass).

Averaging the three terms of (15), one obtains a
broad Gaussian curve, of Doppler width

Awp = 2 kulog?2,

from the last two terms, together with a narrow
Lorentzian curve, of width Awy = I'./2, from the
first term (the latter width is half the natural width
of the excited level because we have calculated the
absorption as a function of the frequency detuning
dw for one exciting photon). When the polarizations
€, and g, of the two waves are identical, one can see
from (15) that the probability of absorbing two
photons propagating in opposite directions is four
times the probability of absorbing two photons from
the same wave : the area under the Lorentzian curve
is twice that under the Gaussian [10].

Owing to the fact that the Doppler width is usually
100 or 1000 times larger than the natural width
and the areas of the two curves are of the same order
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As a consequence of the condition (11), the atomic
velocity v has disappeared from the expression (10)
and the calculated result will be independent of
velocity, i.e. without Doppler broadening.

We must now perform the remaining integration
of (10), project to the final state | ¢ > and hence deduce
the transition probability from g to e per unit time
r&, which is produced by absorbing one photon
from each travelling wave :

4 E} E? r,
re=—; |<e|Q.§ulg>|2m.

(14

It is still necessary to include the contribution from
the processes in which two photons of the same
travelling wave are absorbed. These additional terms
are velocity dependent. One obtains the complete
formula

B o018y P T
72 we 1871 460 — ko) + T2/4
r.

E4
+ 25 1<e 100 8> P (15)

4w + kv,)* + I'2/4

of magnitude, it follows that the height of the narrow
Lorentzian curve is 100 or 1 000 times greater than
that of the Gaussian; the latter curve appearing as a
very small background.

As an example, we reproduce in figure 2 an experi-
mental recording of the amount of two-photon
absorption as a function of the laser frequency for
the transition 3S — 4D in sodium [17]. In this record-
ing, the relative importance of the Gaussian back-
ground is increased owing to the presence of four

a
b
c d
6 I'GHz laser frequency
6 2 GHz atomic frequenq;

Fig. 2. — Experimental recording of a two-photon absorption
line 3S - 4D in sodium (Number of photons reemitted from the
final excited state versus the Laser frequency).
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distinct transitions within the Doppler width, the
corresponding Gaussian curves being superimposed.

In high resolution experiments it is necessary to
take into account the shape of this Gaussian back-
ground.

For our purpose, however, we need only consider
the absorption of two oppositely-travelling photons
— this principally determining the line-shape of the
narrow peaks — and we thus neglect the broad
background.

Formula (14) can also be used to evaluate the
absolute value of the transition probability as a
function of the light beam intensity, that is, of the
power per unit area
P, )

—S,-i =2 L) CE}

(not forgetting, however, that the amplitudes of the
classical electric fields corresponding to expression
(6) are 2 E;). Examples of such calculations can be
found in references [10] and [4]. Here we will be
interested only in relative values of the transition
probabilities at various laser frequencies.

2. General formalism for the case of non-mono-
chromatic fields. — We now generalize the calcula-
tions of section 1. To facilitate this generalization,
we consider here the electric field E(¢) experienced by
the atom in its own frame, while the relation between
E(?) and the field of the laser beam in the laboratory
frame will be considered in section 3. E(¢) is deter-
mined by its Fourier decomposition

E() = £J‘°° doE(w) e~ + e*J

0 0

0

dwE*(w) et .

17
We choose this form of decomposition (with w
positive) in order to distinguish the terms in e,
which are effective in absorption, from those in
et which are effective in emission. We assume that
the function E(w) is centred at a value ; correspond-
ing to a small energy detuning (eq. (1)), and that the
function’s width, Aw, is sufficiently narrow to neglect
one-photon transitions, i.e.

| A, | = |® = o | > Aay . (18)

The energy absorbed by one atom while in the laser
field may be obtained by calculating the work done,
W, by the electric field E(f) acting on the induced
atomic dipole :
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w =j diE) - O D[ PO . (19)
T,

We perform this calculation under the hypothesis
that the electric field E(¢) is zero before T’y and after T, :

t< T,
E®) =0 f
(=0 for {t>T2

AT =T, — T,, may be a pulse duration or the
transit time of the atom through the laser field.

Under this hypothesis, it is possible to extend the
limits of integration in (19) to infinity. (We will see
later that a generalization is possible in the case of
stationary fields.) Using the components, D,, of the
dipole moment operator defined by (7) (and noting
that D* = D,'), we find that the absorbed energy
can be written :

+ oo )
W=2Rej dtJ dwE*(w) x

(20)

eIt — < Y@ | D, | P . (2D

Among the various terms obtained in the exact
calculation of the mean value ¢ D," ), only those
in e™*" will give important contributions to the
integral (21), and these terms only will be retained in
the following. (

In order to calculate the vector state | Y(?) > needed
in the evaluation of ¢ D,* >, we use time-dependent
perturbation theory with the perturbation Hamil-
tonian given by (5). We choose to perform the calcula-
tions in the Schrédinger representation, and not in
the interaction representation, since this allows us to
use the unperturbed Hamiltonian 3¢, (eq. (3)) which
is non-Hermitian, thereby including the effects of
relaxation by spontaneous emission. In order to
simplify the formulas we introduce the notation :

X X r
H ==2=22_i_

22
As we will see, it is necessary to develop the pertur-
bation calculation to third order. However, we will
retain only those terms corresponding to the absorp-
tion of two photons (thus neglecting induced emission
processes by assuming that the two-photon transition
is far below saturation). To first and second order,
the retained terms are those from the term in e~
in the electric field expression (17) ; the third order
term is more complex :

.t o
| POy =1g>+5 j dr, f doy By) e e - D, | g )
- 0

t ta ©
—%IEJ' dtzj dt3 jf dwz da)3 E(wz) E(a)3) e Tiwatz g—iwsts o —iH1(t—12) DE e " iHit2—13) De , g >

A,

+twlt1 e—lwztz e —iwsts e—le(t t1) D+

'[ ng:” dw, dw, dw; E*(w,) E(w,) E(w;)

—iH(t1—12) De e "iHi(t2—13) De |g > .

(23)
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Performing the integrals over ¢, in the second order and third order terms is analogous to transforming
equation (9) into (10) : the relaxation time inside the Hamiltonian H, reduces to zero the term corresponding
to one of the two time-limits of integration.

Further, the conditions (11) and (18) allow the approximation necessary for the introduction of the two-
photon operator to be made (12). Introducing the new variables 0 =t — ¢, and t =t — t, or T = t; — 1,,
we obtain

+ oo

da)l E(col) e—iw,tj‘ de C+im‘0 e—iH;o Da | g >
0

29

| ¥()> = |g>+ﬂ

0

+

* % ” dow, dw; E(w,) E(ws) e“““”+m3)'J dr el@rodreiig g

0 0

- h—lz' jvj:[ d(l)l da)z dw3 E*((Ol) E(wz) E(w:;) e_i(w2+w3_ml)t
0

+ o + o0
X J‘ dgj. dT ei(a)2+w3—w1)0 e—iH10 D£+ ei(wz+m:;)t e—iH;t Qeg l g > . (24)
0 0

In calculating the mean value { ¥ | D,* | ¥ ), we exclude those terms which correspond to one photon
transitions (see hypothesis (1) and (2)) and we retain only those which contribute to the integral (21). In fact
there are only two such terms : one is obtained from the product of first-order and second-order terms in (24),
while the other is got from a product of zero-order and third-order terms. These two terms correspond to the
absorption of one photon in each of the two steps of the complete process (g > rand r — ¢€) :

r‘
CPO | De+ I Y@ )=+ % J‘[ do, dw, do; E¥(w,) E(w,) E(w;) g i@zt oo

00 f® 00
xf de d'l'( g l Dz+ ei(Hl’f—a)l)() De+ ei(w2+w3—H1)r Qea |g>

0 0

- ;i—li' J‘J\ dwl dwz dw3 E*(wl) E(a)2) E(wa) e—i(wz+w3—w,)t

XJ dej d (g | D} ei@res=ei-H0 pt glostor=iiig g5 (25)
0 V]

Performing the integrals over 6 allows the introduction of the two-photon operator again and also shows
that both terms on the right hand side of equation (25) are equal with the same sign :

CPQO) | D: | Y() ) = gﬁl jJ‘del dw, dw; E¥(w,) E(w,) E(w;) gH@2F @sm Ot
X I dt{g|Q, e "frg |g5>. (26
0
It is now easy to evaluate (26) and hence find the following expression for the absorbed energy (21) :

+ o
W3 Ref v Mf““’ do, do; doy E*(@) E*(@;) E(@s) B@s) €40+ 727 x

o}

X (02 + 03 — wl)j dref@rer{g|Q e ™rQ, g).  (27)

0

To proceed further we make the following observations : the assumption (18) regarding the function
E(w) allows us to make the approximation

(wy + w3 — wy) ~ w, . (28)
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Further, the integral over time ¢

J\+00
— ©
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dref@rer=omodt = I §(w + 0y — w, — w3) =271 82— Q)

Ne §

29)

where we introduce the variables Q = w + w; and Q' = w, + w;. Lastly, we define the quantity

s - |

0

Formula (27) then takes the form :

W=h

0

dwE(w) E(Q — o) .

8 ML pe f dQB*Q) BQ) j dret®™ (g| Qe ™0, |g).
0

(30)

€)Y

This result may be expressed in a convenient form by using two-photon operator Q,,(¢) defined in the interaction
representation and related to the corresponding operator in the Schrédinger representation by the transformation

Q:a(t) — e+iH1+t Qza e—iHlt .

We obtain :

W= 87;wLRe'f Q| B@) |2I
0

0

(32

dre™ ™ (g|0: () 0.0 8> . (33)

In the general case of complex i.e. circular or elliptical polarization of the light, it is necessary to use the
adjoint operators D," or Q,! in the above formulas. However, in the particular case of linear, i.e. real polarization,
the formulas can be simplified. We may, in this case, write the electric field given by (17) as :

E@®) = sj ) dob(w) e™™  with  §w) = E(®)

if w>0

&w)=E¥(—ow) if w<0. 34)

Introducing the Fourier transform A() of the square of the electric field,

1

AQ) = ﬂj . dret® E(1)? = J ) dws(w) §Q — w)

(3%)

and noting that, in the region of interest, in the vicinity of Q = 2 w;, A(Q) is equal to B(Q) (as defined by (30)),

then we may write the absorbed energy as :

8 My,

)/

W= f de | 4@) |? J dre™ ™ (g 0,() 0.0 | g).

© 0

This formula is quite similar to that obtained for
one-photon transitions the Fourier transform,
A(Q), of the squared electric field replaces the Fourier
transform &(w) of the electric field, and the correlation
function of the two-photon operator J,, replaces the
correlation function of the dipole moment ope-
rator [18]. Note, however, that the 0 operators are
defined by a non-unitary transformation, given by
equations (32) and (22). Formula (36) has been
obtained under the hypothesis (20) that the electric
field E(?) is zero before T, and after T,. In order to
extend the treatment to include steady-state illu-
mination we isolate the effective interaction time

(36)

of the atom with the field to an interval T, — T,
such that

T, —T,> 1, and T, — T, > 1/Aw, (37)
i.e. over a finite interval long compared with charac-
teristic evolution times of the atom. The first condi-
tion ensures the validity of the time-integrals in the
perturbation calculation ; the second condition, the
validity of the time-integral in the expression (21)
of the absorbed energy. The Fourier component
E(w) used in the formulas is then the Fourier trans-
form of the electric field limited to the finite time



Ne 5

interval between T, and T,. When the electromagnetic
field is the only perturbation applied to the atom,
i.e. in the absence of collisions, the calculation of the
correlation function is simple and the line-shape is
given by

4 oy,

W= el Qule) [P x

I,
— )" + 24

xj dQ | A@Q) | © (38)

(see in Appendix a remark about collisions).

It is worth pointing out that A(Q) depends on
E(?)* and not on a product of the electric field at two
different times E(ty).E(t,). This arises from the very
short time spent by the atom in the relay level, the
absorptions of the two photons being practically
simultaneous.

The function A(Q) involves the relative phases of
the various components &(w) of the field. This can be
illustrated by a simple example :

Consider an electromagnetic field which is the
superposition of 2 N monochromatic equidistant
modes of frequencies w, and amplitudes E,. The
modes are set out symmetrically on both sides of the
atomic resonance, and the distance between modes
is large compared with the natural width I', of the
excited level. A resonance occurs when the atom
absorbs a photon from each of the modes symmetric
with respect to w,./2. Replacing integrals by finite
sums, the absorbed power is proportional to

2
=4

2
A=

2N
Zl En'EZN—n

n=

N
Zl E,.Ern_»n

We suppose that the amplitudes E, are all equal to E :

E(x,y,2,1) = e T [F e iloui=ka) | p e-ioutka] | o

where w, is the beam radius at the waist.
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If the relative phases are random this leads to
N
A=4Y |E,E;x_n | ~4NE*.
n=1

If all the phases are the same (case of mode-locked
laser), there is a constructive interference

A = 4(NE®? = 4 N> E*.

The physical meaning is simple : when the phases
of the modes are random, the electric field is almost
constant in time. On the contrary, if all the modes have
the same phase, E(?) is zero most of the time but very
intense over short time intervals. Two-photon absorp-
tion being a non-linear process, then the signal is
larger in the second case. This effect has been demons-
trated in multiphoton ionization [19].

3. Application. The effect of finite transit time. —
The atoms in a vapour are often moving fast enough
for the time spent in the electromagnetic beam to be
as short as the atomic lifetime, especially since the
laser beam is usually focussed in order to improve
the transition probability. This results in an important
modification of the line-shape, which we will calculate
following the derivation given by Biraben [20].

With the laser operating in a single longitudinal
TEM,, mode, the spatial distribution of the electro-
magnetic field can be described by a Gaussian func-
tion. The atoms are observed in the vicinity of the
waist of the focussed Gaussian beam over a length L
which is small compared to the Rayleigh length
zg [20, 22]. We suppose that the two counter propagat-
ing light beams have identical geometry, but may
have different intensities. Assuming the same linear
polarization for the two beams, then the expression
of the electric field is

(39

The method consists in first calculating the energy absorbed by an atom with a well defined trajectory
which passes through the beam, and then averaging this quantity over all atoms to obtain an expression for

the line-shape.

Let us consider an atom following a straight line trajectory whose projection on a plane perpendicular

to the beam axis is represented in figure 3.

Let p be the minimum distance between the atomic trajectory and the beam axis, and let v, and v, denote
respectively the radial and axial components of the velocity. We express the atomic coordinates as functions
of time (the time origin being when the atom passes at the minimum distance p); we then deduce the electric

field seen by the atom :

E@) = e~ PPIwE o~ vEs?/w] [E, e HoL—kv)t | E, e ilou +kv=)t] + cc. .

(40)

The averaging calculations will be simplified by the fact that the temporal variation of E(f) is independent

of p.

We must first calculate the square of the electric field. In this calculation we retain only the terms with

e~ 2ioypt

E(t)2 — e—2pz/w(2, e—Zthz/wg [2 El E2 e—2iwy_t + E12 e—Zi(wL—kv,)t + E22 e—2i(w1_+kv,)t] .

which are efficient for two-photon absorption :

@“n
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Of the three terms in (41) only the first is independent of the atomic velocity and corresponds to the narrow
absorption peak without Doppler broadening; we neglect the other two terms, which represent the small-
amplitude, Doppler broadened background (see section 1).

Hence, using (35), the Fourier transform 4(Q) of E(f)? is given by :

1w,

AQ) =

—_— El E2 e_ZPz/w% exp [_

The total energy absorbed by the atom is then (formula (38))

2 wy wk
W(,, p) = T

r

W,

i)

L oBsERvATION
LENGTH
z :’wa_oz \
R™ A RAYLEIGH @
LENGTH

SECTION
OF LASER
BEAM AW \

T X

\ ’
P /
N A

PROJECTION OF ®)
THE TRAJECTORY

Fig. 3. — The waist of a Laser beam : a) Longitudinal section
showing the observation length L, which is supposed to be shorter
than the Rayleigh range zz. b) Transverse section, at the waist,
showing the projection of an atomic trajectory, with the radial
velocity v,.

For a given velocity, the absorption curve is a
Voigt profile, convolution of a Lorentzian and a
Gaussian curves. It is now necessary to average this
expression over the distributions of radial velocities v,
and trajectories (characterized by p), thus obtaining
the energy absorbed in unit time. The energy absorbed
by all those atoms which pass through the beam in
a time §¢ at any point along a length L is

+ o0 +
F.0t = NJ 2 dpj dv,.Lv, 6tf (v,) W(v,, p) ,

0 0

4

E?E2 e | (g |0, 0> |2j

Q@ - 2w)?
———8 vf/w% . 42)
e r @ — 2 w)?
dQ e - | @43
R i [ AW ] “3)

N is the atomic density and f(v,) is the radial velocity
distribution, which can be deduced from (16) as

20, . . 2T 5
f(Ur) = u—ze # with u? = 7 = U? . (45)

Replacing f(v,) and W(r, p) by their expressions,
and integrating over p and v, one obtains

+

r

e e 12200/ do
e @ — ) +T2/4

Flw) =C j
(46)

where 6 = u/w, and C depends both on atomic
parameters and on parameters describing the laser
beam

@, E12 Ez2

C= NLwi 5 =2 <@ 1 Quled [P (47)

The line-shape given by (46) is in agreement with
that calculated by Bordé [11] in the case of a three
level system :

The absorption profile as a function of w; is the
convolution of a Lorentzian curve of width I',/2
with a double exponential curve of width é Log 2 at
half maximum. The parameter § characterizes the
broadening due to the transit time through the
laser beam. This broadening is symmetrical and the
two-photon absorption lines are not shifted by this
effect. Let us point out that the particular sharp-
point shape of the broadening is due to slow atoms,
which stay a long time in the beam and contribute
much to be absorption but very little to the broaden-
ing. It can also be remarked that the calculation is
not valid for atoms of very low radial velocity v,
since such atoms do not have sufficient speed to
pass through the beam during the time interval é¢.
Nevertheless, it can be shown that the corresponding
correction is negligible [20].

In the case where the transit time 1/§ is much
larger than the lifetime of the excited state, i.e. § < I,
the broadening associated with the double exponential
curve will be negligible. The double exponential
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function in (46) can be replaced by a delta function
and the resulting expression for the absorbed power
1s :

NL7tw0 e

T(wy) = 2 fioy) ge (48)

where I'(? is the two-photon transition probability
in the centre of the light beam, being a Lorentzian
function of w;, as given by (14). The total power
absorbed in the waist of the Gaussian beam is equi-
valent to that absorbed in the strongest electric field
found in a cylinder of radius w,/2. Formula (48)
could alternatively be obtained directly by integrating
the transition probability (14) over the volume of the
Gaussian beam.

4. Experimental profiles. — We present in this.

section experimental recordings of a particular two-
photon absorption line in order to exemplify how the
formulas derived above may be applied. The line
chosen is the highest frequency component in the
set of four which constitute the two-photon absorption
by the transition 3S — 4D in sodium, at a wavelength
of 57873 A, and illustrated in figure 2. The line
corresponds to the transition from the hyperfine
level F = 2 of the 3%S,,, ground state to the fine-
structure level 4D;,,. The hyperfine structure of the
excited level 4D, is contained well within the level’s
natural width of I',/2n = 3.2MHz and can be
completely neglected [23, 24].

The experimental set-up is basically that described
in earlier publications [25, 26, 4]. However, the
feed-back loop which controls the dye laser frequency
has been improved and this has allowed frequency
jitter to be reduced to less than 1 MHz. In order to
obtain a linear scan of the laser frequency with time,
the external etalon to which the frequency is locked
is pressure swept.

The two-photon resonance is monitored by detect-
ing, with a photomultiplier, the photons emitted by
the transition between the excited level and the
intermediate level 3P, ,, : the wavelength 5 688 A of
this fluorescence is sufficiently different from that
of the laser light for the two to be easily separated by
a monochromator. Figures 4 and 5 give two examples
of the variation of the photomultiplier current versus
time, that is, of the excited state fluorescence as a
function of the laser frequency, as drawn with a
chart recorder. The horizontal, frequency axis has
been scaled using frequency markers furnished by
a long and stable Fabry-Perot interferometer. As is
often done in experiments of this kind, the laser
beam is focussed into the experimental cell in order
to increase the two-photon signal [10]. For example
the curve shown in figure 4 was obtained with the
laser beam focussed by a lens of focal length 25 cm.
The corresponding beam waist radius, w,, may be
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Fig. 4. — Experimental recording with enlarged frequency scale
of one component of the two-photon transition 3S — 4D in sodium
(component a of figure 2 : 3S;,;, F = 2 — 4Dj,,). The Laser beam
is focussed with a lens of focal length 25 cm, giving a waist radius
wo =~ 25 um. The superimposed dotted lines are Lorentzian
curves : one coinciding on the wings, the other one coinciding at
half-height.
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Fig. 5. — Experimental recording of the same transition as figure 4

with a lens of focal length 50 cm giving a waist radius wy =~ 50 pm,
i.e. double that in figure 4.
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estimated to be of the order of 25 pm, and, with a
root-mean-square radial velocity at 180 °C

u= /07 = 570 ms~*

(as calculated from (45), we may deduce that the
transit time of the atoms through the light beam,
given by wy/u = 1/6, is almost equal to the lifetime
of the 4D level, viz. 1/T, = 5 x 10785 [27, 28]). In
fact, it is evident from an inspection of figure 4 that,
under these conditions, the experimental line-shape
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is quite different from a Lorentzian profile. The two
dotted curves superimposed on the experimental
curve of figure 4 are two Lorentzians : the first curve
coinciding at the wings with the experimental curve;
the second having the same width at half-height as
the observed line-shape. The rapid decrease in the
signal in the wings is characteristic of the double
exponential curve which we have introduced in the
above analysis of transit time broadening (46).

In order to measure more precisely the effect of
the transit time, another recording was made of the
two-photon signal with the laser beam focussed with
a lens of focal length 50 cm, thus producing a beam
waist twice as large (i.e. wy ~ 50 um) as that associat-
ed with the above recording. The corresponding
curve, shown in figure 5, is narrower and much closer
to the Lorentzian shape.

When out the convolution of a Lorentzian curve
with a double exponential curve (the widths of which
are of the same order of magnitude) is carried out
then numerical calculation shows that the width of
the resulting curve is nearly the sum of the widths
of the two convoluted curves. This property permits
an easy comparison of the two experimental line-
shapes shown in figures 4 and 5.

We associate the form of each experimental
line-shape with that given by the theoretical
expression (46); the two curves having different
values, §, and &, of the transit time parameter.
Knowing that 6, = 2 J5, we can write the differences
of the widths as

Log2 _ 1,
2n 24

Log2

%s 27

= 14 MHz

and thus deduce that
0, =2085=25x10"s"1,

This value is in good agreement with the value
deduced from the estimated waist radius w, of the
beam and the r.m.s. radial velocity of the atoms.
In explaining the widths of the experimental curves
in figures 4 and 5, we know that the contribution
of the radiative lifetime is I',/4 = = 1.6 MHz, being
the full width at half-maximum of the Lorentzian
curve. In addition, however, it is necessary to include
an additional contribution of 1 MHz, which arises
in part from the residual frequency jitter of the laser,
and in part from the collisional broadening (the
latter due to the presence of impurities in the ®xperi-
mental cell which broaden the Lorentzian curve).

In conclusion, we have established a general
formalism which permits the calculation of line-
shapes in Doppler-free, two-photon spectroscopy.
We have applied this general formalism to include
the effects of finite transit times of the atoms through
the laser beam, and we have found good agreement
between theoretical and experimental line-shapes.

We wish to thank Gilbert Grynberg and Elisa-
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beth Giacobino for many valuable discussions on
the topic of this paper, and Leslie Pendrill for assis-
tance with the language.

Appendix. — COLLISIONAL EFFECTS ON TWO-PHO-
TON LINE-SHAPES. — Much detailed work has been
performed on the effects of collisions on spectral
line-shapes. Here we wish to concern ourselves with
only one aspect ; the quite different effects of collisions
on Doppler-free, two-photon line-shapes on the one
hand, and on saturated absorption line-shapes, on
the other.

We emphasised in section 2 that the two-photon
line-shape depends, through the quantity A4(Q), on
E*(?) and not on a product of the electric field at
two different times : see formulas (35) and (36).
This remark also has some relevance in the analysis
of the two-photon line-shape in the presence of colli-
sions which modify the atomic velocity. The result
is that the two-photon line-shape is independent of
the atomic trajectory, that is, insensitive to velocity-
changing collisions, in contrast to the pronounced
effects of collisions on saturated absorption profiles.

The atomic trajectory is given by the vector r(?).
At a given time ¢, the atom interacts with an electric
field (as experienced in the atomic rest frame)

E(t) = 8[E0 e—iwu—ik.r(z) + EO e-iwu +ik.r(t)]

in the case of a monochromatic standing wave.

Deducing the corresponding expression for A(R),
the Fourier transform of E?(f), from equation (35),
we see that it consists of three terms, one of which
is independent of the trajectory, i.e. of r(f). As men-
tioned in the text, this term gives the form of the
Doppler-free, two-photon line. It follows that the
two-photon absorption line-shape is not sensitive to
velocity-changing collisions.

The same range of validity applies for this result
as with the analysis leading to formula (36) in the
text. In particular, one must exclude single-photon
absorption : the energy defect, / Aw,, has to be large
compared with the spectral width of the electro-
magnetic field as it appears in the atomic frame.
The spectral width in this case is of the order of 1/z,
where changes in the apparent frequency of the light
field occur (due to changes in velocity of the atom)
in times of the order of 7, the collision time.

We can then neglect velocity-changing collisions
provided

Aw, > /7, .

In other words, the time taken for the two-photon
absorption process to occur — 1/Aw, — must be
short compared to the collision time, .. Such a
condition excludes the case where a collision takes
place between the absorption of two photons.

In conclusion, the effects of collisions on two-
photon absorption result in a Lorentzian line-shape,
and can thus be described by two quantities : the
shift of the line’s centre and the broadening.
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