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The cholesteric defect structure near the smectic A transition

P. E. Cladis, A. E. White (*) and W. F. Brinkman

Bell Laboratories, Murray Hill, New Jersey 07974, U.S.A.

(Reçu le 26 juin 1978, révisé le 20 novembre 1978, accepté le 23 novembre 1978)

Résumé. 2014 Nous présentons une étude détaillée de la structure des défauts observés près de la transition smectique
A - cholestérique dans une géométrie cylindrique. L’orientation des molécules à la surface du capillaire est
radiale. On propose que la phase cholestérique apparaisse à partir de la phase smectique A via une disinclinaison
S = + 2.
On peut complètement décrire la symétrie d’une phase nématique avec un seul vecteur unitaire, n ; par contre,
la description de la phase cholestérique nécessite la définition de trois vecteurs mutuellement orthogonaux, n, 03BD et

03BD x n. Bien que le défaut que nous avons observé dans la phase cholestérique à grand pas soit non singulier du
point de vue de la configuration de n, c’est-à-dire, du point de vue nématique, nous proposons que ce défaut soit
singulier dans la phase cholestérique pour laquelle il faut aussi tenir compte des variations de 03BD et de 03BD x n. On

présente des arguments d’énergie qui montrent que l’échappement de 03BD n’est pas dispersé dans la totalité du volume
du cholestérique mais qu’il est concentré dans une région qui est de l’ordre du pas, p. Ceci nous indique que les
défauts d’ordre deux possèdent un c0153ur, et doivent donc être considérés comme singuliers du point de vue de la
phase cholestérique. Cette conclusion est en contradiction avec des arguments topologiques antérieurs appliqués
aux cholestériques, qui prédisent qu’un défaut linéaire d’ordre deux doit être non singulier.

Abstract. 2014 We study in detail the defect structure observed in a cylindrical geometry near the smectic A-
cholesteric transition. The orientation of the molecules at the capillary surface is radial. We propose that the
cholesteric phase grows from the smectic A phase via a spiralling S = + 2 disclination.
Unlike a nematic which requires only a single unit vector, n, to describe completely its symmetry, a cholesteric
requires three mutually orthogonal vectors n, 03BD and 03BD x n. We argue that although the defect we have observed
is non-singular from the nematic viewpoint, i.e. the configuration of n is non-singular, energy considerations
imply a core for an S = 2 type line defect for a cholesteric. Specifically, we show that the escape of 03BD is concentrated
in a region of order p, the pitch, and not dispersed throughout the volume of the material. We interpret this to
mean that the S = 2 has a core and therefore must be considered singular from the cholesteric viewpoint. This
conclusion disagrees with previous topological arguments which predict for cholesterics that line defects of order
two are non-singular.
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1. Introduction. - Cholesteric liquid crystals are

characterized by a twist axis, v, perpendicular to the
director field, n(r). Ignoring surface contributions, the
Frank elastic energy for a cholesteric of volume, V,
is given by [1] ]

where qo = 2 nlp, is the inverse of the equilibrium

half pitch, po ; Ki, K2 and K3 are the Frank elastic
constants of splay, twist, and bend respectively. In the
usual right-handed coordinate system, qo &#x3E; 0 repre-
sents a right-handed cholesteric and qo  0 a left
handed one. The nematic phase is the special case,
qo = 0, so nematics are considered to be cholesterics
and there is no known temperature induced nematic-
cholesteric transition. This indicates that they are

somehow thermodynamically similar despite the diffe-
rent symmetries implied by the two conditions

qo = 0 and qo :gÉ 0.
The smectic A phase is characterized by layers.

n, the same n as in eq. (1), defines now the normal to
these layers. The layer spacing is of the order of a
molecular length - 25 Â. As the temperature
decreases in a cholesteric or nematic phase towards a
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nearly second order nematic/cholesteric-smectic A
transition temperature, TNs, K2 and K3 increase (and
are infinite at TNS should this transition be a conti-
nuous one) since twist and bend deformations are
excluded by the layered symmetry of the smectic A
phase. For a cholesteric, as T ---&#x3E; TNs, po increases.
By measuring po as a function of (T - TNs), one is able
to deduce the behaviour of K2 in the vicinity of
TNS [2]. For a bulk cholesteric, a sufficiently large
externally applied magnetic field can successfully
compete with the twist free energy to untwist the
cholesteric structure [3]. On the other hand, boundary
conditions are usually not sufficiently strong except
in cases where the sample thickness is less than

po/2 [4] to untwist the cholesteric but rather result in
the introduction of a variety of singular lines.

In this work we study how the cholesteric phase
evolves from the well oriented smectic A phase where
the layers form concentric cylindrical shells in a

capillary so that n is initially (T ::g TNS) radial and the
pitch infinite (qo = 0). As T increases, the pitch
becomes of the order of the capillary dimension.
As discussed in the next section, we observe a

complex sequence of configurations which differ on
heating and cooling but which can at least qualitati-
vely be understood in terms of the variation of po, K3
and K2. One of the more interesting configurations
observed appears to have a macroscopic twist in the
opposite sense to the cholesteric pitch. We propose
that this texture is an S = 2 singular line because such
a line has the property of rotating macroscopically
in the opposite sense of the local twist. We then pro-
pose a texture to describe the escape of the S = 2.
This texture is analytic from the topological point of
view of a nematic where only the configuration of n
is taken into account but singular from the cholesteric
viewpoint, where we must also consider two other
vectors mutually orthogonal to n. We argue that it

represents a core (a region where more energy is

concentrated) of an S = 2 in a cholesteric which

topological considerations [5] indicate should be ana-
lytic (the energy is uniformly distributed throughout
the material). It is argued here, that the topological
considerations do not properly take into account the
constancy of the pitch in a cholesteric. The impor-
tance of an additional constraint due to the constancy
of pitch was recognized [6] previously and we apply
its ramifications to our case.

Finally we discuss briefly the competing energetics
of various configurations near TNs. We argue that it
is the competition between the twist energy and the
large value of K3 that stabilizes the texture containing
the S = 2 line. We also discuss the possible role of
renormalization of the elastic constants in the pre-
sence of bend and twist.

2. Observations. - 2. 1 SAMPLE PREPARATION. -

Mixtures of CBOOA and CN were prepared in
concentrations of 0.l, 0.7 and 1 %. Glass capillaries of

inside diameters ranging from 50 to 400 pt were filled
with these mixtures. The capillaries had been pre-
viously treated with the surfactant of Kahn [7] to

ensure a homeotropic (i.e. radial) orientation of the
director at the inside wall. They were then sandwiched
between a glass slide and cover slip and surrounded
with microscope immersion oil. The ensemble was

placed inside a Mettlar oven whose temperature stabi-
lity is better than 0.02 OC. A varian magnet calibrated
by means of an NMR probe was used for the magnetic
field experiments. We observed the mixtures using a
Leitz ortholux polarizing microscope. The Z axis of
the tubes lay always perpendicular to the microscope
axis.

2.2 OBSERVATIONS. - Only very near the smectic
transition temperature did we observe simply two
lines in the tube. Generally, we observed at least three
and sometimes four lines stretched along the axial
direction of the tube. In all cases, at least two of these
lines were very sharp dark lines and therefore were
presumed singular and identified as either a pair of
S = + 1/2’ s or S = - 1/2’ s. Figure 1 shows the

experimental configuration and how it was interpreted
(see below).

Fig. 1. - The experimental configuration. The axis of the tube is
perpendicular to the microscope axis.

We relate here specifically a typical series of observa-
tions made on the 0.77 % mixture of CN in CBOOA.
Unless otherwise specified, the tube diameter is
133 g. The nematic-smectic A transition temperature
TNS was recorded to be 80.8 °C. In general we found
that even these small amounts of CN depressed the
TNS of pure CBOOA (TNs - 83 OC) by a few degrees
but owing to the small quantities of CN involved, we
have not attempted to study this quantitatively.

2.2.1 Heating. - We first cooled the mixtures
into the smectic A phase and observed that the planar
S = + 1 occurred [8, 9].
Heating very gently (Fig. 2), then, from the smec-

tic A phase where the layers are concentric cylindrical
shells [8, 9] (S = + 1) resulted in the S = + 1 split-
ting into two S = 1/2’ s at 81.0 °C (Fig. 2a).
As the temperature is increased ever so slightly,

the two S = 1/2 lines appear to become twisted

(Fig. 2b) and at 81.01 OC we observed a new configura-
tion which is shown growing in from the left in figure 2
(b, c and d). This configuration clearly exhibits two
singular lines near the wall of the capillary which
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Fig. 2. - Heating very gently from (a) to (d). The S = + 1/2 pair
shown in (a) appear as relatively fine lines. When the S = 2 first
appears the two S = - 1/2 lines stay close to the centre and appear
thickened compared to the 1/2 lines in (a). Subsequently (c) and (d)
the two S = - 1/2 lines move out toward the walls.

spiral around a bright thick region down the centre.
Note that its pitch is considerably different from that
of the two S = 1/2. We propose that this spiraling
configuration is a combination of two S = - 1/2
lines near the walls and a non-singular S = 2 line
down the centre. On continued heating, the spiral
becomes unstable (at 82.5 K) and the result is a proli-
feration of lines in a very tangled and complex confi-
guration (Fig. 3).

Heating rapidly to 81.01 °C from the smectic phase
resulted ln the appearance of two S = - 1/2’ s which
migrated rapidly to the cylinder walls leaving a thick
(non-planar) S = + 2 in the middle of the tube

(Fig. 4b). This thick line then proceeded to split into
two non-singular S = + l’ s. Further heating resulted
in the S = + 1 pair contorting (Fig. 6 (d f )) in the
middle of the tube but the two S = - 1/2’ s remained
perfectly straight. This pattern we have called the
fish scale pattern (Fig. 4f). The fact that we observed
the three line pattern split into the four line pattern is
evidence that the non-singular line of the three line
pattern is an S = + 2 at least.
We further noted still another configuration on

slow heating. This other configuration appears to be
related to the spiraling configuration except that the

Fig. 3. - Growth of the instability in the spiral pattern as the tem-
perature increases. Note that the spirals first become unstable along
the line r = 0. Temperature increases from a to d.

spiral axis is no longer collinear with the tube axis
(î direction) but is tilted with respect to this direction.
In figure 5, we show this other pattern growing in
from the right with the spirals growing in from the
left. When they meet (Fig. 5d), neither configuration
gives way indicating that the energies of both confi-
gurations are about the same.

In order to understand this spiral texture it is impor-
tant to note that the sense of the spiral is left-handed.
We show this by focussing at various levels in the
cylinder (Fig. 6). According to Masubuchi et al. [10]
CN was found to have negative twisting power. They
specify that this corresponds to a cholesteric which
strongly reflects left-handed circularly polarized light
or rotates the plane of polarization of transmitted light
to the left (counterclockwise) when viewed in the oppo-
site direction to the direction of light propagation.
It thus corresponds to the plane of polarization of the
transmitted beam having been turned in a right-hand
sense by the medium or a right-handed choles-
teric [11].

2.2.2 Cooling. - If we cool from the very compli-
cated configuration (Fig. 3) we do not recover the
spiral. Rather all the cholesteric generated lines are
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Fig. 4. - Evolution of the fish scale pattern. This pattern was
observed on rapid heating from 79 OC (smectic) to 81.1 °C (choles-
teric). To the right of the top three photos we show the possible
director configuration to account for these lines. Immediately upon
becoming cholesteric, two thin lines separate out of the original
S = + 1 core and move rapidly toward the walls. The fine S = + 1

core is now replaced by a thick line (b) which we interpret to be an
S = + 2 (non-singular). This thick line then proceeds to split into
two thick lines (c) which subsequently coil into the fish scale pat-
tern ( f ). Throughout the two S = - 1/2’ s remain locked on the
cylinder surface and do not spiral. P indicates direction of polarizer.

swept in advance of the growing smectic layers and
vanish into the core of the smectic S = + 1.

Cooling the well oriented spirals results in their

being compressed without changing their pitch much
(Fig. 7).
For the 0.77 % mixture, the spirals were observed

to be very stable for 81 °C  T  82.5 °C.

Cooling the fish scale pattern resulted in the straigh-
tening of the S = + 1 pair and finally the return of
the satellite S = - 1/2’ s to the core of the S = + 1

in the smectic phase (Fig. 8).

2.2.3 Spirals in magnetic , field. - a) Perpendicu-
lar to tube axis (Fig. 9). - In the geometry, the spirals
were observed to behave in a similar fashion to the

cooling experiments. The pitch does not change much

Fig. 5. - The other pattern, which may only be a variation of the
spiral pattern, observed on slow heating growing in from the right.
When this configuration meets the spiral configuration (b) the point
of meeting does not shift indicating that both configurations are of
comparable energy. When the spirals become unstable (e) they
become indistinguishable from this other configuration.

Fig. 6. - Monochromatic light. Here we focus successively on the
top, middle and bottom of the tube to show that the spirals are both
left-handed. &#x3E;
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Fig. 7. - Cooling the well oriented spirals back into the smectic A
phase. Temperature decreasing from a to d.

Fig. 8. - Cooling fish scale pattern back into the smectic A phase.
Temperature decreasing from a to c. The satellite S = - 1/2’ s are
difficult to see in this configuration except in (c) where they are seen
emerging from the walls and moving toward the centre of the tube.
They are slightly blurry here since they move fairly rapidly when they
move.

Fig. 9. - Magnetic field applied perpendicular to tube axis b’
and d’are focussed slightly above the plane of b and d. In e the field
is about 9 500 G. The magnetic field is increasing from a to e. For c,
it is about 7 500 G. Monochromatic light.

(shown figure 9 here to be about 82 g). If anything at
about 7 500 G, we observed a slight shrinking of the
pitch to about 75 g and a sudden straightening of the
lines at 9 700 G with the two S = 1/2’ s visible (Fig. 9).

b) Parallel to tube axis (Fig. 10). - In this geometry
the spiral tilts just before unwinding [4]. Again, the
two singular lines are still visible in the centre of the
tube. Comparing figure 10c with the other configura-
tion of figure 5 shows the similarity between the tilted
spirals and the other configuration.

2.2.4 Pitch tube size dependence (Fig. Il).
There did not appear to be much change in the spiral
pitch whenever po ’ 2 R (Fig. 11 ).
When po was very large compared to the tube

diameter we did not observe the close formation of the

spirals. Rather, we more generally found three lines
stretched out axially. Two of the lines (dark) were
quite close to the walls of the cylinder. The middle
line was bright. Occasionally we found a region along
the tube where the whole configuration twisted just
once. The bright middle line suggests again that the
S = + 2 is of the nonplanar variety (nz =1= 0) and we
shall next examine of what sort it might be.

2.2.5 Contrast of observed micrographs (Fig. 12). -

By analysing the polarization of light emanating from
different parts of the pattern, we are able to come to
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Fig. 10. - Magnetic field applied parallel to the tube axis. The
spiral axis tilts just before unwinding. Compare figure 12b and c
with the other configuration shown in figures 7c-7e. The two non-
singular lines are difficult to see in 12e but are embedded in the black
band observed in the middle of the tube. Monochromatic light.

somme conclusion concerning the director orientation.
To do this, we focus a spot of unpolarized light (5 g
diameter) at various levels inside the tube and observe
the relative displacement of the « ordinary » or « 0 »
(polarization parallel to the tube axis) to the « extra-
ordinary » or « E » (polarization perpendicular to the
tube axis) component of light. This gives an indication
of how the director is tilted out of the plane perpendi-
cular to the microscope axis (very roughly) in the
plane of focus and below.

In, for example, the scheme of figure 12a, we expect
the component of the incident beam to be displaced
in strictly a radial direction (or not at all). In the other
two schemes, it is expected to have an axial component
which is différent in the two cases. The scheme shown
in figure 12b predicts a symmetric displacement on
diametrically opposite sides of the tube whereas

figure 12c predicts an asymmetric displacement.

Fig. 11. - Spirals observed in two different tube diameters show-
ing that pitch of spiral is relatively insensitive to the tube diameter.

We have observed the displacement associated with
figure 12c which leads us to conclude that although
the director does escape, it does so in a manner which
is consistent with a pair of Â like lines rather than by
the relatively simple pattern of figure 12b which is the
Anderson-Toulouse pattern for 3HeA [20].

Figure 12d shows the director field associated with
the helical twisting like pairs in the diametral plane.
It is quite regular. We note that when AE is perpendicu-
lar to the microscope axis (Fig. 12d), four dark extinc-
tion lines can be (and are) observed along the direc-
tion of the polarizer and analyser crossed at 450 to AE.

Further, the relative displacement of the data is
consistent with two right-handed À’ s as we have

drawn - additional evidence that the local twist is

right-handed everywhere except in the vicinity of the
line, r = 0.

2.2.6 Summary of observations (Fig. 13). -

Figure 13 summarizes the evolution of the spiral
texture.

We mention the pathological case we have observed
- sometimes the spirals grow independently of each
other or they do not grow exactly in phase as we have
shown. Eventually, the second spiral catches up
without falling out of register with the first spiral.
This is a possible growth sequence with this kind of
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Fig. 12. - a) The singular S = 2 and the expected displacement
between the 0 and E rays. b) Anderson Toulouse scheme [5] for
’HeA which is topologically stable and non-singular for three

mutually orthogonal vectors. c) A pair of Â = 1 for which the

relative displacements between the E and 0 rays are predicted to
be opposite to (b). d) The director distribution is shown for c) both
along the î direction and the diametral plane. The lines locate the
S = - 1/2 pairs which demarcate the lobes of the S = 2. The
scheme on top is what one sees if one is able to focus exactly in
the middle of the tube with zero depth of field.

interpretation. Each lobe of the S = 2 need not

expand at the same time.

Fig. 13. - Summary of the growth of the spiral texture - also
illustrates an observed pathological growth.

3. Theoretical considérations and discussion. -
3 .1 EQUILIBRIUM PITCH OF MIXTURES. - It is well-
known that mixing small amounts of a cholesteric
liquid with a pure nematic substance results in a mix-
ture whose twist increases as the concentration of the
cholesteric increases. We recall here [4] the simplest
way of demonstrating this as a consequence of the
equilibrium equations of the Frank free energy.

Let qo represent the resulting pitch of the mixture
and qc the pitch of the pure cholesteric material. The
introduction of a small amount of cholesteric into the
nematic liquid can be phenomenologically described
by a Free Energy

where VN, V,, and K2N, K2, are the volume and twist
elastic constants of the nematic and cholesteric

respectively. bF,,Ilôqo = 0 results in

or

where c is the weight concentration of the cholesteric
(assuming the densities and elastic constants of the
two materials are not very different). This dependence
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of the effective pitch of mixtures has been verified in
detail by Haas and Adams [12]. From eq. (3) we are
able to conclude that the handedness of the twist is

expected to be the same as for the pure substance so
that a left-handed (dextro rotatory) cholesteric added
to a nematic will produce a mixture which is also left-
handed.

Since Pc is usually extremely small, - 2 500 Á-
4 000 À, eq. (3) shows that small amounts of choles-
teric added to a pure nematic can result in a choles-
teric substance whose pitch po is enormous (- 50-
100 y) and thus more amenable to studies of the defect
structure using the simple light microscope. It is these
large pitched mixtures which have proven so fruitful
in the classification of defects of cholesterics [4].
Here we are also exploiting this feature with the
additional property that since K2N becomes abnor-
mally large near the smectic A transition tempera-
ture, the equilibrium pitch of the mixture can become
even bigger.

3 .2 ENERGETIC CONSIDERATIONS. - 3.2.1 Renor-
malization of K3N and K2N’ - If the variation of

temperature near TNS only changed the pitch the

energetics of the possible configurations might be
relatively simple. However, near TNS, the bend elastic
constant K3 also becomes large so that as the tempe-
rature approaches TNS from above the equilibrium
configuration is attempting to eliminate bend and

simultaneously increase the pitch. In addition, the
onset temperature of the spiral texture is within the
region around TNS in which there are nonlinear correc-
tions to the elastic constants due to the presence of
bend and nonequilibrium twist. These corrections act
to effectively lower TNS, and hence, K3 and K2 for a
given amount of bend or twist. Since the actual
values of these elastic constants can be diminished
when bend and twist are introduced near TNS, configu-
rations can oçcur in this temperature range where bend
and twist are not so much minimized as optimized
resulting in a total energy (which is the product of the
bend elastic constant, say, times some configurational
part) is minimum, e.g. the smectic light valve study
of Cladis and Torza [13] or the Freedericks transition
study of Chu and McMillan [14]. If we assume, the

configuration in figure 2d is a non-twisted S = 2, it is
possible to demonstrate that in this case, there is a

torque - K2’ q which twists the S = 2q
axially. qo is the non-zero equilibrium twist above
TNS and K2 is the bare twist constant. q is initially
(T ’" TNS) zero ! So, in this range, and in this range
only, a not inconsiderable torque is present to wind
up an S = 2 axially.

Given the lack of exact solutions to the molecular
field equations in this complex geometry we will only
make qualitative arguments which allow us to identify
the spiral configuration as an S = 2 (or essentially
two Â like lines of a cholesteric).

3.2.2 Configuration energy. - The first point we
discuss here is : why doesn’t the simple pair of
S = 1/2’ s (Fig. 14) twist (twisting now with the
same sense as q) helically about z ?

Fig. 14. - View of a pair of S = 1/2’ s. In a cholesteric we can
imagine this pair twisting helically in an axial direction. This does
not occur near TNS (see text).

The reason appears to be the following : in order
to maximize the gain in twist energy, the S = 1/2 pair
must maximize their radial separation, R. When the
S = 1/2 pair is close together, (R is small), the domi-
nant energy mode is splay. Twisting such a pair will
result in a reduction in the twist energy but only in the
cylindrical volume around which the lines wrap
- K2(Rlp)’. This increases their length, however,
and that contributes an increase in energy

where b is a core radius - a molecular dimension.
The increased length of the lines can overcome the
energy gained via the twist so that on immediately
entering the cholesteric phase the two 1/2’ s will not
necessarily twist. In addition, the two 1/2’ s stay close
together to eliminate bend and separating them by a
large amount leads to a large addition of bend. Thus
what is needed is a texture which puts in the twist but
also keeps the amount of bend small.

Transforming to the topologically equivalent
S = - 1/2 pair and introducing an S = 2 in the small
cylinder of radius R, releases enough bend energy
to enable the singular pair to maximize their separa-
tion and also to increase their length as they follow
the rotation of the S = 2 lobes.
We now consider the configuration energy for the

S = 2 as compared to our proposed scheme of a
rotating pair of 21’ s. Clearly, the planar S = 2,
rotating or not, has a singular core from the nematic
viewpoint and thus has an energy that is logarithmic
in its radius. In contrast, the Â, pair is not singular
even if it is helically twisted in the opposite sense of qo.

In cylindrical coordinates, (r, (p, î) we take for n the
components, nr = sin (9 + qz),
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nz = cos (qJ + qz) sin 0(r). We put 0(r) = qr and

0  0  n. This describes our drawing, figure 12d.
We get for the total energy per unit length of this line

where q = 0.76 qo minimizes the twist free energy.
The most significant fact is that the total energy is

finite, not sensitive to p and is reasonably small.
For this configuration, the twist is given by

On the line r = 0 (0 = 0), n. curl n = 0 ! The core of
the helical pair of Â’ s is twisted in exactly the opposite
sense to the equilibrium pitch but along a radial
direction the director twists in the correct sense.

Where they meet, the twists cancel ! For 0 = 11:, the

twist is at least in the correct sense since rotating the Â
pair in the opposite sense to q (i.e. a left-handed
sense), n twists locally in the proper sense, (i.e. right-
handed). This is shown in figure 15.

Fig. 15. - Demonstrates that the lobes of a spiralling S = 2
pattem will effectively rotate in a sense contrary to the local twist.

3. 3 HOMOTOPIC GROUP CONSIDERATIONS. -

Recently, Volovik and Mineyev [5] have applied homo-
topic group theoretical arguments to the case of cho-

lesteric liquid crystals. They concluded that choles-
teric liquid crystals belong to the same group as the
biâxial nematics of Toulouse [15] and Mermin [16], so
that the line singularities are classified by the non-
Abelian group which has a unique two dimensional
representation the eight element group ± i times the
Pauli spin matrices. There should thus be five classes
of topologically stable line singularities. In contrast,
there are no topologically stable point defects. All
line defects within the same class can be continuously
transformed into each other (i.e. are topologically
equivalent). Table 1 shows their identification of the
cholesteric defects along with their class multiplica-
tion table.

Table I. - The class multiplication table and the

defect assignments of Volovik and Mineyev [15] for
cholesterics.

We remind the reâder that configurations are
those where although there is no singularity in the
director configuration, n, the twist axis v which is

perpendicular to n rotates by ± j 2 n where j is
± 1/2, ± 1. For a nematic, Â configurations are not
line singularities and are topologically similar to the
uniform texture. In particular a Ai configuration in a
nematic is an escaped S = 1 line [17] and is not singu-
lar. On the other hand, for cholesterics À’ s are distinct
from the identity and have a nematic like core on the
scale of q- 1 because within this distance from the
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line v is not defined. 7: j configurations imply both a
singularity in n as well as v. n is parallel to the line
singularity in the case of À’ s and perpendicular to the
line in the case of i’ s. In both cases, the twist axis is

perpendicular to the line. For y, singularities, n is

perpendicular to the line and is singular whereas the
twist axis is parallel to the line and everywhere defined.
Volterra type arguments predict that Â’s and i’s

are necessarily straight line singularities whereas x’ s
can adopt any shape [18]. À’ s, 7:’ s and x’ s are pre-
dicted [5] to combine in the manner shown in the class
multiplication table (Table I). For example. from the
class multiplication table, a member of Cx (;’,1/2, say)
added to an element of Cy (T-1/2, say) can produce
either an edge or a screw dislocation or a 7,1/2 (which
are members of CZ). This, of course, is well-known
to be the case for cholesterics and was, in fact, pre-
dicted to be so by Frank, Friedel and Kléman [18]
before À’ s, i’ s and x’ s were properly identified.

Amusingly, Toulouse has remarked [15] that the

classes C,,, Cy and C,, are the classes of the group for
quarks.
As far as we know the class multiplication table of

Mineyev and Volovik works for À’ s, 7:’ s and x’ s
of order 1 or less. We now present arguments that
lead us to believe that it fails for the combination of
two order 1 lines. From the table, two order 1 lines

(a pair of Â’ s, say) should combine to produce a
texture which is topologically equivalent to the iden-
tity or uniform texture. Next, we will show that in
trying to transform the S = 2 smoothly to a non-
singular texture (making the S = 2 escape) the escape
will be concentrated in a volume on the scale of a

pitch (i.e. core) rather than dispersing into the (usually)
much larger volume of bulk cholesteric dimensions
which is characteristic of non-singular textures.
The essential new results obtained from the topolo-

gical arguments is that all lines of order one - Âl,
xl and Tl are equivalent and that all lines of singularity
index greater than one can be mapped back into the
lower order lines. In particular, all S = 2 lines are

equivalent to the identity so that they must be capable
of escape, i.e. their energy must be uniformly spread
over the volume of the material and not concentrated
in a particular region called the core. These facts are
the basis for the discussion by Stein et al. [6] of the
texture observed in spherulites in terms of the boojum
texture proposed for ’He [W].
The texture discussed above for our experiments is

not legitimately a cholesteric texture in that bend and
splay occur on the scale of the pitch so that it becomes
difficult to define v particularly when r ---&#x3E; 0. The pre-
sent texture is best thought of as an escaped S = 2
in which the escape is occurring in a non-cholesteric
core. We could easily generalize it to a legitimate
cholesteric texture by recognizing that n(r) in figure 12d
was constructed by the operations

where R(z, qz) is the three dimensional rotation matrix
with z the axis of rotation and qz the rotation angle.
In the above calculation we took 0(r) = qr. However,
note that n(r, z) can also be written as

Here the final rotation matrix creates the uniform
cholesteric while the second describes the deforma-
tion of the cholesteric. This way of writing n allows an
immediate generalization to a legitimate cholesteric
texture if we assume that 0(r) = q’ r and

The variable q’ = n/R where R is the radius of the
core region in which the escape occurs. Normally the
energy of such an escaped texture would be a constant
independent of R and the escape would spread to fill
as large a region as possible. Here, however, the free
energy takes the form

where a, b, and c are combinations of elastic constants,
and a is greater than zero. Thus, the minimum energy
has R oc q-’ = po/2 n and the escape is energeti-
cally forced into a region the size of the pitch, i.e. a
core region (again this statement is made from a
cholesteric point of view).

Since this is a variational calculation one might
suspect that a better trial function would allow the
escape to occur on a more global scale. We do not
believe this to be the case at least for the particular
type of S = 2 line considered here, that is, a line that
at large distance has

This statement is based on the fact that to avoid the
kinds of energies encountered here one must view the
cholesteric twist as a set of planes between which n
rotates by 2 n and whose separation must be constant
or at least oc IIR. This condition makes it impossible
for the.S = 2 of the type we are discussing to escape.
In fact, from the point of view of layers it is not likely
that any escaped S = 2 will exist. Until topological
arguments which ïnclude the nonlocal constraint of
constant po are formulated the complete restrictions
will not be understood.
The possibility of constraints due to the nonlocal

nature of the pitch was recognized by Stein et al. [6]
but it was not thought to be important for the S = 2
texture and they proposed that the cholesteric texture
observed by Robinson et al. [21] in spherulites was
analytic inside the sphere in a fashion similar to the
escaped S = 2 texture proposed by Anderson and
Toulouse [20] for the A phase of superfluid ’He. Our
arguments indicate that there will be a singular line
(again from the cholesteric viewpoint) in the bulk of the
liquid in a spherulite. This appears to be consistent
with the data [21].
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4. Conclusions. - In conclusion, we have observed
a variety of textures in a tube near the smectic A-nema-
tic transition having a complex behaviour for which
we mostly do not have explanations. We have proposed
a solution (Fig. 12d) for one of the more interesting
(and simple) textures that occur which involves a

twisted S = 2 line (e.g. Fig. 2d).
In addition, the conclusions of the foregoing argu-

ments may be a valuable clue in helping us to under-
stand why the simple double spiral collapses so dra-
matically when the temperature increases to a range
where the pitch is now much smaller than the radius
of the capillary and the sample is entering a state
which is unequivocally dominated by cholesteric

symmetries rather than the quasi-nematic state which
occurs in the vicinity of the smectic A transition.
We have found that even though this configuration

has a finite free energy it is actually a topologically
singular configuration for a cholesteric. In fact, from
the arguments presented in the preceding section it is
all core (!) since the pitch is on the order of the capil-
lary radius. As soon as the pitch becomes much
smaller than this dimension, the simple texture

(Fig. 2d) becomes unstable (Fig. 3).
Our conclusion that lines of order two necessarily

require a core region in a cholesteric contradicts

previous topological arguments that order two lines
are non-singular.
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