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Coherent scattering by one reptating chain

P. G. De Gennes

Physique de la Matiere Condensée, Collège de France, 75231 Paris Cedex 05, France

(Rep le 21 novembre 1980, accepté le 12 janvier 1981)

Résumé. 2014 On analyse la structure de la fonction de diffusion cohérente Sq(t) pour une chaine polymérique
deutérée se déplaçant dans un fondu de chaînes enchevêtrées, chimiquement identiques mais non deutérées.
Le domaine intéressant correspond à des longueurs d’onde 2 03C0/q plus petites que la taille globale de la chaine (R0)
mais plus grandes que la distance D entre points d’enchevêtrement. Dans ce domaine, nous sommes conduits à
une forte autocritique : les résultats sont beaucoup plus complexes que nous ne l’avions imaginé dans un travail
antérieur [1]. La fonction Sq(t) se sépare en : a) une partie S1q(t) qui décrit des fluctuations locales dans le tube,
et qui relaxe relativement vite; b) une partie Scq(t) qui est de plus grande amplitude, et qui ne décroît que très
lentement (avec pour temps caractéristique le temps de reptation globale Trep). Dans la référence [1] nous avions
postulé une seule fréquence caractéristique (1/03C4q ~ q6). Il s’avère que cet 1/03C4q est seulement la moyenne pondérée
des deux fréquences physiques associées à S1 et Sc.

Abstract. 2014 We discuss the time dependent correlation functions Sq(t) for one deuterated polymer chain, moving
inside an entangled melt of chemically identical, protonated, chains. The region of interest corresponds to wave-
vectors q such that D-1 ~ q ~ R0-1 where D is the tube diameter and R0 the overall chain size. In this regime the
results disagree strongly with our earlier prediction [1]. We find that the function Sq(t) breaks up into two parts.
One part [S1q(t)] describes the local fluctuations of « kinks » inside the tube and relaxes relatively fast (characte-
ristic time ~ q-4). The other part [Scq(t)], with much larger amplitude, describes a slow, global creep of the chain
inside its tube, associated with the tube diffusivity Dt. The characteristic time for this creep process is independent
of q, and is the overall reptation time Trep. In reference [1] a single characteristic rate 1/03C4q ~ q6 was constructed
for each q vector : this turns out to be the weighted average of the two physical relaxation rates.
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1. Introduction. - The weakly inelastic scattering
of neutrons by flexible polymers has been studied in, I
various melts [2]. Depending on the details of the
situation (protonated versus deuterated species) one
can measure either an incoherent scattering function

or a coherent scattering function

In equation (1.1) each scattering atom (n) contributes
separately, while in equation (1.2) all pairs of scat-
tering atoms (n, m) are involved. The brackets repre-
sent thermal averages. The wavevector q is related to

the scattering angle by the usual formula. Finally
the time variable t is related to the energy transfer hm

(between the neutron and the scattering system). The
Fourier transform :

gives the scattering intensity for given q and (JJ [3].
With the most recent spin echo techniques [4] one
can in fact measure Sq(t) directly, and reach times as
long as 10- 8 seconds.
Even with these sophisticated means, most of the

neutron experiments deal with ranges of q and co

which are somewhat too large to reach universal
laws. However, the scattering function Sq(t) is of more
general interest : a) it can be measured by photon
beat methods (1) at very low q ; b) from a theoretical
standpoint, Sq(t) contains essential information on
the dynamics of the scattering objects.

e) For an introduction to these methods as applied to polymers,
see for instance, P. G. de Gennes, « Scaling concepts in polymer
physics » (Cornell Univ. Press) 1979, p. 177.
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For polymer chains, with N beads (N &#x3E;&#x3E; 1) and
an end to end (r.m.s.) distance Ro = N 112 a, the

regime

is most directly interesting : here we probe the inner
modes of the chain, but the inequality qa  1 ensures
that the form of Sq(t) is relatively universal (indepen-
dent of the detailed chemical structure of the mono-

mers).
For a single, idea( Rouse chain [5] in solution,

both the coherent and incoherent scattering functions
have been calculated long ago [6]. Backflow effects
have been incorporated later [7]. However, the most
practical case is different : it corresponds to a melt
of entangled chains. Here the dominant polymer
motions are « reptations » in a tube [8]. The mecha-
nical consequences of the reptation picture have been
worked out by Doi and Edwards [9], and are in
reasonable agreement with experiment. I

The incoherent scattering properties of a reptating
chain were already described qualitatively in refe-
rence [8]. The coherent scattering properties are

more delicate. In a recent paper [1] the present author
attempted to estimate the characteristic frequency
range 1/iq associated with one given q. Unfortunately,
this attempt was a failure ! We discovered this first
when discussing a problem of polymer welding [10]
where very local motions occur near an interface

(i.e. qRo &#x3E;&#x3E; 1). The results of a relatively transparent
analysis for welding turned out to be qualitatively
different from the prediction of reference [1]. We then
decided to construct the coherent form factor in more

detail, for the simplest case available. This corres-
ponds to one deuterated chain moving in a melt of
other chains which are chemically equivalent but isoto-
pically different. Experiments of this type have been
recently carried out by the spin echo technique [4].
Unfortunately, as mentioned above, they deal mainly
with q values which are too high : qD &#x3E; 1 where
D = N e 11’ a is the distance between entanglements
(Ne being the corresponding number of monomers).
At qD &#x3E; 1 the entanglements become irrelevant and
the simple Rouse behaviour of reference [6] should be
recovered. In the present paper we are concerned
with the opposite limit

where entanglements are dominant. The ratio

ROID - (NINE) 1/2 is of order 10 in favourable cases :
this means that the range of q values allowed by the
two inequalities (1.5) is not very large. However, to
reach relatively simple results, it is clearly this limit
which must be studied first. In section 2 we describe
the main qualitative features of the coherent scatter-
ing function, and show that two distinct time scales
are involved. In section 3 we give a more detailed

calculation of the short time scales. In section 4 we

compare the results of the present paper with those
of reference [1].

2. The two basic processes. - 2.1 LOCAL REPTA-
TION. - Let us consider first a sequence of times t
shorter than the Rouse time T ro = N 2 W-1, where W
is a microscopic jump frequency. In the language of
reference [8], this means that the « kinks » along our
chain diffuse locally, but are not influenced by special
effects at both ends of the chain. We call this regime
local reptation. It is associated with internal dila-
tions, or contractions of the chain inside a f xed tube.
The state of affairs at the end of this stage is repre-

sented on figure 1 : starting from a given conforma-
tion of the chain (la) we reach a smeared density pro-
file (lb) where the chain is still in the same tube, but
where there is a certain uncertainty in the position
of each monomer. The resulting value of Sq(t) shall be
called 37,. It is independent of t (since the smeared
profile is time independent) and it is not much smaller
than S9(o).

Fig. 1. - Local reptation processes during a time t smaller than
the Rouse time. a) The chain starts from a given conformation and
is trapped in a certain tube. b) At a later time t the chain is still

caught in the same tube portion, but its probability distribution
is smeared out over a diameter D.

This may seem surprising, since any given mono-
mer (m) drifts randomly along the tube, and moves by
relatively large distances s - tIJ4 in a time t, as was
shown in reference [8]. If the motions of the monomers
were independent at large t, we could write
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This in turn would imply

since the distribution of rn (or r.) at any instant is

spread over distances Ro &#x3E;&#x3E; q-’. However equa-
tions (2.1, 2) are wrong, because the monomers
remain correlated and achieve, at high t, a constant
density along all the tube length.

Although monomer m may have drifted far during
time t, it is still in the tube and surrounded by other
monomers (n). The scattering function S(q) is controlled
by the number of pairs (nm) for which I rm(t) - rn(o) I
is smaller than 1/q.

a) If smearing is ignored, the number of active

neighbours (n) of (m), is given by ideal chain statistics,
and is g, - ll(qa)2 (the local analog of N = (Rola)2).
Including the exact coefficients (computed long ago
by Debye), this would give

b) If we include smearing, we must make the convo-
lution of the ideal chain distribution for rn by some
smearing function of width - D. For instance we
could take a gaussian, and write

where a is a numerical constant. Since we want

qD  1 we can write

Equation (2.4) is dependent on a specific model for
the tube, but equation (2 . S) is not : it shows that

Sq is only slightly smaller than Sq(D) : the function
Sq(t) does not decrease much by local reptation proces-
ses. In section 3 we analyse the details of this relaxa-
tion. We give a precise value for the coefficient a
in (2.4) and we show that the characteristic time for
relaxation is

where W is a microscopic frequency (independent of
N and of Ne) defined as in reference [6].

2.2 CREEP. - Let us now consider intervals t

larger than the Rouse time : in such an interval, the
« kinks » have reached equilibrium inside the chain.
There remains, however, a very slow, global, reptation
of the chain, associated with a « tube diffusion cons-
tant » [8] D,.

In this regime, the chain moves as a whole, and
progressively creeps out of its original tube. The time
required for complete exit is the reptation time Trep,
and is defined by

Here L is the original tube length, and is

Equation (2. 8) may be understood through a division
of the chain into subunits, each of Ne monomers and
of linear dimensions D. We shall take it as our precise
definition of Ne (or D).

Let us also recall the structure of the tube diffusion
coefficient

very similar to what we have for a free Rouse chain [5].
Combining (2. 7, 8, 9) we recover the classical features
of the reptation time :

Having these concepts in mind we can construct
the structure of Sq(t) for large times (t - Trep) and
large q vectors (qio » 1). The principle is explained
in figure 2. Using again the argument of section 2,
we say that two monomers (m) and (n) contribute to
Sq(t) only if 

,

Fig. 2. - Calculation of the coherent scattering by one chain at
times t N Trep. a) Original tube IJ ; b) at time t a new tube I’ J’
is occupied. At large wavector q &#x3E; Ro 1 the coherent scattering
function Sq(t) is dominated by the part which is common to both
tubes.
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I( at time t, the monomer m has drifted out of the
original tube, it will be separated from all points
inside the original tube by distances of order Ro
(much larger than q-’). Thus the only pairs m, n
which contribute are those for which rm(t) is still
located in the original tube.

Repeating the argument of section (2.1), this gives

where Sq is given in equation (2. ), while lq(t) is the
number of monomers (m) which are still trapped at
time t inside the original tube (formed at t = 0).
The result (2.12) has already been derived by Doi
and Edwards [9].
The factor lq(t)IN is familiar in reptation studies :
a) it controls the relaxation of the end to end vector

of the chain [8] ;
b) it controls the memory function for linear

viscoelastic behaviour [9].
N(t)/N was calculated first in section 5 of refe-

rence [8] :

where Trep is defined explicitly through equations
(2.7,9).
The leading term of this expression at high times

corresponds to n = 1 and gives a simple exponential
decay with time constant Trep.
Thus we conclude that, in the creep regime, with

qRo &#x3E;&#x3E; 1, the coherent scattering function has a

decay rate (1/Trep) which is independent of the wave-
vector. This is completely different from what is stated
in reference [1].

3. Local reptation. - We discuss now in more
detail the motions of a very long chain for times t

smaller than the overall Rouse time N 2 W-1.
In a first step we consider local reptation processes

in a rectilinear tube. In a second step we map the
results into the real situation, where the tube itself
is randomly curved. We assume that the microscopic
dynamics is the same for both situations.

3 .1 MOTIONS ALONG A STRAIGHT TUBE. - The cen-
tral parameter here is the number density v(s. t),
defined as follows, v(s) ds is the number of monomers
in an element of length ds along the tube. We must
emphasize first that the average value of v (which we
call V) is finite and constant in all the tube region (of
length L) occupied by the chain.

This implies that our chain cannot be described
as an entirely free Rouse chain : the latter would give N

monomers spread over a tube length - Ro and give
densities N/Ro which are far too high. What we must
do is to impose a tension at both ends of the chain.
Then we can achieve an average stretch per monomer

We are interested here in the fluctuations of the

density v and describe them in terms of a correlation
function :

The Fourier transform of E(s) is (apart from a normali-
zation factor) the coherent scattering function for a
straight tube, which we call E p( t)

The calculation of E p(t) for a Rouse chain under
stretch was performed at the end of reference [6] :

where

is (in the language of reference [8]) the diffusion coeffi-
cient of the kinks. Note that the time for complete
equilibration of the kinks over the whole chain is

and is identical to the Rouse time of a free chain

(independent of Ne).
Returning to the spatial properties along the tube,

by inversion of (3.5) we arrive at the required result
for a straight tube. Since the Fourier transform of a
gaussian is a gaussian, we get :

3.2 CONTORTED TUBE. - We still call s the curvi-
linear abscissa along the tube, and write a coarse-
grained position for a monomer as r(s) (the size of the
coarse-graining is the tube diameter D). Then we may
transform from monomer indices (n, m) to position
indices (si, s2) :
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Because the tube is itself a gaussian chain we have

because the interval (Sl’ s 2) contains I Sl - S2 I

monomers, each of r.m.s. size a. Ultimately equa-
tion (3.9, 10) give us the answer in the form

In our coarse-grained approximation the first term
is simply Sq(0) as defined in equation (2.3). However
if we had included corrections of order (qD )2 we
should have obtained a slightly smaller first term,
corresponding to S(q) (Eq. (2. 5)). We can write down
the correction explicitly by imposing that at t = 0
the sum of both terms in equation (3.11) be exactly
Sq(o). The final result is :

Equation (3.13) gives the decomposition of the cohe-
rent scattering function which was announced in
section 3.1. The first term is time independent (for
t  Trep)’ The second term decays with a characte-
ristic time TI.,,(q) proportional to q-4, as quoted in
equation (2.6). Notice that this decay is not at all

exponential : from (3.11) we find that, for u  1

and for u &#x3E;&#x3E; 1

4. Conclusions. - For the wavevectors q under
consideration (defined in (1.5)), the overall coherent
scattering function of one chain is the sum of two
contributions with completely different structures

where 1 stands for « local » and c for « creep ». The
local term is given by equation (3 .13,14)

and its amplitude is measured by

The creep term is given by equations (2.12,13):

Its amplitude is much larger

Thus a complete discussion of coherent response
functions must include two amplitudes and two relaxa-
tion times. The scaling conjecture of reference [1]
was wrong because it assumed one single component.

Let us call 1/Tq the weighted average of the two
characteristic rates :

We see that 1/T q coincides with the characteristic
rate which was constructed in reference [1] ! However
this 1/r(q) does not have much practical significance.
For instance, if future neutron experiments are able
to probe the q region of interest (D -1 &#x3E; q &#x3E; Ro 1),
they will give an inelastic intensity S,,(w) which is a
superposition of two terms
- the local term with a width

- the creep term with a very small width 
’

which in practice will be equivalent to a delta function
(elastic scattering).

This distinction between a fast and a slow compo-
nent will also be important for more complex situa-
tions, where we deal not with an isotropic mixture,
but with a polymer blend, where interactions between
the two components play a leading role. The conse-
quences of the two component structure for these

problems, involving spinodal decomposition, preci-
pitate growth, etc., are currently under study [11].
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Let us end up by a general remark : this paper was
concerned with fluctuations of concentration (in an
isotropic mixture) and with the related correlation
functions. We wish to point out that similar problems
will occur with other physical quantities. For ins-
tance we could look at the correlation function for
shear stress 6 :

Again we would find that it splits into two parts
(rapid and slow). Of particular interest is the viscosity
q(q) for flow modulated in space at a wavelength
2 nlq. This generalized viscosity is useful for the dis-
cussion of melt flow near a solid boundary : i.e. in
small tubes, or near a small solid particle in suspen-
sion. q(q) is related to Fq(t) by a Kubo formula

This will be dominated by the slow component.
Using the Doi-Edwards analysis, it is easy to see that

where E = KTI(N, a3) is the plateau modulus of the
entangled structure. Thus q(q) is independent of q
for a very wide range of q. This means that, for simple
shear flow near a solid wall, it is correct to assume that
the velocity gradient is constant near the wall (down
to distances of order D). This was implicitly assumed
in our discussion of boundary conditions for the flow
of polymer melts [12].

Acknowledgments. - I have benefited from very
helpful discussions on Brownian motions in tubes
with F. Brochard and P. Pincus.

References

[1] DE GENNES, P. G., J. Chem. Phys. 72 (1980) 4756.
[2] HIGGINS, J. S., Proceed. Conf. on Neutron Scattering, Pt. I

Gattinburg, Tenn., 6-10 June 1976, p. 344.

ALLEN, G. and MACONNACHIE, A., Br. Polym. J. 9 (1977) 184.
[3] VAN HovE, L., Phys. Rev. 95 (1954) 249.
[4] RICHTER, D., HAYTER, J., MEZEI, F., EWEN, R., Phys. Rev.

Lett. 42 (1979) 1681.
HAYTER, J., Private communication.

[5] RousE, P. E., J. Chem. Phys. 21 (1953) 1272.
[6] DE GENNES, P. G.. Physics 3 (1967) 37.

[7] DE GENNES, P. G., DUBOIS-VIOLETTE, E., Physics 3 (1967) 181.
[8] DE GENNES, P. G., J. Chem. Phys. 55 (1971) 572.
[9] DOI, M., EDWARDS, S. F., J. C. S. Faraday II 74 (1978) 1789,

1802, 1818.
[10] DE GENNES, P. G., C. R. Hebd. Séan. Acad. Sci. (Paris), to be

published.
[11] PINCUS, P., to be published in J. Chem. Phys.
[12] DE GENNES, P. G., C. R. Hebd. Séan. Acad. Sci. (Paris) B 288

(1979) 219.


