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Résumé. — L’énergie libre de marche est le cotit nécessaire a la création d’'une marche sur une boucle de Wilson
plate. Nous avons calculé cette quantité par unité de longueur au 8¢ ordre dans le développement de couplage fort
des théories de jauge Z, sur réseau a 3 et 4 dimensions. Nous avons analysé la fagon dont elle s’annule 4 la transi-
tion rugueuse. Nos résultats sont compatibles avec une singularité essentielle exp — C(ty — )~ /2 suggérée par

la relation avec le modéle XY.

Abstract. — The step free-energy is the cost in free energy to create a single step in a planar Wilson loop. We
compute it, per unit length, to eighth order in a strong coupling expansion of 3-D and 4-D Z, gauge theories,
and analyse its vanishing at the roughening transition. Our results are consistent with an essential singularity
exp — C(tg — 1)~ /2, expected from a relationship with the XY-model.

1. Introduction. — It has recently been realized
that lattice gauge theories experience a roughening
transition [1-4]. Because of long range fluctuations of
large two-dimensional surfaces, physical quantities
attached to such surfaces, such as the string tension,
have a singularity at a finite value of the coupling. The
first works devoted to this roughening phenomenon
in lattice gauge theories have provided ample evidence
for'the existence of this singularity for arbitrary gauge
groups and low (space-time) dimensions 3 < d < 5.
In this paper we address the problem of finding an
effective theory in the roughening region. In three
dimensions, it is well known [5-6] that the Z, lattice
gauge theory (dual to the Ising model) is, near the
roughening coupling, equivalent to a XY-model
The low coupling (rough) phase of the former corres-
ponds to the low-temperature (no free vortices) phase
of the latter. For instance, the step free-energy f,
which is the free energy per unit length associated
to the creation of a single step in the interface, is pro-
portional to the inverse correlation length £~1 of the
XY-model [7]. It vanishes in the rough phase, and
approaches zero as [8]

C
[~ ~exp — —— (1)
ﬂr - B
as B = 1/g3 approaches f, from below.

Strictly speaking, this equivalence between the
roughening and XY transitions holds only for the

so-called solid-on-solid (S.O.S.) version of the Z,
model [6], where disconnected parts and « overhang »
configurations are discarded. However, we do not
expect this modification to affect the behaviour (1),
since the neglected configurations are not yet nume-
rous and do not seem to play an important role for
B ~ B.. Also, the same singular behaviour (1) is likely
to arise in other three-dimensional gauge theories,
based on different groups. The reason is again that,
at the roughening transition, group-dependent confi-
gurations play a very minor role. This is assessed in
particular by the apparent universality of the loca-
tion of the roughening coupling, when measured in
a suitable scale [1-3].

In four dimensions, on the other hand, no such
simple equivalence exists. It has been argued how-
ever [1] that an effective theory might be given by two
decoupled X Y-models. If correct, this would lead to
the same behaviour (1) for the step free-energy, and
conversely evidence for such a singular behaviour
would support this argument. In this paper, we try
to find such an evidence from strong coupling expan-
sions of f. We restrict ourselves to the Z, group.

In section 2, we explain how this calculation may
be performed, while section 3 deals with the analysis
of the series. As we shall see, these series are difficult
to analyse, and we shall present our tentative conclu-
sions in the last section. A similar analysis has been
reported by Pearson [4] using a four term expansion
within the Hamiltonian formulation.
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2. Strong coupling expansion of the step energy. —
To define the step free-energy f in a d-dimensional
Z, lattice gauge theory, we introduce a Wilson loop
along a contour with a single step, as shown in figure 1.
The expectation value of such a loop of area A (with
the usual Boltzmann factor expp > Up) has

plaquettes
the asymptotic behaviour

(W) =exp(— k4 — Lf) 2

where k is the string tension and f the step free-energy.
’ a

Fig. 1. — Configuration of the Wilson loop for the definition of
the step free-energy. The step is one lattice spacing high.

Unfortunately, its strong coupling (small ) expan-
sion does not exhibit this behaviour : the large L
limit does not commute with the expansion. Typically
taking into account the first correction to { W ),
coming from diagrams of figure 2, leads to

(WY=t"" 1+ LL+ D +~] (3

Fig. 2. — First corrections to the diagram of figure 1, proportional
L(L +1)

to ) .

where
t = tanh 4

and this expression cannot be cast into the form (2).

>

N

Fig. 3. — Shifted loop for the actual calculation of {( W >. Skew
periodic boundary conditions identify A and A’, B, B’ and B".
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This desease is well known in high temperature
calculations of correlation lengths in spin models [9],
and the cure will be the same. Instead of calculating
{ W) for the loop of figure 1, we consider rather the
family of loops depicted on figure 3 ; the step on oppo-
site edges of the loop has been shifted by an integer
multiple of the lattice spacing k.a(k 2 0).

Furthermore, skew periodic boundary conditions
are introduced, i.e. points A and A’ are identified,
etc... For each k, ¢ W ) has again the form (1), but
now the strong coupling expansion of { W ), averag-
ed on all the shifted configurations, is consistent
with (1).

From this point on, the computation proceeds
through the usual diagrammatic expansion, and we
shall not bother the reader with its description.

In 3 and 4 dimensions, the expansion of f to order
eight reads :

d=3; — f=Int+2t+33+

+ 265 — 1 — 1247 — 48 (5a)
d=4; — f=Int+21+30 +2* +
+ 25+ 305 +1287 4+ 1448 (5b)

In three dimensions, we can also do the same calcu-
lation for the S.0.S. version of the model. It turns out
that only the last term of (5a) is affected and changed
into — 6¢%. In practice, this modification will not
change the forthcoming results. Finally, we notice
that, as expected, the first terms of these expansions
reproduce the two-dimensional Ising boundary free
energy [10] : In [t(1 + t)/(1 — t)].

3. Analysis of the roughening singularity. — We
now turn to the analysis of the singularity of the step
free-energy f at the roughening coupling . Along
with the expansions (5) we may consider the expansion

of
of E=t 'é?,
to vanish at 7. We recall that previous analyses
[1-3, 6] yield tg ~ 0.46 at d = 3, t; ~ 0.40 at d = 4.

As will become clear in the following, the expan-
sions (5) are still much too short to yield unambiguous
results. The best we can do is to rule out some possi-
bilities and make suggestions.

First, we have checked that the expansions (5) of
f or the corresponding expansions of E are inconsis-
tent with an algebraic singularity (g — t)*. Indeed,
calculating the expansion of the logarithmic deriva-
tives of (— f — In t) or of E, and looking at the poles
of their Padé extrapolations yields very unstable
results. Also there is not yet any apparent sign of
divergence of f ! or of E ™! at tz. This also prevents
us from comparing the expansion of Egqg (or its
Padé approximants) to the Monte-Carlo data of
reference [11]. All these negative results may be inter-
preted as signs that the singularity of f and E is
weak.

the step energy, which is also supposed
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We then turn to the Ansatz

—f~(@tg —tfexp — Cltg — tf
—E~(tg — tf 1rexp — Clty — t) (6)

where we allow the possibility of an algebraic singu-
larity on top of an essential singularity. We have tried
several methods to test this assumption.

1) Padé extrapolations of the logarithmic derivative
of In E are again rather unstable and seem more sensi-
tive to a spurious « antiferromagnetic » coupling
tg ~ — 0.45, reminiscent of the zero at —./2 + 1
of the two-dimensional Ising boundary energy

2t
1 —¢?

E=1+ [10] .
Only the last approximant at d = 4 has a pole at

tg = 0.412 with residue o = — 0.53. It would be nice
to check whether this result persists to higher orders.

2) A refined ratio method, advocated by Parisi [12],
fails here because of the strong oscillations of the
series (5).

3) Finally, the dominant term In¢ in f suggests
us to use an alternative method to test the singu-
larity (6). If f vanishes at t as indicated in (6), so does
1 —e /. Then ¢ = In (1 — e~ /), which has a power
series expansion, should have an algebraic singularity.
This is what we find, using three different methods of
analysis.

i) Computing the ratios of successive terms in the
series of ¢ yields

tg ~ 047 — 048  at
te ~ 041 — 042  at

d=73
d=4

in rather good agreement (though a little too high)
with other estimates [1-3, 6].

ii) The logarithmic derivative of ¢ has the poles
and residues listed in table I. The location of the
singularity is again correctly reproduced, while the
residue at d = 3 seems closer to — 2/3 than to — 1/2,
the value expected from the relationship with the
XY-model. This is no surprise since experience tells

us that residues are generally not very well reproduced -

Table 1. — Nearest real pole and residue of the succes-
sive Padé approximants of the logarithmic derivative of
o =In(1 —eatd =3andd = 4.

[2/3] (3731 | [3/4 | [4/4
J—3 |t= 0454 0460/ 0459) 0.460
- a=—0.643 [— 0.680|— 0.675(— 0.681
i—4 |m= 0367| 035 0396 0392
- a=—0.397 |- 0.338|— 0.537|— 0.505
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to such a low order. On the other hand, the residue
at d = 4 is not inconsistent with — 1/2.

iii) We have finally used the Padé-Mellin method
on ¢ [13]. We recall that in this method, the critical
indices y; of a function ¢(t) at a given point fg :

Y~ 2ty — )7

are identified as the poles of the transformed function
M(p). The latter, whose series expansion is known
from that of ¢, is then analysed through Padé approxi-
mants. This method is very efficient to disentangle
several confluent singularities at the same point.
Unfortunately, it relies on the knowledge of tz. In our
case, varying the order of the approximant and the
location of t; over the intervals 0.45 < tz < 047
at d = 3, 037 < tg < 041 at d = 4 has produced
indices for the dominant singularity ranging between
— 05 and — 0.67 at d = 3, — 0.36 and — 0.67 at
d = 4. Checking that the indices of the derivative are
shifted by one unit has given little further constraint.

It would have been nice to check either of these
methods in a case which is known to have the beha-
viour (1) and where the expansion may be pushed to a
higher order. This is indeed the case of the exactly
solvable S.0O.S. model on a body-centred cubic lattice
considered by van Beijeren [14]. An equivalence with
the 6-vertex model enables one to write the exact
expression of E :

E-:Z

= const. (tg — t)" /2 x
at (R )

X {% +2 i (= 1" ! n(tanh nA — 1)} )
n=1

where

l:—lnt+21n|:%+(tk—t)l/2]. (8)
The roughening coupling corresponds to Az = 0,
tg = 1/4 and E behaves at this point as :

7I2

E ~ (g — t)_3/2 exp — W
R

©)

This model seems a perfect candidate to check the
previous methods. Unfortunately, the essential singu-
larity at A = 0, t = g is accompanied by a natural
boundary along the imaginary axis in the A plane, as
is clear on equation (7). As a consequence, the analytic
structure in the t-plane near t; = 1/4 is more compli-
cated than a single branch point. When the previous
methods of analysis are applied to the expansion, this
reflects on a rough verification that 7, = 0.25 and very
broad instabilities on the value of the critical index.
Clearly, the best we can hope is that this natural
boundary is not a universal feature, while the beha-
viour (1) is.
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4. Conclusion. — It must be clear to the reader that
our conclusions cannot be very firm. We believe that
we have ruled out the possibility that f or E vanish
algebraically as (zg — #)*. We have found some evi-
dence for an essential singularity exp — C(tgx — t)%
with 12 <a<2B3atd=3 1/3< —a<2/3 at
d = 4, therefore not inconsistent with our theoretical
prejudice (1). Similar conclusions were reached by
Kogut et al. [4]. It must also be recalled that atd = 3,
the analysis of the critical behaviour at the roughen-
ing point of the successive moments ¢ z2 >, { z* ), ...
of the distribution of heights of the interface from their
series expansions has encountered some difficul-
ties [15]. The values found for the indices disagree

N° 5

with those expected from universality [16], and may
be even inconsistent with Schwartz inequality
(222 <),

Much longer series should therefore be computed
before a definite conclusion may be reached. We find
it gratifying, however, to have found no violent disa-
greement with the theoretical prediction (1) and to
have therefore some support to the relationship with
the X Y-model.
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